


Остановите войну!
for scientists:


default search action
Joelle Pineau
Person information

- affiliation: McGill University, Montreal, Canada
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j38]Martin Cousineau
, Vedat Verter
, Susan A. Murphy
, Joelle Pineau
:
Estimating causal effects with optimization-based methods: A review and empirical comparison. Eur. J. Oper. Res. 304(2): 367-380 (2023) - [j37]Madhulika Srikumar
, Rebecca Finlay, Grace Abuhamad, Carolyn Ashurst, Rosie Campbell, Emily Campbell-Ratcliffe, Hudson Hongo, Sara R. Jordan, Joseph Lindley
, Aviv Ovadya
, Joelle Pineau
:
Publisher Correction: Advancing ethics review practices in AI research. Nat. Mac. Intell. 5(1): 94 (2023) - [j36]Harsh Satija, Alessandro Lazaric, Matteo Pirotta, Joelle Pineau:
Group Fairness in Reinforcement Learning. Trans. Mach. Learn. Res. 2023 (2023) - 2022
- [j35]Ekaterina Kochmar
, Dung Do Vu, Robert Belfer, Varun Gupta, Iulian Vlad Serban, Joelle Pineau:
Automated Data-Driven Generation of Personalized Pedagogical Interventions in Intelligent Tutoring Systems. Int. J. Artif. Intell. Educ. 32(2): 323-349 (2022) - [j34]Bogdan Mazoure, Thang Doan, Tianyu Li, Vladimir Makarenkov, Joelle Pineau, Doina Precup, Guillaume Rabusseau:
Low-Rank Representation of Reinforcement Learning Policies. J. Artif. Intell. Res. 75: 597-636 (2022) - [j33]Madhulika Srikumar
, Rebecca Finlay, Grace Abuhamad, Carolyn Ashurst, Rosie Campbell, Emily Campbell-Ratcliffe, Hudson Hongo, Sara R. Jordan, Joseph Lindley
, Aviv Ovadya
, Joelle Pineau
:
Advancing ethics review practices in AI research. Nat. Mac. Intell. 4(12): 1061-1064 (2022) - [c151]Anthony GX-Chen, Veronica Chelu, Blake A. Richards, Joelle Pineau:
A Generalized Bootstrap Target for Value-Learning, Efficiently Combining Value and Feature Predictions. AAAI 2022: 6829-6837 - [c150]Devendra Singh Sachan, Mike Lewis, Mandar Joshi, Armen Aghajanyan, Wen-tau Yih, Joelle Pineau, Luke Zettlemoyer:
Improving Passage Retrieval with Zero-Shot Question Generation. EMNLP 2022: 3781-3797 - [c149]Koustuv Sinha, Amirhossein Kazemnejad, Siva Reddy, Joelle Pineau, Dieuwke Hupkes, Adina Williams:
The Curious Case of Absolute Position Embeddings. EMNLP (Findings) 2022: 4449-4472 - [c148]Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, Eugene Belilovsky:
New Insights on Reducing Abrupt Representation Change in Online Continual Learning. ICLR 2022 - [c147]Annie Xie, Shagun Sodhani, Chelsea Finn, Joelle Pineau, Amy Zhang:
Robust Policy Learning over Multiple Uncertainty Sets. ICML 2022: 24414-24429 - [c146]Shagun Sodhani, Franziska Meier, Joelle Pineau, Amy Zhang:
Block Contextual MDPs for Continual Learning. L4DC 2022: 608-623 - [i119]Anthony GX-Chen, Veronica Chelu, Blake A. Richards, Joelle Pineau:
A Generalized Bootstrap Target for Value-Learning, Efficiently Combining Value and Feature Predictions. CoRR abs/2201.01836 (2022) - [i118]Annie Xie, Shagun Sodhani, Chelsea Finn, Joelle Pineau, Amy Zhang:
Robust Policy Learning over Multiple Uncertainty Sets. CoRR abs/2202.07013 (2022) - [i117]Thang Doan, Seyed-Iman Mirzadeh, Joelle Pineau, Mehrdad Farajtabar:
Efficient Continual Learning Ensembles in Neural Network Subspaces. CoRR abs/2202.09826 (2022) - [i116]Martin Cousineau, Vedat Verter, Susan A. Murphy, Joelle Pineau:
Estimating causal effects with optimization-based methods: A review and empirical comparison. CoRR abs/2203.00097 (2022) - [i115]Devendra Singh Sachan, Mike Lewis, Mandar Joshi, Armen Aghajanyan, Wen-tau Yih, Joelle Pineau, Luke Zettlemoyer:
Improving Passage Retrieval with Zero-Shot Question Generation. CoRR abs/2204.07496 (2022) - [i114]Devendra Singh Sachan, Mike Lewis, Dani Yogatama, Luke Zettlemoyer, Joelle Pineau, Manzil Zaheer:
Questions Are All You Need to Train a Dense Passage Retriever. CoRR abs/2206.10658 (2022) - [i113]Koustuv Sinha, Amirhossein Kazemnejad, Siva Reddy, Joelle Pineau, Dieuwke Hupkes, Adina Williams:
The Curious Case of Absolute Position Embeddings. CoRR abs/2210.12574 (2022) - 2021
- [j32]Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière, Alina Beygelzimer, Florence d'Alché-Buc, Emily B. Fox, Hugo Larochelle:
Improving Reproducibility in Machine Learning Research(A Report from the NeurIPS 2019 Reproducibility Program). J. Mach. Learn. Res. 22: 164:1-164:20 (2021) - [c145]Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, Rob Fergus:
Improving Sample Efficiency in Model-Free Reinforcement Learning from Images. AAAI 2021: 10674-10681 - [c144]Koustuv Sinha, Prasanna Parthasarathi, Joelle Pineau, Adina Williams:
UnNatural Language Inference. ACL/IJCNLP (1) 2021: 7329-7346 - [c143]Joshua Romoff, Peter Henderson, David Kanaa, Emmanuel Bengio, Ahmed Touati, Pierre-Luc Bacon, Joelle Pineau:
TDprop: Does Adaptive Optimization With Jacobi Preconditioning Help Temporal Difference Learning? AAMAS 2021: 1082-1090 - [c142]Dora Jambor, Komal K. Teru, Joelle Pineau, William L. Hamilton:
Exploring the Limits of Few-Shot Link Prediction in Knowledge Graphs. EACL 2021: 2816-2822 - [c141]Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle Pineau, Adina Williams, Douwe Kiela:
Masked Language Modeling and the Distributional Hypothesis: Order Word Matters Pre-training for Little. EMNLP (1) 2021: 2888-2913 - [c140]Prasanna Parthasarathi, Koustuv Sinha, Joelle Pineau, Adina Williams:
Sometimes We Want Ungrammatical Translations. EMNLP (Findings) 2021: 3205-3227 - [c139]Amy Zhang, Shagun Sodhani, Khimya Khetarpal, Joelle Pineau:
Learning Robust State Abstractions for Hidden-Parameter Block MDPs. ICLR 2021 - [c138]Wonseok Jeon, Chen-Yang Su, Paul Barde, Thang Doan, Derek Nowrouzezahrai, Joelle Pineau:
Regularized Inverse Reinforcement Learning. ICLR 2021 - [c137]Jongmin Lee, Wonseok Jeon, Byung-Jun Lee, Joelle Pineau, Kee-Eung Kim:
OptiDICE: Offline Policy Optimization via Stationary Distribution Correction Estimation. ICML 2021: 6120-6130 - [c136]Shagun Sodhani, Amy Zhang, Joelle Pineau:
Multi-Task Reinforcement Learning with Context-based Representations. ICML 2021: 9767-9779 - [c135]Harsh Satija, Philip S. Thomas, Joelle Pineau, Romain Laroche:
Multi-Objective SPIBB: Seldonian Offline Policy Improvement with Safety Constraints in Finite MDPs. NeurIPS 2021: 2004-2017 - [c134]Prasanna Parthasarathi, Mohamed Abdelsalam, Sarath Chandar, Joelle Pineau:
A Brief Study on the Effects of Training Generative Dialogue Models with a Semantic loss. SIGDIAL 2021: 469-476 - [c133]Prasanna Parthasarathi, Joelle Pineau, Sarath Chandar:
Do Encoder Representations of Generative Dialogue Models have sufficient summary of the Information about the task ? SIGDIAL 2021: 477-488 - [c132]Lucas Caccia, Joelle Pineau:
SPeCiaL: Self-supervised Pretraining for Continual Learning. CSSL 2021: 91-103 - [p1]Sylvie Delacroix
, Joelle Pineau, Jessica Montgomery:
Democratising the Digital Revolution: The Role of Data Governance. Reflections on Artificial Intelligence for Humanity 2021: 40-52 - [i112]Koustuv Sinha, Prasanna Parthasarathi, Joelle Pineau, Adina Williams:
Unnatural Language Inference. CoRR abs/2101.00010 (2021) - [i111]Anuroop Sriram, Matthew J. Muckley, Koustuv Sinha, Farah Shamout, Joelle Pineau, Krzysztof J. Geras, Lea Azour, Yindalon Aphinyanaphongs, Nafissa Yakubova, William Moore:
COVID-19 Prognosis via Self-Supervised Representation Learning and Multi-Image Prediction. CoRR abs/2101.04909 (2021) - [i110]Dora Jambor, Komal K. Teru, Joelle Pineau, William L. Hamilton:
Exploring the Limits of Few-Shot Link Prediction in Knowledge Graphs. CoRR abs/2102.03419 (2021) - [i109]Shagun Sodhani, Amy Zhang, Joelle Pineau:
Multi-Task Reinforcement Learning with Context-based Representations. CoRR abs/2102.06177 (2021) - [i108]Bonnie Li, Vincent François-Lavet, Thang Doan, Joelle Pineau:
Domain Adversarial Reinforcement Learning. CoRR abs/2102.07097 (2021) - [i107]Manan Tomar, Amy Zhang, Roberto Calandra, Matthew E. Taylor, Joelle Pineau:
Model-Invariant State Abstractions for Model-Based Reinforcement Learning. CoRR abs/2102.09850 (2021) - [i106]Kalesha Bullard, Douwe Kiela, Joelle Pineau, Jakob N. Foerster:
Quasi-Equivalence Discovery for Zero-Shot Emergent Communication. CoRR abs/2103.08067 (2021) - [i105]Lucas Caccia, Rahaf Aljundi, Tinne Tuytelaars, Joelle Pineau, Eugene Belilovsky:
Reducing Representation Drift in Online Continual Learning. CoRR abs/2104.05025 (2021) - [i104]Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle Pineau, Adina Williams, Douwe Kiela:
Masked Language Modeling and the Distributional Hypothesis: Order Word Matters Pre-training for Little. CoRR abs/2104.06644 (2021) - [i103]Prasanna Parthasarathi, Koustuv Sinha, Joelle Pineau, Adina Williams:
Sometimes We Want Translationese. CoRR abs/2104.07623 (2021) - [i102]Harsh Satija, Philip S. Thomas, Joelle Pineau, Romain Laroche:
Multi-Objective SPIBB: Seldonian Offline Policy Improvement with Safety Constraints in Finite MDPs. CoRR abs/2106.00099 (2021) - [i101]Emmanuel Bengio, Joelle Pineau, Doina Precup:
Correcting Momentum in Temporal Difference Learning. CoRR abs/2106.03955 (2021) - [i100]Lucas Caccia, Joelle Pineau:
SPeCiaL: Self-Supervised Pretraining for Continual Learning. CoRR abs/2106.09065 (2021) - [i99]Prasanna Parthasarathi, Mohamed Abdelsalam, Joelle Pineau, Sarath Chandar:
A Brief Study on the Effects of Training Generative Dialogue Models with a Semantic loss. CoRR abs/2106.10619 (2021) - [i98]Prasanna Parthasarathi, Joelle Pineau, Sarath Chandar:
Do Encoder Representations of Generative Dialogue Models Encode Sufficient Information about the Task ? CoRR abs/2106.10622 (2021) - [i97]Jongmin Lee, Wonseok Jeon, Byung-Jun Lee, Joelle Pineau, Kee-Eung Kim:
OptiDICE: Offline Policy Optimization via Stationary Distribution Correction Estimation. CoRR abs/2106.10783 (2021) - [i96]Shagun Sodhani, Franziska Meier, Joelle Pineau, Amy Zhang:
Block Contextual MDPs for Continual Learning. CoRR abs/2110.06972 (2021) - 2020
- [j31]Iulian Vlad Serban, Chinnadhurai Sankar, Michael Pieper, Joelle Pineau, Yoshua Bengio:
The Bottleneck Simulator: A Model-Based Deep Reinforcement Learning Approach. J. Artif. Intell. Res. 69: 571-612 (2020) - [j30]Nathan Peiffer-Smadja
, Redwan Maatoug
, François-Xavier Lescure, Eric D'ortenzio, Joelle Pineau
, Jean-Rémi King:
Machine Learning for COVID-19 needs global collaboration and data-sharing. Nat. Mach. Intell. 2(6): 293-294 (2020) - [c131]Eric Crawford, Joelle Pineau:
Exploiting Spatial Invariance for Scalable Unsupervised Object Tracking. AAAI 2020: 3684-3692 - [c130]Qizhen Zhang, Audrey Durand, Joelle Pineau:
Literature Mining for Incorporating Inductive Bias in Biomedical Prediction Tasks (Student Abstract). AAAI 2020: 13983-13984 - [c129]Koustuv Sinha, Prasanna Parthasarathi, Jasmine Wang, Ryan Lowe, William L. Hamilton, Joelle Pineau:
Learning an Unreferenced Metric for Online Dialogue Evaluation. ACL 2020: 2430-2441 - [c128]Ekaterina Kochmar
, Dung Do Vu, Robert Belfer, Varun Gupta, Iulian Vlad Serban, Joelle Pineau:
Automated Personalized Feedback Improves Learning Gains in An Intelligent Tutoring System. AIED (2) 2020: 140-146 - [c127]Iulian Vlad Serban, Varun Gupta, Ekaterina Kochmar, Dung Do Vu, Robert Belfer, Joelle Pineau, Aaron C. Courville, Laurent Charlin, Yoshua Bengio:
A Large-Scale, Open-Domain, Mixed-Interface Dialogue-Based ITS for STEM. AIED (2) 2020: 387-392 - [c126]Joelle Pineau:
Building reproducible, reusable, and robust machine learning software. DEBS 2020: 2 - [c125]Massimo Caccia, Lucas Caccia, William Fedus, Hugo Larochelle, Joelle Pineau, Laurent Charlin:
Language GANs Falling Short. ICLR 2020 - [c124]Ryan Lowe, Abhinav Gupta, Jakob N. Foerster, Douwe Kiela, Joelle Pineau:
On the interaction between supervision and self-play in emergent communication. ICLR 2020 - [c123]Emmanuel Bengio, Joelle Pineau, Doina Precup:
Interference and Generalization in Temporal Difference Learning. ICML 2020: 767-777 - [c122]Lucas Caccia, Eugene Belilovsky, Massimo Caccia, Joelle Pineau:
Online Learned Continual Compression with Adaptive Quantization Modules. ICML 2020: 1240-1250 - [c121]Harsh Satija, Philip Amortila, Joelle Pineau:
Constrained Markov Decision Processes via Backward Value Functions. ICML 2020: 8502-8511 - [c120]Amy Zhang, Clare Lyle, Shagun Sodhani, Angelos Filos, Marta Kwiatkowska, Joelle Pineau, Yarin Gal, Doina Precup:
Invariant Causal Prediction for Block MDPs. ICML 2020: 11214-11224 - [c119]Maxime Wabartha, Audrey Durand, Vincent François-Lavet, Joelle Pineau:
Handling Black Swan Events in Deep Learning with Diversely Extrapolated Neural Networks. IJCAI 2020: 2140-2147 - [c118]Vincent François-Lavet, Guillaume Rabusseau, Joelle Pineau, Damien Ernst, Raphael Fonteneau:
On Overfitting and Asymptotic Bias in Batch Reinforcement Learning with Partial Observability (Extended Abstract). IJCAI 2020: 5055-5059 - [c117]Ge Yang, Amy Zhang, Ari S. Morcos, Joelle Pineau, Pieter Abbeel, Roberto Calandra:
Plan2Vec: Unsupervised Representation Learning by Latent Plans. L4DC 2020: 935-946 - [c116]Paul Barde, Julien Roy, Wonseok Jeon, Joelle Pineau, Chris Pal, Derek Nowrouzezahrai:
Adversarial Soft Advantage Fitting: Imitation Learning without Policy Optimization. NeurIPS 2020 - [c115]Ruo Yu Tao, Vincent François-Lavet, Joelle Pineau:
Novelty Search in Representational Space for Sample Efficient Exploration. NeurIPS 2020 - [c114]Ahmed Touati, Amy Zhang, Joelle Pineau, Pascal Vincent:
Stable Policy Optimization via Off-Policy Divergence Regularization. UAI 2020: 1328-1337 - [i95]Ryan Lowe, Abhinav Gupta
, Jakob N. Foerster, Douwe Kiela, Joelle Pineau:
On the interaction between supervision and self-play in emergent communication. CoRR abs/2002.01093 (2020) - [i94]Bogdan Mazoure, Thang Doan, Tianyu Li, Vladimir Makarenkov, Joelle Pineau, Doina Precup, Guillaume Rabusseau:
Provably efficient reconstruction of policy networks. CoRR abs/2002.02863 (2020) - [i93]Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky, Joelle Pineau:
Towards the Systematic Reporting of the Energy and Carbon Footprints of Machine Learning. CoRR abs/2002.05651 (2020) - [i92]Wonseok Jeon, Paul Barde, Derek Nowrouzezahrai, Joelle Pineau:
Scalable Multi-Agent Inverse Reinforcement Learning via Actor-Attention-Critic. CoRR abs/2002.10525 (2020) - [i91]Ahmed Touati, Amy Zhang
, Joelle Pineau, Pascal Vincent:
Stable Policy Optimization via Off-Policy Divergence Regularization. CoRR abs/2003.04108 (2020) - [i90]Amy Zhang
, Clare Lyle, Shagun Sodhani, Angelos Filos, Marta Kwiatkowska, Joelle Pineau, Yarin Gal, Doina Precup:
Invariant Causal Prediction for Block MDPs. CoRR abs/2003.06016 (2020) - [i89]Emmanuel Bengio, Joelle Pineau, Doina Precup:
Interference and Generalization in Temporal Difference Learning. CoRR abs/2003.06350 (2020) - [i88]Koustuv Sinha, Shagun Sodhani, Joelle Pineau, William L. Hamilton:
Evaluating Logical Generalization in Graph Neural Networks. CoRR abs/2003.06560 (2020) - [i87]Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière, Alina Beygelzimer, Florence d'Alché-Buc, Emily B. Fox, Hugo Larochelle:
Improving Reproducibility in Machine Learning Research (A Report from the NeurIPS 2019 Reproducibility Program). CoRR abs/2003.12206 (2020) - [i86]Koustuv Sinha, Prasanna Parthasarathi, Jasmine Wang, Ryan Lowe, William L. Hamilton, Joelle Pineau:
Learning an Unreferenced Metric for Online Dialogue Evaluation. CoRR abs/2005.00583 (2020) - [i85]Ekaterina Kochmar, Dung Do Vu, Robert Belfer, Varun Gupta, Iulian Vlad Serban, Joelle Pineau:
Automated Personalized Feedback Improves Learning Gains in an Intelligent Tutoring System. CoRR abs/2005.02431 (2020) - [i84]Ge Yang, Amy Zhang
, Ari S. Morcos, Joelle Pineau, Pieter Abbeel, Roberto Calandra:
Plan2Vec: Unsupervised Representation Learning by Latent Plans. CoRR abs/2005.03648 (2020) - [i83]Iulian Vlad Serban, Varun Gupta, Ekaterina Kochmar, Dung Do Vu, Robert Belfer, Joelle Pineau, Aaron C. Courville, Laurent Charlin, Yoshua Bengio:
A Large-Scale, Open-Domain, Mixed-Interface Dialogue-Based ITS for STEM. CoRR abs/2005.06616 (2020) - [i82]Paul Barde, Julien Roy, Wonseok Jeon, Joelle Pineau, Christopher J. Pal, Derek Nowrouzezahrai:
Adversarial Soft Advantage Fitting: Imitation Learning without Policy Optimization. CoRR abs/2006.13258 (2020) - [i81]Deepak Sharma, Audrey Durand, Marc-André Legault, Louis-Philippe Lemieux Perreault, Audrey Lemaçon, Marie-Pierre Dubé, Joelle Pineau:
Deep interpretability for GWAS. CoRR abs/2007.01516 (2020) - [i80]Joshua Romoff, Peter Henderson, David Kanaa, Emmanuel Bengio, Ahmed Touati, Pierre-Luc Bacon, Joelle Pineau:
TDprop: Does Jacobi Preconditioning Help Temporal Difference Learning? CoRR abs/2007.02786 (2020) - [i79]Amy Zhang
, Shagun Sodhani, Khimya Khetarpal, Joelle Pineau:
Multi-Task Reinforcement Learning as a Hidden-Parameter Block MDP. CoRR abs/2007.07206 (2020) - [i78]Prasanna Parthasarathi, Joelle Pineau, Sarath Chandar:
How To Evaluate Your Dialogue System: Probe Tasks as an Alternative for Token-level Evaluation Metrics. CoRR abs/2008.10427 (2020) - [i77]Harsh Satija, Philip Amortila, Joelle Pineau:
Constrained Markov Decision Processes via Backward Value Functions. CoRR abs/2008.11811 (2020) - [i76]Ruo Yu Tao, Vincent François-Lavet, Joelle Pineau:
Novelty Search in representational space for sample efficient exploration. CoRR abs/2009.13579 (2020) - [i75]Wonseok Jeon, Chen-Yang Su, Paul Barde, Thang Doan, Derek Nowrouzezahrai, Joelle Pineau:
Regularized Inverse Reinforcement Learning. CoRR abs/2010.03691 (2020) - [i74]Kalesha Bullard, Franziska Meier, Douwe Kiela, Joelle Pineau, Jakob N. Foerster:
Exploring Zero-Shot Emergent Communication in Embodied Multi-Agent Populations. CoRR abs/2010.15896 (2020) - [i73]Melissa Mozifian, Amy Zhang, Joelle Pineau, David Meger:
Intervention Design for Effective Sim2Real Transfer. CoRR abs/2012.02055 (2020)
2010 – 2019
- 2019
- [j29]Vincent François-Lavet, Guillaume Rabusseau, Joelle Pineau, Damien Ernst, Raphael Fonteneau:
On Overfitting and Asymptotic Bias in Batch Reinforcement Learning with Partial Observability. J. Artif. Intell. Res. 65: 1-30 (2019) - [c113]Eric Crawford, Joelle Pineau:
Spatially Invariant Unsupervised Object Detection with Convolutional Neural Networks. AAAI 2019: 3412-3420 - [c112]Thang Doan, João Monteiro, Isabela Albuquerque, Bogdan Mazoure, Audrey Durand, Joelle Pineau, R. Devon Hjelm:
On-Line Adaptative Curriculum Learning for GANs. AAAI 2019: 3470-3477 - [c111]Vincent François-Lavet, Yoshua Bengio, Doina Precup, Joelle Pineau:
Combined Reinforcement Learning via Abstract Representations. AAAI 2019: 3582-3589 - [c110]Boyu Wang, Hejia Zhang, Peng Liu, Zebang Shen, Joelle Pineau:
Multitask Metric Learning: Theory and Algorithm. AISTATS 2019: 3362-3371 - [c109]Ryan Lowe, Jakob N. Foerster, Y-Lan Boureau, Joelle Pineau, Yann N. Dauphin:
On the Pitfalls of Measuring Emergent Communication. AAMAS 2019: 693-701 - [c108]Bogdan Mazoure, Thang Doan, Audrey Durand, Joelle Pineau, R. Devon Hjelm:
Leveraging exploration in off-policy algorithms via normalizing flows. CoRL 2019: 430-444 - [c107]Abhinav Gupta, Ryan Lowe, Jakob N. Foerster, Douwe Kiela, Joelle Pineau:
Seeded self-play for language learning. LANTERN@EMNLP-IJCNLP 2019: 62-66 - [c106]Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, William L. Hamilton:
CLUTRR: A Diagnostic Benchmark for Inductive Reasoning from Text. EMNLP/IJCNLP (1) 2019: 4505-4514 - [c105]Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh, Mike Rabbat, Joelle Pineau:
TarMAC: Targeted Multi-Agent Communication. ICML 2019: 1538-1546 - [c104]Joshua Romoff, Peter Henderson, Ahmed Touati, Yann Ollivier, Joelle Pineau, Emma Brunskill:
Separable value functions across time-scales. ICML 2019: 5468-5477 - [c103]Lucas Caccia, Herke van Hoof, Aaron C. Courville, Joelle Pineau:
Deep Generative Modeling of LiDAR Data. IROS 2019: 5034-5040 - [c102]Philip Paquette, Yuchen Lu, Steven Bocco, Max O. Smith, Satya Ortiz-Gagne, Jonathan K. Kummerfeld, Joelle Pineau, Satinder Singh, Aaron C. Courville:
No-Press Diplomacy: Modeling Multi-Agent Gameplay. NeurIPS 2019: 4476-4487 - [c101]Mahmoud Assran, Joshua Romoff, Nicolas Ballas, Joelle Pineau, Mike Rabbat:
Gossip-based Actor-Learner Architectures for Deep Reinforcement Learning. NeurIPS 2019: 13299-13309 - [c100]Ahmed Touati, Harsh Satija, Joshua Romoff, Joelle Pineau, Pascal Vincent:
Randomized Value Functions via Multiplicative Normalizing Flows. UAI 2019: 422-432 - [i72]Emily Dinan, Varvara Logacheva, Valentin Malykh, Alexander H. Miller, Kurt Shuster
, Jack Urbanek, Douwe Kiela, Arthur Szlam, Iulian Serban, Ryan Lowe, Shrimai Prabhumoye, Alan W. Black, Alexander I. Rudnicky, Jason D. Williams, Joelle Pineau, Mikhail Burtsev, Jason Weston:
The Second Conversational Intelligence Challenge (ConvAI2). CoRR abs/1902.00098 (2019) - [i71]Joshua Romoff, Peter Henderson, Ahmed Touati, Yann Ollivier, Emma Brunskill, Joelle Pineau:
Separating value functions across time-scales. CoRR abs/1902.01883 (2019) - [i70]Ryan Lowe, Jakob N. Foerster, Y-Lan Boureau, Joelle Pineau, Yann N. Dauphin:
On the Pitfalls of Measuring Emergent Communication. CoRR abs/1903.05168 (2019) - [i69]Bogdan Mazoure, Thang Doan, Audrey Durand, R. Devon Hjelm, Joelle Pineau:
Leveraging exploration in off-policy algorithms via normalizing flows. CoRR abs/1905.06893 (2019) - [i68]Pierre Thodoroff, Nishanth Anand, Lucas Caccia, Doina Precup, Joelle Pineau:
Recurrent Value Functions. CoRR abs/1905.09562 (2019) - [i67]Mahmoud Assran, Joshua Romoff, Nicolas Ballas, Joelle Pineau, Mike Rabbat:
Gossip-based Actor-Learner Architectures for Deep Reinforcement Learning. CoRR