


default search action
ndt CoRL 2018: Zürich, Switzerland
- 2nd Annual Conference on Robot Learning, CoRL 2018, Zürich, Switzerland, 29-31 October 2018, Proceedings. Proceedings of Machine Learning Research 87, PMLR 2018

- Matthias Müller, Alexey Dosovitskiy, Bernard Ghanem, Vladlen Koltun:

Driving Policy Transfer via Modularity and Abstraction. 1-15 - Eshed Ohn-Bar, Kris Kitani, Chieko Asakawa:

Personalized Dynamics Models for Adaptive Assistive Navigation Systems. 16-39 - Annie Xie, Avi Singh, Sergey Levine, Chelsea Finn:

Few-Shot Goal Inference for Visuomotor Learning and Planning. 40-52 - Abhishek Das, Georgia Gkioxari, Stefan Lee, Devi Parikh, Dhruv Batra:

Neural Modular Control for Embodied Question Answering. 53-62 - Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, Devi Parikh:

Visual Curiosity: Learning to Ask Questions to Learn Visual Recognition. 63-80 - Haonan Yu, Xiaochen Lian, Haichao Zhang, Wei Xu:

Guided Feature Transformation (GFT): A Neural Language Grounding Module for Embodied Agents. 81-98 - Eric Jang, Coline Devin, Vincent Vanhoucke, Sergey Levine:

Grasp2Vec: Learning Object Representations from Self-Supervised Grasping. 99-112 - Rui Zhao, Volker Tresp:

Energy-Based Hindsight Experience Prioritization. 113-122 - Dylan P. Losey, Marcia K. O'Malley:

Including Uncertainty when Learning from Human Corrections. 123-132 - Elia Kaufmann, Antonio Loquercio, René Ranftl, Alexey Dosovitskiy, Vladlen Koltun, Davide Scaramuzza:

Deep Drone Racing: Learning Agile Flight in Dynamic Environments. 133-145 - Bin Yang, Ming Liang, Raquel Urtasun:

HDNET: Exploiting HD Maps for 3D Object Detection. 146-155 - Artemij Amiranashvili, Alexey Dosovitskiy, Vladlen Koltun, Thomas Brox:

Motion Perception in Reinforcement Learning with Dynamic Objects. 156-168 - Péter Karkus, David Hsu, Wee Sun Lee:

Particle Filter Networks with Application to Visual Localization. 169-178 - John D. Martin, Jinkun Wang, Brendan J. Englot:

Sparse Gaussian Process Temporal Difference Learning for Marine Robot Navigation. 179-189 - Vitor Guizilini, Fabio Ramos:

Fast 3D Modeling with Approximated Convolutional Kernels. 190-199 - Vitor Guizilini, Fabio Ramos:

Unpaired Learning of Dense Visual Depth Estimators for Urban Environments. 200-212 - Gregory J. Stein, Christopher Bradley, Nicholas Roy:

Learning over Subgoals for Efficient Navigation of Structured, Unknown Environments. 213-222 - Guru Subramani, Michael R. Zinn, Michael Gleicher:

Inferring geometric constraints in human demonstrations. 223-236 - Axel Sauer, Nikolay Savinov, Andreas Geiger:

Conditional Affordance Learning for Driving in Urban Environments. 237-252 - Patrick Wenzel, Qadeer Khan, Daniel Cremers, Laura Leal-Taixé:

Modular Vehicle Control for Transferring Semantic Information Between Weather Conditions Using GANs. 253-269 - Jacky Liang, Viktor Makoviychuk, Ankur Handa, Nuttapong Chentanez, Miles Macklin, Dieter Fox:

GPU-Accelerated Robotic Simulation for Distributed Reinforcement Learning. 270-282 - Arash K. Ushani, Ryan M. Eustice:

Feature Learning for Scene Flow Estimation from LIDAR. 283-292 - Anirudha Majumdar, Maxwell Goldstein:

PAC-Bayes Control: Synthesizing Controllers that Provably Generalize to Novel Environments. 293-305 - Jonathan Tremblay, Thang To, Balakumar Sundaralingam, Yu Xiang, Dieter Fox, Stan Birchfield:

Deep Object Pose Estimation for Semantic Robotic Grasping of Household Objects. 306-316 - Connor Schenck, Dieter Fox:

SPNets: Differentiable Fluid Dynamics for Deep Neural Networks. 317-335 - Maria Bauzá, Francois Robert Hogan, Alberto Rodriguez:

A Data-Efficient Approach to Precise and Controlled Pushing. 336-345 - Jake Bruce, Niko Sünderhauf

, Piotr Mirowski, Raia Hadsell, Michael Milford:
Learning Deployable Navigation Policies at Kilometer Scale from a Single Traversal. 346-361 - Daniel S. Brown, Yuchen Cui, Scott Niekum:

Risk-Aware Active Inverse Reinforcement Learning. 362-372 - Peter R. Florence, Lucas Manuelli, Russ Tedrake:

Dense Object Nets: Learning Dense Visual Object Descriptors By and For Robotic Manipulation. 373-385 - Philippe Morere, Fabio Ramos:

Bayesian RL for Goal-Only Rewards. 386-398 - Eugene Vinitsky, Aboudy Kreidieh, Luc Le Flem, Nishant Kheterpal, Kathy Jang, Cathy Wu, Fangyu Wu, Richard Liaw, Eric Liang, Alexandre M. Bayen:

Benchmarks for reinforcement learning in mixed-autonomy traffic. 399-409 - Fan Wang, Bo Zhou, Ke Chen, Tingxiang Fan, Xi Zhang, Jiangyong Li, Hao Tian, Jia Pan:

Intervention Aided Reinforcement Learning for Safe and Practical Policy Optimization in Navigation. 410-421 - Ricson Cheng, Arpit Agarwal, Katerina Fragkiadaki:

Reinforcement Learning of Active Vision for Manipulating Objects under Occlusions. 422-431 - Clement Gehring, Leslie Pack Kaelbling, Tomás Lozano-Pérez:

Adaptable replanning with compressed linear action models for learning from demonstrations. 432-442 - Ransalu Senanayake, Anthony Tompkins, Fabio Ramos:

Automorphing Kernels for Nonstationarity in Mapping Unstructured Environments. 443-455 - Paul-Edouard Sarlin, Frédéric Debraine, Marcin Dymczyk, Roland Siegwart:

Leveraging Deep Visual Descriptors for Hierarchical Efficient Localization. 456-465 - Spencer M. Richards, Felix Berkenkamp, Andreas Krause:

The Lyapunov Neural Network: Adaptive Stability Certification for Safe Learning of Dynamical Systems. 466-476 - Marcus Gualtieri, Robert Platt Jr.:

Learning 6-DoF Grasping and Pick-Place Using Attention Focus. 477-486 - Adrien Laversanne-Finot, Alexandre Péré, Pierre-Yves Oudeyer:

Curiosity Driven Exploration of Learned Disentangled Goal Spaces. 487-504 - Valts Blukis, Dipendra Kumar Misra, Ross A. Knepper, Yoav Artzi:

Mapping Navigation Instructions to Continuous Control Actions with Position-Visitation Prediction. 505-518 - Erdem Biyik, Dorsa Sadigh:

Batch Active Preference-Based Learning of Reward Functions. 519-528 - Samuel Clarke, Travers Rhodes, Christopher G. Atkeson, Oliver Kroemer:

Learning Audio Feedback for Estimating Amount and Flow of Granular Material. 529-550 - Yun Long, Xueyuan She, Saibal Mukhopadhyay:

HybridNet: Integrating Model-based and Data-driven Learning to Predict Evolution of Dynamical Systems. 551-560 - A. Rupam Mahmood, Dmytro Korenkevych, Gautham Vasan, William Ma, James Bergstra:

Benchmarking Reinforcement Learning Algorithms on Real-World Robots. 561-591 - Tanmay Shankar, Nicholas Rhinehart, Katharina Muelling, Kris M. Kitani:

Learning Neural Parsers with Deterministic Differentiable Imitation Learning. 592-604 - Ioan Andrei Barsan

, Shenlong Wang, Andrei Pokrovsky, Raquel Urtasun:
Learning to Localize Using a LiDAR Intensity Map. 605-616 - Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour, Pieter Abbeel:

Model-Based Reinforcement Learning via Meta-Policy Optimization. 617-629 - Guilherme Maeda, Okan Koc, Jun Morimoto:

Reinforcement Learning of Phase Oscillators for Fast Adaptation to Moving Targets. 630-640 - Rika Antonova, Mia Kokic, Johannes A. Stork

, Danica Kragic:
Global Search with Bernoulli Alternation Kernel for Task-oriented Grasping Informed by Simulation. 641-650 - Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, Sergey Levine:

Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation. 651-673 - Joshua Romoff, Peter Henderson, Alexandre Piché, Vincent François-Lavet, Joelle Pineau:

Reward Estimation for Variance Reduction in Deep Reinforcement Learning. 674-699 - Fabio Muratore, Felix Treede, Michael Gienger, Jan Peters:

Domain Randomization for Simulation-Based Policy Optimization with Transferability Assessment. 700-713 - Daniel Nyga, Subhro Roy, Rohan Paul, Daehyung Park, Mihai Pomarlan, Michael Beetz, Nicholas Roy:

Grounding Robot Plans from Natural Language Instructions with Incomplete World Knowledge. 714-723 - Rohan Chitnis, Leslie Pack Kaelbling, Tomás Lozano-Pérez:

Learning What Information to Give in Partially Observed Domains. 724-733 - Jan Matas, Stephen James, Andrew J. Davison:

Sim-to-Real Reinforcement Learning for Deformable Object Manipulation. 734-743 - Visak C. V. Kumar, Sehoon Ha, C. Karen Liu:

Expanding Motor Skills using Relay Networks. 744-756 - Ajinkya Jain, Scott Niekum:

Efficient Hierarchical Robot Motion Planning Under Uncertainty and Hybrid Dynamics. 757-766 - Linxi Fan, Yuke Zhu, Jiren Zhu, Zihua Liu, Orien Zeng, Anchit Gupta, Joan Creus-Costa, Silvio Savarese, Li Fei-Fei:

SURREAL: Open-Source Reinforcement Learning Framework and Robot Manipulation Benchmark. 767-782 - Stephen James, Michael Bloesch, Andrew J. Davison:

Task-Embedded Control Networks for Few-Shot Imitation Learning. 783-795 - Andreea Bobu, Andrea Bajcsy, Jaime F. Fisac, Anca D. Dragan:

Learning under Misspecified Objective Spaces. 796-805 - Gregory Kahn, Adam Villaflor, Pieter Abbeel, Sergey Levine:

Composable Action-Conditioned Predictors: Flexible Off-Policy Learning for Robot Navigation. 806-816 - Florian Golemo, Adrien Ali Taïga, Aaron C. Courville, Pierre-Yves Oudeyer:

Sim-to-Real Transfer with Neural-Augmented Robot Simulation. 817-828 - Tixiao Shan, Jinkun Wang, Brendan J. Englot, Kevin J. Doherty:

Bayesian Generalized Kernel Inference for Terrain Traversability Mapping. 829-838 - Rituraj Kaushik, Konstantinos I. Chatzilygeroudis, Jean-Baptiste Mouret:

Multi-objective Model-based Policy Search for Data-efficient Learning with Sparse Rewards. 839-855 - Ferran Alet, Tomás Lozano-Pérez, Leslie Pack Kaelbling:

Modular meta-learning. 856-868 - Theodoros Stouraitis, Iordanis Chatzinikolaidis, Michael Gienger, Sethu Vijayakumar:

Dyadic collaborative Manipulation through Hybrid Trajectory Optimization. 869-878 - Ajay Mandlekar, Yuke Zhu, Animesh Garg, Jonathan Booher, Max Spero, Albert Tung, Julian Gao, John Emmons, Anchit Gupta, Emre Orbay, Silvio Savarese, Li Fei-Fei:

ROBOTURK: A Crowdsourcing Platform for Robotic Skill Learning through Imitation. 879-893 - Yanfu Zhang, Wenshan Wang, Rogerio Bonatti, Daniel Maturana, Sebastian A. Scherer:

Integrating kinematics and environment context into deep inverse reinforcement learning for predicting off-road vehicle trajectories. 894-905 - Pratyusha Sharma, Lekha Mohan, Lerrel Pinto, Abhinav Gupta:

Multiple Interactions Made Easy (MIME): Large Scale Demonstrations Data for Imitation. 906-915 - Atil Iscen, Ken Caluwaerts, Jie Tan, Tingnan Zhang, Erwin Coumans, Vikas Sindhwani, Vincent Vanhoucke:

Policies Modulating Trajectory Generators. 916-926 - Nadia Figueroa, Aude Billard:

A Physically-Consistent Bayesian Non-Parametric Mixture Model for Dynamical System Learning. 927-946 - Sergio Casas, Wenjie Luo, Raquel Urtasun:

IntentNet: Learning to Predict Intention from Raw Sensor Data. 947-956 - Yordan Hristov, Alex Lascarides, Subramanian Ramamoorthy:

Interpretable Latent Spaces for Learning from Demonstration. 957-968 - Henri Rebecq, Daniel Gehrig, Davide Scaramuzza:

ESIM: an Open Event Camera Simulator. 969-982 - Frederik Ebert, Sudeep Dasari, Alex X. Lee, Sergey Levine, Chelsea Finn:

Robustness via Retrying: Closed-Loop Robotic Manipulation with Self-Supervised Learning. 983-993

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














