


default search action
Briefings in Bioinformatics, Volume 23
Volume 23, Number 1, January 2022
- Umm-Kulthum Ismail Umlai
, Dhinoth Kumar Bangarusamy
, Xavier Estivill
, Puthen Veettil Jithesh
:
Genome sequencing data analysis for rare disease gene discovery. - Wending Tang, Ruyu Dai, Wenhui Yan, Wei Zhang, Yannan Bin, En-Hua Xia
, Junfeng Xia
:
Identifying multi-functional bioactive peptide functions using multi-label deep learning. - Robson Bonidia
, Douglas Silva Domingues
, Danilo Sipoli Sanches, André C. P. L. F. de Carvalho
:
MathFeature: feature extraction package for DNA, RNA and protein sequences based on mathematical descriptors. - Haochen Zhao
, Shaokai Wang, Kai Zheng, Qichang Zhao
, Feng Zhu
, Jianxin Wang:
A similarity-based deep learning approach for determining the frequencies of drug side effects. - Peiran Jiang, Ying Chi, Xiao-Shuang Li, Xiang Liu
, Xian-Sheng Hua, Kelin Xia
:
Molecular persistent spectral image (Mol-PSI) representation for machine learning models in drug design. - Yaqi Wang, Guoqin Mai, Min Zou, Haoyu Long, Yao-Qing Chen, Litao Sun
, Dechao Tian, Yang Zhao, Guozhi Jiang, Zicheng Cao, Xiangjun Du
:
Heavy chain sequence-based classifier for the specificity of human antibodies. - Qingyong Wang
, Yun Zhou:
FedSPL: federated self-paced learning for privacy-preserving disease diagnosis. - Eun-Gyeong Park, Sung-Jin Pyo, Youxi Cui, Sang-Ho Yoon
, Jin-Wu Nam
:
Tumor immune microenvironment lncRNAs. - Hui Li
, Zhaohong Deng, Haitao Yang, Xiaoyong Pan
, Zhisheng Wei, Hong-Bin Shen, Kup-Sze Choi, Lei Wang, Shitong Wang, Jing Wu:
circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier. - Kyle Hippe, Cade Lilley, Joshua William Berkenpas, Ciri Chandana Pocha, Kiyomi Kishaba, Hui Ding, Jie Hou, Dong Si, Renzhi Cao:
ZoomQA: residue-level protein model accuracy estimation with machine learning on sequential and 3D structural features. - Ran Su
, Yingying Zhu, Quan Zou, Leyi Wei
:
Distant metastasis identification based on optimized graph representation of gene interaction patterns. - Angela Serra
, Michele Fratello
, Antonio Federico
, Ravi Ojha
, Riccardo Provenzani
, Ervin Tasnádi, Luca Cattelani
, Giusy del Giudice
, Pia Anneli Sofia Kinaret
, Laura Aliisa Saarimäki
, Alisa Pavel
, Suvi Kuivanen
, Vincenzo Cerullo
, Olli Vapalahti
, Peter Horváth, Antonio Di Lieto
, Jari Yli-Kauhaluoma
, Giuseppe Balistreri
, Dario Greco
:
Computationally prioritized drugs inhibit SARS-CoV-2 infection and syncytia formation. - Jinxian Wang, Ying Zhang, Wenjuan Nie, Yi Luo, Lei Deng:
Computational anti-COVID-19 drug design: progress and challenges. - Jhabindra Khanal
, Hilal Tayara
, Quan Zou, Kil To Chong:
DeepCap-Kcr: accurate identification and investigation of protein lysine crotonylation sites based on capsule network. - Yingxi Yang, Quan Sun
, Le Huang
, Jai G. Broome, Adolfo Correa, Alexander Reiner, Laura M. Raffield, Yuchen Yang, Yun Li
:
eSCAN: scan regulatory regions for aggregate association testing using whole-genome sequencing data. - Fei Wang
, Xiujuan Lei, Bo Liao, Fang-Xiang Wu:
Predicting drug-drug interactions by graph convolutional network with multi-kernel. - Yongqing Zhang, Zixuan Wang, Yuanqi Zeng, Yuhang Liu, Shuwen Xiong, Maocheng Wang, Jiliu Zhou, Quan Zou:
A novel convolution attention model for predicting transcription factor binding sites by combination of sequence and shape. - Qiguo Dai, Zhaowei Wang
, Ziqiang Liu
, Xiaodong Duan, Jinmiao Song, Maozu Guo:
Predicting miRNA-disease associations using an ensemble learning framework with resampling method. - Lianlian Wu
, Yuqi Wen, Dongjin Leng, Qinglong Zhang, Chong Dai, Zhongming Wang, Ziqi Liu, Bowei Yan, Yixin Zhang, Jing Wang, Song He
, Xiaochen Bo
:
Machine learning methods, databases and tools for drug combination prediction. - Shuangquan Zhang, Anjun Ma
, Jing Zhao, Dong Xu, Qin Ma
, Yan Wang
:
Assessing deep learning methods in cis-regulatory motif finding based on genomic sequencing data. - Wei Wang, Ruijiang Han, Menghan Zhang, Yuxian Wang, Tao Wang
, Yongtian Wang, Xuequn Shang, Jiajie Peng:
A network-based method for brain disease gene prediction by integrating brain connectome and molecular network. - He Li, Hangxiao Zhang, Hangjin Jiang:
Combining power of different methods to detect associations in large data sets. - Ling Gao, Hui Cui, Tiangang Zhang, Nan Sheng
, Ping Xuan:
Prediction of drug-disease associations by integrating common topologies of heterogeneous networks and specific topologies of subnets. - Guangzhan Zhang, Menglu Li, Huan Deng, Xinran Xu, Xuan Liu, Wen Zhang
:
SGNNMD: signed graph neural network for predicting deregulation types of miRNA-disease associations. - Zhao Chen, Yin Jiang, Xiaoyu Zhang, Rui Zheng, Ruijin Qiu, Yang Sun, Chen Zhao, Hongcai Shang:
ResNet18DNN: prediction approach of drug-induced liver injury by deep neural network with ResNet18. - Lei Huang
, Jiecong Lin
, Xiangtao Li, Linqi Song
, Zetian Zheng
, Ka-Chun Wong
:
EGFI: drug-drug interaction extraction and generation with fusion of enriched entity and sentence information. - Farzaneh Firoozbakht
, Behnam Yousefi
, Benno Schwikowski
:
An overview of machine learning methods for monotherapy drug response prediction. - Xin An, Xi Chen, Daiyao Yi, Hongyang Li, Yuanfang Guan
:
Representation of molecules for drug response prediction. - Ke Han, Long-Chen Shen
, Yi-Heng Zhu, Jian Xu, Jiangning Song
, Dong-Jun Yu
:
MAResNet: predicting transcription factor binding sites by combining multi-scale bottom-up and top-down attention and residual network. - Xin Li, Xu Pan, Hanxiao Zhou, Peng Wang, Yue Gao, Shipeng Shang, Shuang Guo, Jie Sun, Zhiying Xiong, Shangwei Ning
, Hui Zhi, Xia Li:
Comprehensive characterization genetic regulation and chromatin landscape of enhancer-associated long non-coding RNAs and their implication in human cancer. - Jianyuan Deng, Zhibo Yang, Iwao Ojima, Dimitris Samaras, Fusheng Wang
:
Artificial intelligence in drug discovery: applications and techniques. - Xinyu Yu
, Likun Jiang, Shuting Jin, Xiangxiang Zeng
, Xiangrong Liu
:
preMLI: a pre-trained method to uncover microRNA-lncRNA potential interactions. - Yingxin Kan, Limin Jiang, Yan Guo, Jijun Tang, Fei Guo:
Two-stage-vote ensemble framework based on integration of mutation data and gene interaction network for uncovering driver genes. - Adel Mehrpooya
, Farid Saberi Movahed, Najmeh Azizi Zadeh, Mohammad Rezaei-Ravari, Farshad Saberi-Movahed, Mahdi Eftekhari
, Iman Tavassoly:
High dimensionality reduction by matrix factorization for systems pharmacology. - Yi Yang, Xingjie Shi
, Wei Liu, Qiuzhong Zhou, Mai Chan Lau, Jeffrey Chun Tatt Lim, Lei Sun, Cedric Chuan Young Ng, Joe Yeong, Jin Liu
:
SC-MEB: spatial clustering with hidden Markov random field using empirical Bayes. - Robert Schwarz
, Philipp Koch
, Jeanne Wilbrandt
, Steve Hoffmann
:
Locus-specific expression analysis of transposable elements. - Qian Cheng, Shuqing Jiang, Feng Xu, Qian Wang
, Yingjie Xiao, Ruyang Zhang, Jiuran Zhao, Jianbing Yan, Chuang Ma
, Xiangfeng Wang
:
Genome optimization via virtual simulation to accelerate maize hybrid breeding. - Nicoleta Siminea
, Victor-Bogdan Popescu
, José Ángel Sánchez Martín, Daniela Florea
, Georgiana Gavril
, Ana Maria Gheorghe
, Corina Itcus
, Krishna Kanhaiya
, Octavian Pacioglu
, Laura Ioana Popa
, Romica Trandafir
, Maria Iris Tusa
, Manuela Sidoroff
, Mihaela Paun
, Eugen Czeizler
, Andrei Paun
, Ion Petre
:
Network analytics for drug repurposing in COVID-19. - Leyun Wu, Cheng Peng, Yanqing Yang
, Yulong Shi, Liping Zhou, Zhijian Xu
, Weiliang Zhu:
Exploring the immune evasion of SARS-CoV-2 variant harboring E484K by molecular dynamics simulations. - Yang Guo
, Fatemeh Esfahani, Xiaojian Shao, Venkatesh Srinivasan, Alex Thomo, Li Xing, Xuekui Zhang:
Integrative COVID-19 biological network inference with probabilistic core decomposition. - Chuanxing Li
, Jing Gao
, Zicheng Zhang, Lu Chen, Xun Li, Meng Zhou, Åsa M. Wheelock:
Multiomics integration-based molecular characterizations of COVID-19. - Hongfei Li
, Yue Gong, Yifeng Liu, Hao Lin
, Guohua Wang
:
Detection of transcription factors binding to methylated DNA by deep recurrent neural network. - Lirong Zhang, Yanchao Yang, Lu Chai, Qianzhong Li, Junjie Liu, Hao Lin
, Li Liu:
A deep learning model to identify gene expression level using cobinding transcription factor signals. - Fuyi Li, Shuangyu Dong, André Leier, Meiya Han, Xudong Guo, Jing Xu, Xiaoyu Wang, Shirui Pan, Cangzhi Jia, Yang Zhang, Geoffrey I. Webb
, Lachlan J. M. Coin
, Chen Li, Jiangning Song
:
Positive-unlabeled learning in bioinformatics and computational biology: a brief review. - Shenggeng Lin, Yanjing Wang, Lingfeng Zhang, Yanyi Chu, Yatong Liu, Yitian Fang, Mingming Jiang, Qiankun Wang, Bowen Zhao, Yi Xiong
, Dong-Qing Wei
:
MDF-SA-DDI: predicting drug-drug interaction events based on multi-source drug fusion, multi-source feature fusion and transformer self-attention mechanism. - Yeji Wang
, Shuo Wu, Yanwen Duan, Yong Huang
:
A point cloud-based deep learning strategy for protein-ligand binding affinity prediction. - Jialu Hu
, Yuanke Zhong, Xuequn Shang:
A versatile and scalable single-cell data integration algorithm based on domain-adversarial and variational approximation. - Menglu Li, Wen Zhang
:
PHIAF: prediction of phage-host interactions with GAN-based data augmentation and sequence-based feature fusion. - Wei Zhang
, Hanwen Xu, Rong Qiao, Bixi Zhong, Xianglin Zhang, Jin Gu
, Xuegong Zhang, Lei Wei, Xiaowo Wang
:
ARIC: accurate and robust inference of cell type proportions from bulk gene expression or DNA methylation data. - ZiaurRehman Tanoli
, Jehad Aldahdooh
, Farhan Alam
, Yinyin Wang, Umair Seemab, Maddalena Fratelli, Petr Pavlis, Marián Hajdúch
, Florence Bietrix, Philip Gribbon
, Andrea Zaliani
, Matthew D. Hall, Min Shen, Kyle R. Brimacombe, Evgeny Kulesskiy, Saarela Jani
, Krister Wennerberg
, Markus Vähä-Koskela, Jing Tang
:
Minimal information for chemosensitivity assays (MICHA): a next-generation pipeline to enable the FAIRification of drug screening experiments. - Bingxiang Xu, Xiaoli Li, Xiaomeng Gao, Yan Jia, Jing Liu, Feifei Li, Zhihua Zhang
:
DeNOPA: decoding nucleosome positions sensitively with sparse ATAC-seq data. - Lihua Jia, Wen Yao
, Yingru Jiang, Yang Li, Zhizhan Wang, Haoran Li, Fangfang Huang, Jiaming Li, Tiantian Chen, Huiyong Zhang:
Development of interactive biological web applications with R/Shiny. - Hukam Chand Rawal
, Shakir Ali
, Tapan Kumar Mondal
:
miRPreM and tiRPreM: Improved methodologies for the prediction of miRNAs and tRNA-induced small non-coding RNAs for model and non-model organisms. - Thanh-Binh Nguyen
, Douglas E. V. Pires
, David B. Ascher
:
CSM-carbohydrate: protein-carbohydrate binding affinity prediction and docking scoring function. - Diego Forni
, Rachele Cagliani, Chiara Pontremoli, Mario Clerici, Manuela Sironi
:
The substitution spectra of coronavirus genomes. - Haoxiang Qin, Qidong Shen, Hongyi Zhao, Guozhen Qi, Lei Gao
:
Network-based analysis revealed significant interactions between risk genes of severe COVID-19 and host genes interacted with SARS-CoV-2 proteins. - Hong Wang, Jingqing Zhang, Zhigang Lu, Weina Dai, Chuanjiang Ma, Yun Xiang, Yonghong Zhang
:
Identification of potential therapeutic targets and mechanisms of COVID-19 through network analysis and screening of chemicals and herbal ingredients. - Ngoc Hieu Tran
, Jinbo Xu, Ming Li:
A tale of solving two computational challenges in protein science: neoantigen prediction and protein structure prediction. - Wei Lan
, Yi Dong, Qingfeng Chen
, Ruiqing Zheng, Jin Liu, Yi Pan, Yi-Ping Phoebe Chen
:
KGANCDA: predicting circRNA-disease associations based on knowledge graph attention network. - Sander N. Goossens
, Tim H. Heupink
, Elise De Vos
, Anzaan Dippenaar
, Margaretha De Vos, Rob Warren, Annelies Van Rie:
Detection of minor variants in Mycobacterium tuberculosis whole genome sequencing data. - Margaret G. Guo
, Daniel N. Sosa
, Russ B. Altman
:
Challenges and opportunities in network-based solutions for biological questions. - Xiao-Rui Su, Lun Hu, Zhuhong You, Pengwei Hu, Lei Wang, Bo-Wei Zhao:
A deep learning method for repurposing antiviral drugs against new viruses via multi-view nonnegative matrix factorization and its application to SARS-CoV-2. - Neng Huang, Fan Nie, Peng Ni, Xin Gao, Feng Luo, Jianxin Wang:
BlockPolish: accurate polishing of long-read assembly via block divide-and-conquer. - Xu Pan, Caiyu Zhang, Junwei Wang, Peng Wang
, Yue Gao, Shipeng Shang, Shuang Guo, Xin Li, Hui Zhi
, Shangwei Ning
:
Epigenome signature as an immunophenotype indicator prompts durable clinical immunotherapy benefits in lung adenocarcinoma. - Rufeng Li, Lixin Li, Yungang Xu
, Juan Yang:
Erratum to: Machine learning meets omics applications and perspectives. - Deepak Nag Ayyala, Jianan Lin, Zhengqing Ouyang:
Differential RNA methylation using multivariate statistical methods. - Xinyun Guo, Huan He, Jialin Yu, Shaoping Shi
:
PKSPS: a novel method for predicting kinase of specific phosphorylation sites based on maximum weighted bipartite matching algorithm and phosphorylation sequence enrichment analysis. - Cui-Xiang Lin
, Hong-Dong Li, Chao Deng, Weisheng Liu, Shannon Erhardt
, Fang-Xiang Wu, Xing-Ming Zhao, Yuanfang Guan, Jun Wang, Daifeng Wang, Bin Hu, Jianxin Wang:
An integrated brain-specific network identifies genes associated with neuropathologic and clinical traits of Alzheimer's disease. - Yuxin Song, Li'ang Yang, Li Jiang, Zhiyu Hao, Runqing Yang
, Pao Xu:
Optimizing genomic control in mixed model associations with binary diseases. - Héctor Buena Maizón, Francisco J. Barrantes
:
A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor. - Daudi Jjingo
, Gerald Mboowa
, Ivan Sserwadda
, Robert Kakaire, Davis Kiberu, Marion Amujal, Ronald Galiwango
, David Kateete, Moses Joloba, Christopher C. Whalen:
Bioinformatics mentorship in a resource limited setting. - Huan Liu, Quan Zou, Yun Xu:
A novel fast multiple nucleotide sequence alignment method based on FM-index. - Véronique Duboc, David Pratella, Marco Milanesio, John Boudjarane, Stéphane Descombes, Véronique Paquis-Flucklinger, Silvia Bottini
:
NiPTUNE: an automated pipeline for noninvasive prenatal testing in an accurate, integrative and flexible framework. - Mingon Kang
, Euiseong Ko
, Tesfaye B. Mersha
:
A roadmap for multi-omics data integration using deep learning. - Le Ou-Yang, Fan Lu, Zi-Chao Zhang
, Min Wu
:
Matrix factorization for biomedical link prediction and scRNA-seq data imputation: an empirical survey. - Fangfang Xia, Jonathan E. Allen
, Prasanna Balaprakash, Thomas S. Brettin, Cristina Garcia-Cardona, Austin Clyde, Judith D. Cohn, James H. Doroshow, Xiaotian Duan, Veronika Dubinkina
, Yvonne A. Evrard, Ya Ju Fan, Jason Gans, Stewart He, Pinyi Lu, Sergei Maslov, Alexander Partin
, Maulik Shukla
, Eric A. Stahlberg, Justin M. Wozniak, Hyun Seung Yoo
, George F. Zaki, Yitan Zhu, Rick Stevens:
A cross-study analysis of drug response prediction in cancer cell lines. - Song Zhang
, Kuerbannisha Amahong, Chenyang Zhang, Fengcheng Li
, Jianqing Gao, Yunqing Qiu, Feng Zhu
:
RNA-RNA interactions between SARS-CoV-2 and host benefit viral development and evolution during COVID-19 infection. - Liang Yu
, Mingfei Xia, Qi An:
A network embedding framework based on integrating multiplex network for drug combination prediction. - Jinxian Wang, Xuejun Liu, Siyuan Shen, Lei Deng, Hui Liu
:
DeepDDS: deep graph neural network with attention mechanism to predict synergistic drug combinations. - Bo-Wei Zhao
, Lun Hu
, Zhu-Hong You
, Lei Wang, Xiao-Rui Su
:
HINGRL: predicting drug-disease associations with graph representation learning on heterogeneous information networks. - Ye Hong, Dani Flinkman
, Tomi Suomi
, Sami Pietilä
, Peter James, Eleanor Coffey
, Laura L. Elo
:
PhosPiR: an automated phosphoproteomic pipeline in R. - Meng-Huan Song, Chaochao Yan, Jiatang Li
:
MEANGS: an efficient seed-free tool for de novo assembling animal mitochondrial genome using whole genome NGS data. - Qingyang Yin, Yang Wang, Jinting Guan
, Guoli Ji:
scIAE: an integrative autoencoder-based ensemble classification framework for single-cell RNA-seq data. - Hao Wu
, Yingfu Wu, Yuhong Jiang, Bing Zhou, Haoru Zhou, Zhongli Chen, Yi Xiong
, Quanzhong Liu, Hongming Zhang:
scHiCStackL: a stacking ensemble learning-based method for single-cell Hi-C classification using cell embedding. - Zhen Cao, Yanting Huang, Ran Duan, Peng Jin, Zhaohui S. Qin
, Shihua Zhang
:
Disease category-specific annotation of variants using an ensemble learning framework. - Jeremiah Suryatenggara, Kol Jia Yong, Danielle E. Tenen, Daniel G. Tenen, Mahmoud A. Bassal
:
ChIP-AP: an integrated analysis pipeline for unbiased ChIP-seq analysis. - Bo Zhang
, Jianghua He, Jinxiang Hu, Devin C. Koestler
, Prabhakar Chalise:
Letter to the Editor: on the stability and internal consistency of component-wise sparse mixture regression-based clustering. - Jiecong Lin
, Lei Huang
, Xingjian Chen
, Shixiong Zhang
, Ka-Chun Wong
:
DeepMotifSyn: a deep learning approach to synthesize heterodimeric DNA motifs. - Fabrizio Kuruc
, Harald Binder
, Moritz Hess
:
Stratified neural networks in a time-to-event setting. - Olufemi Aromolaran, Damilare Aromolaran, Itunuoluwa Isewon
, Jelili Oyelade:
Corrigendum to: Machine learning approach to gene essentiality prediction: a review. - Xiwen Zhang, Weiwen Wang
, Chuan-Xian Ren, Dao-Qing Dai:
Learning representation for multiple biological networks via a robust graph regularized integration approach. - Xu Zhang, Zhiqiang Ye, Jing Chen, Feng Qiao:
AMDBNorm: an approach based on distribution adjustment to eliminate batch effects of gene expression data. - Ashwin Dhakal
, Cole McKay, John J. Tanner, Jianlin Cheng
:
Artificial intelligence in the prediction of protein-ligand interactions: recent advances and future directions. - Chun-Chun Wang
, Chi-Chi Zhu, Xing Chen
:
Ensemble of kernel ridge regression-based small molecule-miRNA association prediction in human disease. - Dan Shao
, Yinfei Dai, Nianfeng Li, Xuqing Cao, Wei Zhao, Li Cheng, Zhuqing Rong, Lan Huang, Yan Wang
, Jing Zhao:
Artificial intelligence in clinical research of cancers. - Weining Yuan, Guanxing Chen
, Calvin Yu-Chian Chen
:
FusionDTA: attention-based feature polymerizer and knowledge distillation for drug-target binding affinity prediction. - María Virginia Sabando, Ignacio Ponzoni
, Evangelos E. Milios, Axel J. Soto
:
Using molecular embeddings in QSAR modeling: does it make a difference? - Francesco Napolitano, Xiaopeng Xu
, Xin Gao:
Impact of computational approaches in the fight against COVID-19: an AI guided review of 17 000 studies. - Lis Arend
, Judith Bernett
, Quirin Manz
, Melissa Klug
, Olga Lazareva, Jan Baumbach
, Dario Bongiovanni
, Markus List
:
A systematic comparison of novel and existing differential analysis methods for CyTOF data. - Priyank Shukla
, Preeti Pandey
, Bodhayan Prasad
, Tony Robinson
, Rituraj Purohit, Leon G. D'cruz
, Murtaza M. Tambuwala
, Ankur Mutreja, Jim Harkin
, Taranjit Singh Rai, Elaine K. Murray
, David S. Gibson
, Anthony J. Bjourson:
Immuno-informatics analysis predicts B and T cell consensus epitopes for designing peptide vaccine against SARS-CoV-2 with 99.82% global population coverage. - Arnold K. Nyamabo
, Hui Yu
, Zun Liu, Jian-Yu Shi
:
Drug-drug interaction prediction with learnable size-adaptive molecular substructures. - Sandra L. Taylor
, Matthew Ponzini, Machelle D. Wilson
, Kyoungmi Kim:
Comparison of imputation and imputation-free methods for statistical analysis of mass spectrometry data with missing data. - Maryam Mahjoubin-Tehran
, Samaneh Rezaei, Amin Jalili, Amirhossein Sahebkar, Seyed Hamid Aghaee-Bakhtiari
:
A comprehensive review of online resources for microRNA-diseases associations: the state of the art. - Yurui Chen
, Louxin Zhang:
How much can deep learning improve prediction of the responses to drugs in cancer cell lines? - Yu-Jian Kang, Jing-Yi Li, Lan Ke, Shuai Jiang, Dechang Yang, Mei Hou, Ge Gao
:
Quantitative model suggests both intrinsic and contextual features contribute to the transcript coding ability determination in cells. - Wenjia He
, Yi Jiang
, Junru Jin
, Zhongshen Li, Jiaojiao Zhao, Balachandran Manavalan
, Ran Su
, Xin Gao, Leyi Wei
:
Accelerating bioactive peptide discovery via mutual information-based meta-learning. - Ruohan Wang
, Xiang-Li-Lan Zhang, Jianping Wang, Shuai Cheng Li:
DeepHost: phage host prediction with convolutional neural network. - Xiaosa Zhao, Xiaowei Zhao, Minghao Yin
:
Heterogeneous graph attention network based on meta-paths for lncRNA-disease association prediction. - Mario Flores
, Zhentao Liu, Tinghe Zhang, Md Musaddaqui Hasib, Yu-Chiao Chiu
, Zhenqing Ye, Karla Paniagua
, Sumin Jo, Jianqiu Zhang, Shou-Jiang Gao, Yu-Fang Jin
, Yidong Chen, Yufei Huang:
Deep learning tackles single-cell analysis - a survey of deep learning for scRNA-seq analysis.