
Prasanna Balaprakash
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2021
- [i23]Sami Khairy, Prasanna Balaprakash, Lin X. Cai, H. Vincent Poor:
Learning-Based Distributed Random Access for Multi-Cell IoT Networks with NOMA. CoRR abs/2101.00464 (2021) - 2020
- [c44]Sami Khairy, Ruslan Shaydulin, Lukasz Cincio, Yuri Alexeev, Prasanna Balaprakash:
Learning to Optimize Variational Quantum Circuits to Solve Combinatorial Problems. AAAI 2020: 2367-2375 - [c43]Yi He, Prasanna Balaprakash, Yanjing Li:
FIdelity: Efficient Resilience Analysis Framework for Deep Learning Accelerators. MICRO 2020: 270-281 - [c42]Xingfu Wu, Michael Kruse, Prasanna Balaprakash, Hal Finkel, Paul D. Hovland, Valerie E. Taylor, Mary W. Hall:
Autotuning PolyBench Benchmarks with LLVM Clang/Polly Loop Optimization Pragmas Using Bayesian Optimization. PMBS@SC 2020: 61-70 - [c41]Mihailo Isakov, Eliakin Del Rosario, Sandeep Madireddy, Prasanna Balaprakash, Philip H. Carns, Robert B. Ross, Michel A. Kinsy:
Toward Generalizable Models of I/O Throughput. ROSS@SC 2020: 41-49 - [c40]Eliakin Del Rosario, Mikaela Currier, Mihailo Isakov, Sandeep Madireddy, Prasanna Balaprakash, Philip H. Carns, Robert B. Ross, Kevin Harms, Shane Snyder, Michel A. Kinsy:
Gauge: An Interactive Data-Driven Visualization Tool for HPC Application I/O Performance Analysis. PDSW@SC 2020: 15-21 - [i22]Romit Maulik, Rajeev Surendran Array, Prasanna Balaprakash:
Site-specific graph neural network for predicting protonation energy of oxygenate molecules. CoRR abs/2001.03136 (2020) - [i21]Sami Khairy, Prasanna Balaprakash, Lin X. Cai, Yu Cheng:
Constrained Deep Reinforcement Learning for Energy Sustainable Multi-UAV based Random Access IoT Networks with NOMA. CoRR abs/2002.00073 (2020) - [i20]Tanwi Mallick, Prasanna Balaprakash, Eric Rask, Jane MacFarlane:
Transfer Learning with Graph Neural Networks for Short-Term Highway Traffic Forecasting. CoRR abs/2004.08038 (2020) - [i19]Sami Khairy, Prasanna Balaprakash, Lin X. Cai:
A Gradient-Aware Search Algorithm for Constrained Markov Decision Processes. CoRR abs/2005.03718 (2020) - [i18]Nathan Wycoff, Prasanna Balaprakash, Fangfang Xia:
Towards On-Chip Bayesian Neuromorphic Learning. CoRR abs/2005.04165 (2020) - [i17]Sandeep Madireddy, Angel Yanguas-Gil, Prasanna Balaprakash:
Multilayer Neuromodulated Architectures for Memory-Constrained Online Continual Learning. CoRR abs/2007.08159 (2020) - [i16]R. Krishnan, Prasanna Balaprakash:
Meta Continual Learning via Dynamic Programming. CoRR abs/2008.02219 (2020) - [i15]Shengli Jiang, Prasanna Balaprakash:
Graph Neural Network Architecture Search for Molecular Property Prediction. CoRR abs/2008.12187 (2020) - [i14]Tanwi Mallick, Mariam Kiran, Bashir Mohammed, Prasanna Balaprakash:
Dynamic Graph Neural Network for Traffic Forecasting in Wide Area Networks. CoRR abs/2008.12767 (2020) - [i13]Xingfu Wu, Michael Kruse, Prasanna Balaprakash, Hal Finkel, Paul D. Hovland, Valerie E. Taylor, Mary W. Hall:
Autotuning PolyBench Benchmarks with LLVM Clang/Polly Loop Optimization Pragmas Using Bayesian Optimization. CoRR abs/2010.08040 (2020) - [i12]Romain Egele, Prasanna Balaprakash, Venkatram Vishwanath, Isabelle Guyon, Zhengying Liu:
AgEBO-Tabular: Joint Neural Architecture and Hyperparameter Search with Autotuned Data-Parallel Training for Tabular Data. CoRR abs/2010.16358 (2020)
2010 – 2019
- 2019
- [c39]Sunwoo Lee, Qiao Kang, Sandeep Madireddy, Prasanna Balaprakash, Ankit Agrawal, Alok N. Choudhary, Richard Archibald
, Wei-keng Liao:
Improving Scalability of Parallel CNN Training by Adjusting Mini-Batch Size at Run-Time. BigData 2019: 830-839 - [c38]Sandeep Madireddy, Angel Yanguas-Gil
, Prasanna Balaprakash:
Neuromorphic Architecture Optimization for Task-Specific Dynamic Learning. ICONS 2019: 5:1-5:5 - [c37]Nathan Wycoff, Prasanna Balaprakash, Fangfang Xia:
Neuromorphic Acceleration for Approximate Bayesian Inference on Neural Networks via Permanent Dropout. ICONS 2019: 9:1-9:4 - [c36]Sandeep Madireddy, Prasanna Balaprakash, Philip H. Carns, Robert Latham, Glenn K. Lockwood, Robert B. Ross, Shane Snyder, Stefan M. Wild
:
Adaptive Learning for Concept Drift in Application Performance Modeling. ICPP 2019: 79:1-79:11 - [c35]Vinu Sreenivasan, Rajath Javali, Mary W. Hall, Prasanna Balaprakash, Thomas R. W. Scogland, Bronis R. de Supinski:
A Framework for Enabling OpenMP Autotuning. IWOMP 2019: 50-60 - [c34]Prasanna Balaprakash, Romain Egele, Misha Salim, Stefan M. Wild, Venkatram Vishwanath, Fangfang Xia, Tom Brettin, Rick Stevens:
Scalable reinforcement-learning-based neural architecture search for cancer deep learning research. SC 2019: 37:1-37:33 - [c33]Shashi M. Aithal, Prasanna Balaprakash:
MaLTESE: Large-Scale Simulation-Driven Machine Learning for Transient Driving Cycles. ISC 2019: 186-205 - [i11]Nathan Wycoff, Prasanna Balaprakash, Fangfang Xia:
Neuromorphic Acceleration for Approximate Bayesian Inference on Neural Networks via Permanent Dropout. CoRR abs/1904.12904 (2019) - [i10]Sandeep Madireddy, Angel Yanguas-Gil, Prasanna Balaprakash:
Neuromorphic Architecture Optimization for Task-Specific Dynamic Learning. CoRR abs/1906.01668 (2019) - [i9]Prasanna Balaprakash, Romain Egele, Misha Salim, Stefan M. Wild, Venkatram Vishwanath, Fangfang Xia, Tom Brettin, Rick Stevens:
Scalable Reinforcement-Learning-Based Neural Architecture Search for Cancer Deep Learning Research. CoRR abs/1909.00311 (2019) - [i8]Michael A. Salim, Thomas D. Uram, J. Taylor Childers, Prasanna Balaprakash, Venkatram Vishwanath, Michael E. Papka:
Balsam: Automated Scheduling and Execution of Dynamic, Data-Intensive HPC Workflows. CoRR abs/1909.08704 (2019) - [i7]Romit Maulik, Vishwas Rao, Sandeep Madireddy, Bethany Lusch, Prasanna Balaprakash:
Using recurrent neural networks for nonlinear component computation in advection-dominated reduced-order models. CoRR abs/1909.09144 (2019) - [i6]Shashi M. Aithal, Prasanna Balaprakash:
MaLTESE: Large-Scale Simulation-Driven Machine Learning for Transient Driving Cycles. CoRR abs/1909.09929 (2019) - [i5]Tanwi Mallick, Prasanna Balaprakash, Eric Rask, Jane MacFarlane:
Graph-Partitioning-Based Diffusion Convolution Recurrent Neural Network for Large-Scale Traffic Forecasting. CoRR abs/1909.11197 (2019) - [i4]Sandeep Madireddy, Nan Li, Nesar Ramachandra, Prasanna Balaprakash, Salman Habib:
Modular Deep Learning Analysis of Galaxy-Scale Strong Lensing Images. CoRR abs/1911.03867 (2019) - [i3]Sami Khairy, Ruslan Shaydulin, Lukasz Cincio, Yuri Alexeev, Prasanna Balaprakash:
Reinforcement-Learning-Based Variational Quantum Circuits Optimization for Combinatorial Problems. CoRR abs/1911.04574 (2019) - [i2]Peihong Jiang, Hieu Doan, Sandeep Madireddy, Rajeev Surendran Assary, Prasanna Balaprakash:
Value-Added Chemical Discovery Using Reinforcement Learning. CoRR abs/1911.07630 (2019) - [i1]Sami Khairy, Ruslan Shaydulin, Lukasz Cincio, Yuri Alexeev, Prasanna Balaprakash:
Learning to Optimize Variational Quantum Circuits to Solve Combinatorial Problems. CoRR abs/1911.11071 (2019) - 2018
- [j8]Justin M. Wozniak, Rajeev Jain, Prasanna Balaprakash, Jonathan Ozik, Nicholson T. Collier, John Bauer, Fangfang Xia, Thomas S. Brettin, Rick Stevens, Jamaludin Mohd-Yusof, Cristina Garcia-Cardona, Brian Van Essen, Matthew Baughman:
CANDLE/Supervisor: a workflow framework for machine learning applied to cancer research. BMC Bioinform. 19-S(18): 59-69 (2018) - [j7]Prasanna Balaprakash, Jack J. Dongarra
, Todd Gamblin, Mary W. Hall
, Jeffrey K. Hollingsworth, Boyana Norris
, Richard W. Vuduc:
Autotuning in High-Performance Computing Applications. Proc. IEEE 106(11): 2068-2083 (2018) - [j6]Omer Subasi, Sheng Di, Leonardo Bautista-Gomez, Prasanna Balaprakash, Osman S. Unsal, Jesús Labarta, Adrián Cristal, Sriram Krishnamoorthy, Franck Cappello:
Exploring the capabilities of support vector machines in detecting silent data corruptions. Sustain. Comput. Informatics Syst. 19: 277-290 (2018) - [c32]Sandeep Madireddy, Prasanna Balaprakash, Philip H. Carns, Robert Latham, Robert B. Ross, Shane Snyder, Stefan M. Wild
:
Modeling I/O Performance Variability Using Conditional Variational Autoencoders. CLUSTER 2018: 109-113 - [c31]Prasanna Balaprakash, Michael A. Salim, Thomas D. Uram, Venkat Vishwanath, Stefan M. Wild
:
DeepHyper: Asynchronous Hyperparameter Search for Deep Neural Networks. HiPC 2018: 42-51 - [c30]Zhengchun Liu
, Rajkumar Kettimuthu, Prasanna Balaprakash, Nageswara S. V. Rao, Ian T. Foster:
Building a Wide-Area File Transfer Performance Predictor: An Empirical Study. MLN 2018: 56-78 - [c29]Preeti Malakar, Prasanna Balaprakash, Venkatram Vishwanath, Vitali A. Morozov, Kalyan Kumaran:
Benchmarking Machine Learning Methods for Performance Modeling of Scientific Applications. PMBS@SC 2018: 33-44 - [c28]Sandeep Madireddy, Prasanna Balaprakash, Philip H. Carns, Robert Latham, Robert B. Ross, Shane Snyder, Stefan M. Wild
:
Machine Learning Based Parallel I/O Predictive Modeling: A Case Study on Lustre File Systems. ISC 2018: 184-204 - 2017
- [c27]Sudheer Chunduri
, Prasanna Balaprakash, Vitali A. Morozov, Venkatram Vishwanath, Kalyan Kumaran:
Analytical Performance Modeling and Validation of Intel's Xeon Phi Architecture. Conf. Computing Frontiers 2017: 247-250 - [c26]Omer Subasi, Sheng Di, Prasanna Balaprakash, Osman S. Unsal, Jesús Labarta, Adrián Cristal, Sriram Krishnamoorthy, Franck Cappello:
MACORD: Online Adaptive Machine Learning Framework for Silent Error Detection. CLUSTER 2017: 717-724 - [c25]Zhengchun Liu
, Prasanna Balaprakash, Rajkumar Kettimuthu, Ian T. Foster:
Explaining Wide Area Data Transfer Performance. HPDC 2017: 167-178 - [c24]Sandeep Madireddy, Prasanna Balaprakash, Philip H. Carns, Robert Latham, Robert B. Ross, Shane Snyder, Stefan M. Wild
:
Analysis and Correlation of Application I/O Performance and System-Wide I/O Activity. NAS 2017: 1-10 - 2016
- [c23]Omer Subasi, Sheng Di, Leonardo Bautista-Gomez, Prasanna Balaprakash, Osman S. Ünsal, Jesús Labarta
, Adrián Cristal, Franck Cappello:
Spatial Support Vector Regression to Detect Silent Errors in the Exascale Era. CCGrid 2016: 413-424 - [c22]Prasanna Balaprakash, Vitali A. Morozov, Rajkumar Kettimuthu, Kalyan Kumaran, Ian T. Foster:
Improving Data Transfer Throughput with Direct Search Optimization. ICPP 2016: 248-257 - [c21]Amit Roy, Prasanna Balaprakash, Paul D. Hovland
, Stefan M. Wild
:
Exploiting Performance Portability in Search Algorithms for Autotuning. IPDPS Workshops 2016: 1535-1544 - [c20]Prasanna Balaprakash, Ananta Tiwari, Stefan M. Wild
, Laura Carrington, Paul D. Hovland
:
AutoMOMML: Automatic Multi-objective Modeling with Machine Learning. ISC 2016: 219-239 - 2015
- [j5]Prasanna Balaprakash, Mauro Birattari
, Thomas Stützle
, Marco Dorigo:
Estimation-based metaheuristics for the single vehicle routing problem with stochastic demands and customers. Comput. Optim. Appl. 61(2): 463-487 (2015) - [c19]Florin Isaila, Prasanna Balaprakash, Stefan M. Wild
, Dries Kimpe, Robert Latham, Robert B. Ross, Paul D. Hovland
:
Collective I/O Tuning Using Analytical and Machine Learning Models. CLUSTER 2015: 128-137 - [c18]Azamat Mametjanov, Prasanna Balaprakash, Chekuri Choudary, Paul D. Hovland
, Stefan M. Wild
, Gerald Sabin:
Autotuning FPGA Design Parameters for Performance and Power. FCCM 2015: 84-91 - [c17]Thomas Nelson, Axel Rivera, Prasanna Balaprakash, Mary W. Hall, Paul D. Hovland
, Elizabeth R. Jessup, Boyana Norris:
Generating Efficient Tensor Contractions for GPUs. ICPP 2015: 969-978 - 2014
- [c16]Leonardo Arturo Bautista-Gomez
, Prasanna Balaprakash, Mohamed-Slim Bouguerra, Stefan M. Wild
, Franck Cappello, Paul D. Hovland
:
Energy-performance tradeoffs in multilevel checkpoint strategies. CLUSTER 2014: 278-279 - [c15]Prasanna Balaprakash, Leonardo Arturo Bautista-Gomez
, Mohamed-Slim Bouguerra, Stefan M. Wild
, Franck Cappello, Paul D. Hovland
:
Analysis of the Tradeoffs Between Energy and Run Time for Multilevel Checkpointing. PMBS@SC 2014: 249-263 - [c14]Prasanna Balaprakash, Yuri Alexeev, Sheri A. Mickelson, Sven Leyffer, Robert L. Jacob, Anthony P. Craig:
Machine-Learning-Based Load Balancing for Community Ice Code Component in CESM. VECPAR 2014: 79-91 - 2013
- [c13]Prasanna Balaprakash, Robert B. Gramacy, Stefan M. Wild
:
Active-learning-based surrogate models for empirical performance tuning. CLUSTER 2013: 1-8 - [c12]Prasanna Balaprakash, Darius Buntinas, Anthony Chan, Apala Guha, Rinku Gupta, Sri Hari Krishna Narayanan, Andrew A. Chien, Paul D. Hovland
, Boyana Norris:
Exascale workload characterization and architecture implications. ISPASS 2013: 120-121 - [c11]Prasanna Balaprakash, Karl Rupp, Azamat Mametjanov, Robert B. Gramacy, Paul D. Hovland
, Stefan M. Wild
:
Empirical performance modeling of GPU kernels using active learning. PARCO 2013: 646-655 - [c10]Prasanna Balaprakash, Ananta Tiwari, Stefan M. Wild
:
Multi Objective Optimization of HPC Kernels for Performance, Power, and Energy. PMBS@SC 2013: 239-260 - [c9]Prasanna Balaprakash, Darius Buntinas, Anthony Chan, Apala Guha, Rinku Gupta, Sri Hari Krishna Narayanan, Andrew A. Chien, Paul D. Hovland, Boyana Norris:
Exascale workload characterization and architecture implications. SpringSim (HPC) 2013: 5 - 2012
- [c8]Prasanna Balaprakash, Darius Buntinas, Anthony Chan, Apala Guha, Rinku Gupta, Sri Hari Krishna Narayanan, Andrew A. Chien, Paul D. Hovland
, Boyana Norris:
Abstract: An Exascale Workload Study. SC Companion 2012: 1463-1464 - [c7]Prasanna Balaprakash, Darius Buntinas, Anthony Chan, Apala Guha, Rinku Gupta, Sri Hari Krishna Narayanan, Andrew A. Chien, Paul D. Hovland
, Boyana Norris:
Poster: An Exascale Workload Study. SC Companion 2012: 1465 - [c6]Prasanna Balaprakash, Stefan M. Wild
, Paul D. Hovland
:
An Experimental Study of Global and Local Search Algorithms in Empirical Performance Tuning. VECPAR 2012: 261-269 - [c5]Prasanna Balaprakash, Stefan M. Wild
, Boyana Norris
:
SPAPT: Search Problems in Automatic Performance Tuning. ICCS 2012: 1959-1968 - 2011
- [c4]Prasanna Balaprakash, Stefan M. Wild
, Paul D. Hovland
:
Can search algorithms save large-scale automatic performance tuning? ICCS 2011: 2136-2145 - 2010
- [j4]Prasanna Balaprakash, Mauro Birattari
, Thomas Stützle
, Marco Dorigo
:
Estimation-based metaheuristics for the probabilistic traveling salesman problem. Comput. Oper. Res. 37(11): 1939-1951 (2010) - [p3]Mauro Birattari
, Zhi Yuan, Prasanna Balaprakash, Thomas Stützle
:
F-Race and Iterated F-Race: An Overview. Experimental Methods for the Analysis of Optimization Algorithms 2010: 311-336
2000 – 2009
- 2009
- [j3]Prasanna Balaprakash, Mauro Birattari
, Thomas Stützle
, Marco Dorigo
:
Adaptive sample size and importance sampling in estimation-based local search for the probabilistic traveling salesman problem. Eur. J. Oper. Res. 199(1): 98-110 (2009) - [j2]Prasanna Balaprakash, Mauro Birattari
, Thomas Stützle
, Zhi Yuan, Marco Dorigo
:
Estimation-based ant colony optimization and local search for the probabilistic traveling salesman problem. Swarm Intell. 3(3): 223-242 (2009) - 2008
- [j1]Mauro Birattari
, Prasanna Balaprakash, Thomas Stützle
, Marco Dorigo
:
Estimation-Based Local Search for Stochastic Combinatorial Optimization Using Delta Evaluations: A Case Study on the Probabilistic Traveling Salesman Problem. INFORMS J. Comput. 20(4): 644-658 (2008) - [c3]Zhi Yuan, Armin Fügenschuh
, Henning Homfeld, Prasanna Balaprakash, Thomas Stützle
, Michael Schoch:
Iterated Greedy Algorithms for a Real-World Cyclic Train Scheduling Problem. Hybrid Metaheuristics 2008: 102-116 - [p2]Prasanna Balaprakash, Mauro Birattari
, Thomas Stützle
:
Engineering Stochastic Local Search Algorithms: A Case Study in Estimation-Based Local Search for the Probabilistic Travelling Salesman Problem. Recent Advances in Evolutionary Computation for Combinatorial Optimization 2008: 53-66 - 2007
- [c2]Prasanna Balaprakash, Mauro Birattari
, Thomas Stützle:
Improvement Strategies for the F-Race Algorithm: Sampling Design and Iterative Refinement. Hybrid Metaheuristics 2007: 108-122 - [p1]Mauro Birattari
, Prasanna Balaprakash, Marco Dorigo:
The ACO/F-Race Algorithm for Combinatorial Optimization Under Uncertainty. Metaheuristics 2007: 189-203 - 2006
- [c1]Prasanna Balaprakash, Mauro Birattari
, Thomas Stützle, Marco Dorigo:
Incremental Local Search in Ant Colony Optimization: Why It Fails for the Quadratic Assignment Problem. ANTS Workshop 2006: 156-166
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
load content from web.archive.org
Privacy notice: By enabling the option above, your browser will contact the API of web.archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
Tweets on dblp homepage
Show tweets from on the dblp homepage.
Privacy notice: By enabling the option above, your browser will contact twitter.com and twimg.com to load tweets curated by our Twitter account. At the same time, Twitter will persistently store several cookies with your web browser. While we did signal Twitter to not track our users by setting the "dnt" flag, we do not have any control over how Twitter uses your data. So please proceed with care and consider checking the Twitter privacy policy.
last updated on 2021-01-23 00:35 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint