


Остановите войну!
for scientists:
Pieter Abbeel
Person information

- affiliation: University of California, Berkeley, USA
- affiliation: Stanford University, USA
- award (2021): ACM Prize in Computing
- award (2013): Presidential Early Career Award for Scientists and Engineers
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2022
- [i242]Wenlong Huang, Pieter Abbeel, Deepak Pathak, Igor Mordatch:
Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents. CoRR abs/2201.07207 (2022) - [i241]Julius Frost, Olivia Watkins, Eric Weiner, Pieter Abbeel, Trevor Darrell, Bryan A. Plummer, Kate Saenko:
Explaining Reinforcement Learning Policies through Counterfactual Trajectories. CoRR abs/2201.12462 (2022) - [i240]Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel, Alessandro Lazaric, Lerrel Pinto:
Don't Change the Algorithm, Change the Data: Exploratory Data for Offline Reinforcement Learning. CoRR abs/2201.13425 (2022) - [i239]Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind Rajeswaran, Pieter Abbeel:
CIC: Contrastive Intrinsic Control for Unsupervised Skill Discovery. CoRR abs/2202.00161 (2022) - [i238]Stephen James, Pieter Abbeel:
Bingham Policy Parameterization for 3D Rotations in Reinforcement Learning. CoRR abs/2202.03957 (2022) - [i237]Yuqing Du, Pieter Abbeel, Aditya Grover:
It Takes Four to Tango: Multiagent Selfplay for Automatic Curriculum Generation. CoRR abs/2202.10608 (2022) - [i236]Jongjin Park, Younggyo Seo, Jinwoo Shin, Honglak Lee, Pieter Abbeel, Kimin Lee:
SURF: Semi-supervised Reward Learning with Data Augmentation for Feedback-efficient Preference-based Reinforcement Learning. CoRR abs/2203.10050 (2022) - [i235]Olivia Watkins, Trevor Darrell, Pieter Abbeel, Jacob Andreas, Abhishek Gupta:
Teachable Reinforcement Learning via Advice Distillation. CoRR abs/2203.11197 (2022) - [i234]Younggyo Seo, Kimin Lee, Stephen James, Pieter Abbeel:
Reinforcement Learning with Action-Free Pre-Training from Videos. CoRR abs/2203.13880 (2022) - [i233]Alejandro Escontrela, Xue Bin Peng, Wenhao Yu, Tingnan Zhang, Atil Iscen, Ken Goldberg, Pieter Abbeel:
Adversarial Motion Priors Make Good Substitutes for Complex Reward Functions. CoRR abs/2203.15103 (2022) - [i232]Kourosh Hakhamaneshi, Marcel Nassar, Mariano Phielipp, Pieter Abbeel, Vladimir Stojanovic:
Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling and Design. CoRR abs/2203.15913 (2022) - [i231]Stephen James, Pieter Abbeel:
Coarse-to-Fine Q-attention with Learned Path Ranking. CoRR abs/2204.01571 (2022) - [i230]Carl Qi, Pieter Abbeel, Aditya Grover:
Imitating, Fast and Slow: Robust learning from demonstrations via decision-time planning. CoRR abs/2204.03597 (2022) - [i229]Kai Chen, Rui Cao, Stephen James, Yichuan Li, Yun-Hui Liu, Pieter Abbeel, Qi Dou:
Sim-to-Real 6D Object Pose Estimation via Iterative Self-training for Robotic Bin-picking. CoRR abs/2204.07049 (2022) - [i228]Stephen James, Pieter Abbeel:
Coarse-to-fine Q-attention with Tree Expansion. CoRR abs/2204.12471 (2022) - [i227]Xin Chen, Sam Toyer, Cody Wild, Scott Emmons, Ian Fischer, Kuang-Huei Lee, Neel Alex, Steven H. Wang, Ping Luo, Stuart Russell, Pieter Abbeel, Rohin Shah:
An Empirical Investigation of Representation Learning for Imitation. CoRR abs/2205.07886 (2022) - 2021
- [j25]Gregory Kahn
, Pieter Abbeel, Sergey Levine:
BADGR: An Autonomous Self-Supervised Learning-Based Navigation System. IEEE Robotics Autom. Lett. 6(2): 1312-1319 (2021) - [j24]Gregory Kahn
, Pieter Abbeel, Sergey Levine
:
LaND: Learning to Navigate From Disengagements. IEEE Robotics Autom. Lett. 6(2): 1872-1879 (2021) - [j23]Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, Angjoo Kanazawa:
AMP: adversarial motion priors for stylized physics-based character control. ACM Trans. Graph. 40(4): 144:1-144:20 (2021) - [c261]Xiaofei Wang, Kimin Lee, Kourosh Hakhamaneshi, Pieter Abbeel, Michael Laskin:
Skill Preferences: Learning to Extract and Execute Robotic Skills from Human Feedback. CoRL 2021: 1259-1268 - [c260]Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, Jinwoo Shin:
Offline-to-Online Reinforcement Learning via Balanced Replay and Pessimistic Q-Ensemble. CoRL 2021: 1702-1712 - [c259]Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter Abbeel, Ashish Vaswani:
Bottleneck Transformers for Visual Recognition. CVPR 2021: 16519-16529 - [c258]Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel, Joseph Gonzalez, Ion Stoica:
Contrastive Code Representation Learning. EMNLP (1) 2021: 5954-5971 - [c257]Ajay Jain, Matthew Tancik, Pieter Abbeel:
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis. ICCV 2021: 5865-5874 - [c256]Ruihan Zhao, Kevin Lu, Pieter Abbeel, Stas Tiomkin:
Efficient Empowerment Estimation for Unsupervised Stabilization. ICLR 2021 - [c255]Nicklas Hansen, Rishabh Jangir, Yu Sun, Guillem Alenyà, Pieter Abbeel, Alexei A. Efros, Lerrel Pinto, Xiaolong Wang:
Self-Supervised Policy Adaptation during Deployment. ICLR 2021 - [c254]Donald Joseph Hejna III, Pieter Abbeel, Lerrel Pinto:
Task-Agnostic Morphology Evolution. ICLR 2021 - [c253]David Lindner, Rohin Shah, Pieter Abbeel, Anca D. Dragan:
Learning What To Do by Simulating the Past. ICLR 2021 - [c252]Kevin Lu, Aditya Grover, Pieter Abbeel, Igor Mordatch:
Reset-Free Lifelong Learning with Skill-Space Planning. ICLR 2021 - [c251]Rui Zhao, Yang Gao, Pieter Abbeel, Volker Tresp, Wei Xu:
Mutual Information State Intrinsic Control. ICLR 2021 - [c250]Boyuan Chen, Pieter Abbeel, Deepak Pathak:
Unsupervised Learning of Visual 3D Keypoints for Control. ICML 2021: 1539-1549 - [c249]Kimin Lee, Michael Laskin, Aravind Srinivas, Pieter Abbeel:
SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep Reinforcement Learning. ICML 2021: 6131-6141 - [c248]Kimin Lee, Laura M. Smith, Pieter Abbeel:
PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via Relabeling Experience and Unsupervised Pre-training. ICML 2021: 6152-6163 - [c247]Hao Liu, Pieter Abbeel:
APS: Active Pretraining with Successor Features. ICML 2021: 6736-6747 - [c246]Roshan Rao, Jason Liu, Robert Verkuil, Joshua Meier, John F. Canny, Pieter Abbeel, Tom Sercu, Alexander Rives:
MSA Transformer. ICML 2021: 8844-8856 - [c245]Younggyo Seo, Lili Chen, Jinwoo Shin, Honglak Lee, Pieter Abbeel, Kimin Lee:
State Entropy Maximization with Random Encoders for Efficient Exploration. ICML 2021: 9443-9454 - [c244]Adam Stooke, Kimin Lee, Pieter Abbeel, Michael Laskin:
Decoupling Representation Learning from Reinforcement Learning. ICML 2021: 9870-9879 - [c243]Yuqing Du, Olivia Watkins, Trevor Darrell, Pieter Abbeel, Deepak Pathak:
Auto-Tuned Sim-to-Real Transfer. ICRA 2021: 1290-1296 - [c242]Zhongyu Li, Xuxin Cheng, Xue Bin Peng, Pieter Abbeel, Sergey Levine, Glen Berseth, Koushil Sreenath:
Reinforcement Learning for Robust Parameterized Locomotion Control of Bipedal Robots. ICRA 2021: 2811-2817 - [c241]Cynthia Chen, Xin Chen, Sam Toyer, Cody Wild, Scott Emmons, Ian Fischer, Kuang-Huei Lee, Neel Alex, Steven H. Wang, Ping Luo, Stuart Russell, Pieter Abbeel, Rohin Shah:
An Empirical Investigation of Representation Learning for Imitation. NeurIPS Datasets and Benchmarks 2021 - [c240]Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang, Lerrel Pinto, Pieter Abbeel:
URLB: Unsupervised Reinforcement Learning Benchmark. NeurIPS Datasets and Benchmarks 2021 - [c239]Charles Packer, Pieter Abbeel, Joseph E. Gonzalez:
Hindsight Task Relabelling: Experience Replay for Sparse Reward Meta-RL. NeurIPS 2021: 2466-2477 - [c238]Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch:
Decision Transformer: Reinforcement Learning via Sequence Modeling. NeurIPS 2021: 15084-15097 - [c237]Kimin Lee, Laura Smith, Anca D. Dragan, Pieter Abbeel:
B-Pref: Benchmarking Preference-Based Reinforcement Learning. NeurIPS Datasets and Benchmarks 2021 - [c236]Olivia Watkins, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, Jacob Andreas:
Teachable Reinforcement Learning via Advice Distillation. NeurIPS 2021: 6920-6933 - [c235]Hao Liu, Pieter Abbeel:
Behavior From the Void: Unsupervised Active Pre-Training. NeurIPS 2021: 18459-18473 - [c234]Wenling Shang, Xiaofei Wang, Aravind Srinivas, Aravind Rajeswaran, Yang Gao, Pieter Abbeel, Michael Laskin:
Reinforcement Learning with Latent Flow. NeurIPS 2021: 22171-22183 - [c233]Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, Yang Gao:
Mastering Atari Games with Limited Data. NeurIPS 2021: 25476-25488 - [c232]Lili Chen, Kimin Lee, Aravind Srinivas, Pieter Abbeel:
Improving Computational Efficiency in Visual Reinforcement Learning via Stored Embeddings. NeurIPS 2021: 26779-26791 - [i226]Wenling Shang, Xiaofei Wang, Aravind Srinivas, Aravind Rajeswaran, Yang Gao, Pieter Abbeel, Michael Laskin:
Reinforcement Learning with Latent Flow. CoRR abs/2101.01857 (2021) - [i225]Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter Abbeel, Ashish Vaswani:
Bottleneck Transformers for Visual Recognition. CoRR abs/2101.11605 (2021) - [i224]Younggyo Seo, Lili Chen, Jinwoo Shin, Honglak Lee, Pieter Abbeel, Kimin Lee:
State Entropy Maximization with Random Encoders for Efficient Exploration. CoRR abs/2102.09430 (2021) - [i223]Donald J. Hejna III, Pieter Abbeel, Lerrel Pinto:
Task-Agnostic Morphology Evolution. CoRR abs/2102.13100 (2021) - [i222]Lili Chen, Kimin Lee, Aravind Srinivas, Pieter Abbeel:
Improving Computational Efficiency in Visual Reinforcement Learning via Stored Embeddings. CoRR abs/2103.02886 (2021) - [i221]Hao Liu, Pieter Abbeel:
Behavior From the Void: Unsupervised Active Pre-Training. CoRR abs/2103.04551 (2021) - [i220]Kevin Lu, Aditya Grover, Pieter Abbeel, Igor Mordatch:
Pretrained Transformers as Universal Computation Engines. CoRR abs/2103.05247 (2021) - [i219]Rui Zhao, Yang Gao, Pieter Abbeel, Volker Tresp, Wei Xu:
Mutual Information State Intrinsic Control. CoRR abs/2103.08107 (2021) - [i218]Zhongyu Li, Xuxin Cheng, Xue Bin Peng, Pieter Abbeel, Sergey Levine, Glen Berseth, Koushil Sreenath:
Reinforcement Learning for Robust Parameterized Locomotion Control of Bipedal Robots. CoRR abs/2103.14295 (2021) - [i217]Ajay Jain, Matthew Tancik, Pieter Abbeel:
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis. CoRR abs/2104.00677 (2021) - [i216]Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, Angjoo Kanazawa:
AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control. CoRR abs/2104.02180 (2021) - [i215]Philippe Hansen-Estruch, Wenling Shang, Lerrel Pinto, Pieter Abbeel, Stas Tiomkin:
GEM: Group Enhanced Model for Learning Dynamical Control Systems. CoRR abs/2104.02844 (2021) - [i214]David Lindner, Rohin Shah, Pieter Abbeel, Anca D. Dragan:
Learning What To Do by Simulating the Past. CoRR abs/2104.03946 (2021) - [i213]Yuqing Du, Olivia Watkins, Trevor Darrell, Pieter Abbeel, Deepak Pathak:
Auto-Tuned Sim-to-Real Transfer. CoRR abs/2104.07662 (2021) - [i212]Wilson Yan, Yunzhi Zhang, Pieter Abbeel, Aravind Srinivas:
VideoGPT: Video Generation using VQ-VAE and Transformers. CoRR abs/2104.10157 (2021) - [i211]Kourosh Hakhamaneshi, Pieter Abbeel, Vladimir Stojanovic, Aditya Grover:
JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data. CoRR abs/2106.00942 (2021) - [i210]Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch:
Decision Transformer: Reinforcement Learning via Sequence Modeling. CoRR abs/2106.01345 (2021) - [i209]Kimin Lee, Laura M. Smith, Pieter Abbeel:
PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via Relabeling Experience and Unsupervised Pre-training. CoRR abs/2106.05091 (2021) - [i208]Boyuan Chen, Pieter Abbeel, Deepak Pathak:
Unsupervised Learning of Visual 3D Keypoints for Control. CoRR abs/2106.07643 (2021) - [i207]Catherine Cang, Aravind Rajeswaran, Pieter Abbeel, Michael Laskin:
Behavioral Priors and Dynamics Models: Improving Performance and Domain Transfer in Offline RL. CoRR abs/2106.09119 (2021) - [i206]Abdus Salam Azad, Edward Kim, Qiancheng Wu, Kimin Lee, Ion Stoica, Pieter Abbeel, Sanjit A. Seshia:
Scenic4RL: Programmatic Modeling and Generation of Reinforcement Learning Environments. CoRR abs/2106.10365 (2021) - [i205]Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, Jinwoo Shin:
Offline-to-Online Reinforcement Learning via Balanced Replay and Pessimistic Q-Ensemble. CoRR abs/2107.00591 (2021) - [i204]Rohin Shah, Cody Wild, Steven H. Wang, Neel Alex, Brandon Houghton, William H. Guss, Sharada P. Mohanty, Anssi Kanervisto, Stephanie Milani, Nicholay Topin, Pieter Abbeel, Stuart Russell, Anca D. Dragan:
The MineRL BASALT Competition on Learning from Human Feedback. CoRR abs/2107.01969 (2021) - [i203]Kourosh Hakhamaneshi, Ruihan Zhao, Albert Zhan, Pieter Abbeel, Michael Laskin:
Hierarchical Few-Shot Imitation with Skill Transition Models. CoRR abs/2107.08981 (2021) - [i202]Sarah Young, Jyothish Pari, Pieter Abbeel, Lerrel Pinto:
Playful Interactions for Representation Learning. CoRR abs/2107.09046 (2021) - [i201]Xiaofei Wang, Kimin Lee, Kourosh Hakhamaneshi, Pieter Abbeel, Michael Laskin:
Skill Preferences: Learning to Extract and Execute Robotic Skills from Human Feedback. CoRR abs/2108.05382 (2021) - [i200]Hao Liu, Pieter Abbeel:
APS: Active Pretraining with Successor Features. CoRR abs/2108.13956 (2021) - [i199]Mandi Zhao, Fangchen Liu, Kimin Lee, Pieter Abbeel:
Towards More Generalizable One-shot Visual Imitation Learning. CoRR abs/2110.13423 (2021) - [i198]Litian Liang, Yaosheng Xu, Stephen McAleer, Dailin Hu, Alexander Ihler, Pieter Abbeel, Roy Fox:
Temporal-Difference Value Estimation via Uncertainty-Guided Soft Updates. CoRR abs/2110.14818 (2021) - [i197]Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang, Lerrel Pinto, Pieter Abbeel:
URLB: Unsupervised Reinforcement Learning Benchmark. CoRR abs/2110.15191 (2021) - [i196]Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, Yang Gao:
Mastering Atari Games with Limited Data. CoRR abs/2111.00210 (2021) - [i195]Kimin Lee, Laura Smith, Anca D. Dragan, Pieter Abbeel:
B-Pref: Benchmarking Preference-Based Reinforcement Learning. CoRR abs/2111.03026 (2021) - [i194]Wenlong Huang, Igor Mordatch, Pieter Abbeel, Deepak Pathak:
Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning. CoRR abs/2111.03062 (2021) - [i193]Dailin Hu, Pieter Abbeel, Roy Fox:
Count-Based Temperature Scheduling for Maximum Entropy Reinforcement Learning. CoRR abs/2111.14204 (2021) - [i192]Charles Packer, Pieter Abbeel, Joseph E. Gonzalez:
Hindsight Task Relabelling: Experience Replay for Sparse Reward Meta-RL. CoRR abs/2112.00901 (2021) - [i191]Ajay Jain, Ben Mildenhall, Jonathan T. Barron, Pieter Abbeel, Ben Poole:
Zero-Shot Text-Guided Object Generation with Dream Fields. CoRR abs/2112.01455 (2021) - [i190]Yaosheng Xu, Dailin Hu, Litian Liang, Stephen McAleer, Pieter Abbeel, Roy Fox:
Target Entropy Annealing for Discrete Soft Actor-Critic. CoRR abs/2112.02852 (2021) - 2020
- [c231]Wilson Yan, Ashwin Vangipuram, Pieter Abbeel, Lerrel Pinto:
Learning Predictive Representations for Deformable Objects Using Contrastive Estimation. CoRL 2020: 564-574 - [c230]Sarah Young, Dhiraj Gandhi, Shubham Tulsiani, Abhinav Gupta, Pieter Abbeel, Lerrel Pinto:
Visual Imitation Made Easy. CoRL 2020: 1992-2005 - [c229]Ignasi Clavera, Yao Fu, Pieter Abbeel:
Model-Augmented Actor-Critic: Backpropagating through Paths. ICLR 2020 - [c228]Alexander C. Li, Carlos Florensa, Ignasi Clavera, Pieter Abbeel:
Sub-policy Adaptation for Hierarchical Reinforcement Learning. ICLR 2020 - [c227]Donald J. Hejna III, Lerrel Pinto, Pieter Abbeel:
Hierarchically Decoupled Imitation For Morphological Transfer. ICML 2020: 4159-4171 - [c226]Michael Laskin, Aravind Srinivas, Pieter Abbeel:
CURL: Contrastive Unsupervised Representations for Reinforcement Learning. ICML 2020: 5639-5650 - [c225]Eric Liang, Zongheng Yang, Ion Stoica, Pieter Abbeel, Yan Duan, Xi Chen:
Variable Skipping for Autoregressive Range Density Estimation. ICML 2020: 6040-6049 - [c224]Kara Liu, Thanard Kurutach, Christine Tung, Pieter Abbeel, Aviv Tamar:
Hallucinative Topological Memory for Zero-Shot Visual Planning. ICML 2020: 6259-6270 - [c223]Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, Deepak Pathak:
Planning to Explore via Self-Supervised World Models. ICML 2020: 8583-8592 - [c222]Adam Stooke, Joshua Achiam, Pieter Abbeel:
Responsive Safety in Reinforcement Learning by PID Lagrangian Methods. ICML 2020: 9133-9143 - [c221]Ge Yang, Amy Zhang, Ari S. Morcos, Joelle Pineau, Pieter Abbeel, Roberto Calandra:
Plan2Vec: Unsupervised Representation Learning by Latent Plans. L4DC 2020: 935-946 - [c220]Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Kurt Keutzer, Ion Stoica, Joseph Gonzalez:
Checkmate: Breaking the Memory Wall with Optimal Tensor Rematerialization. MLSys 2020 - [c219]Yuqing Du, Stas Tiomkin, Emre Kiciman, Daniel Polani, Pieter Abbeel, Anca D. Dragan:
AvE: Assistance via Empowerment. NeurIPS 2020 - [c218]Scott Emmons, Ajay Jain, Michael Laskin, Thanard Kurutach, Pieter Abbeel, Deepak Pathak:
Sparse Graphical Memory for Robust Planning. NeurIPS 2020 - [c217]Jonathan Ho, Ajay Jain, Pieter Abbeel:
Denoising Diffusion Probabilistic Models. NeurIPS 2020 - [c216]Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, Aravind Srinivas:
Reinforcement Learning with Augmented Data. NeurIPS 2020 - [c215]Alex X. Lee, Anusha Nagabandi, Pieter Abbeel, Sergey Levine:
Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a Latent Variable Model. NeurIPS 2020 - [c214]Alexander C. Li, Lerrel Pinto, Pieter Abbeel:
Generalized Hindsight for Reinforcement Learning. NeurIPS 2020 - [c213]Younggyo Seo, Kimin Lee, Ignasi Clavera Gilaberte, Thanard Kurutach, Jinwoo Shin, Pieter Abbeel:
Trajectory-wise Multiple Choice Learning for Dynamics Generalization in Reinforcement Learning. NeurIPS 2020 - [c212]Yunzhi Zhang, Pieter Abbeel, Lerrel Pinto:
Automatic Curriculum Learning through Value Disagreement. NeurIPS 2020 - [c211]Laura Smith, Nikita Dhawan, Marvin Zhang, Pieter Abbeel, Sergey Levine:
AVID: Learning Multi-Stage Tasks via Pixel-Level Translation of Human Videos. Robotics: Science and Systems 2020 - [c210]Yilin Wu, Wilson Yan, Thanard Kurutach, Lerrel Pinto, Pieter Abbeel:
Learning to Manipulate Deformable Objects without Demonstrations. Robotics: Science and Systems 2020 - [c209]Ajay Jain, Pieter Abbeel, Deepak Pathak:
Locally Masked Convolution for Autoregressive Models. UAI 2020: 1358-1367 - [e2]Ken Goldberg, Pieter Abbeel, Kostas E. Bekris, Lauren Miller:
Algorithmic Foundations of Robotics XII, Proceedings of the Twelfth Workshop on the Algorithmic Foundations of Robotics, WAFR 2016, San Francisco, California, USA, December 18-20, 2016. Springer Proceedings in Advanced Robotics 13, Springer 2020, ISBN 978-3-030-43088-7 [contents] - [i189]Albert Zhan, Stas Tiomkin, Pieter Abbeel:
Preventing Imitation Learning with Adversarial Policy Ensembles. CoRR abs/2002.01059 (2020) - [i188]Gregory Kahn, Pieter Abbeel, Sergey Levine:
BADGR: An Autonomous Self-Supervised Learning-Based Navigation System. CoRR abs/2002.05700 (2020) - [i187]Kourosh Hakhamaneshi, Keertana Settaluri, Pieter Abbeel, Vladimir Stojanovic:
GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal Black Box Constraint Satisfaction. CoRR abs/2002.07236 (2020) - [i186]Alexander C. Li, Lerrel Pinto, Pieter Abbeel:
Generalized Hindsight for Reinforcement Learning. CoRR abs/2002.11708 (2020) - [i185]Kara Liu, Thanard Kurutach, Christine Tung, Pieter Abbeel, Aviv Tamar:
Hallucinative Topological Memory for Zero-Shot Visual Planning. CoRR abs/2002.12336 (2020) - [i184]Donald J. Hejna III, Pieter Abbeel, Lerrel Pinto:
Hierarchically Decoupled Imitation for Morphological Transfer. CoRR abs/2003.01709 (2020) - [i183]Wilson Yan, Ashwin Vangipuram, Pieter Abbeel, Lerrel Pinto:
Learning Predictive Representations for Deformable Objects Using Contrastive Estimation. CoRR abs/2003.05436 (2020) - [i182]Michael Laskin, Scott Emmons, Ajay Jain, Thanard Kurutach, Pieter Abbeel, Deepak Pathak:
Sparse Graphical Memory for Robust Planning. CoRR abs/2003.06417 (2020) - [i181]Aravind Srinivas, Michael Laskin, Pieter Abbeel:
CURL: Contrastive Unsupervised Representations for Reinforcement Learning. CoRR abs/2004.04136 (2020) - [i180]Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, Aravind Srinivas:
Reinforcement Learning with Augmented Data. CoRR abs/2004.14990 (2020) - [i179]Ge Yang, Amy Zhang
, Ari S. Morcos, Joelle Pineau, Pieter Abbeel, Roberto Calandra:
Plan2Vec: Unsupervised Representation Learning by Latent Plans. CoRR abs/2005.03648 (2020) - [i178]Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, Deepak Pathak:
Planning to Explore via Self-Supervised World Models. CoRR abs/2005.05960 (2020) - [i177]Ignasi Clavera, Violet Fu, Pieter Abbeel:
Model-Augmented Actor-Critic: Backpropagating through Paths. CoRR abs/2005.08068 (2020) - [i176]