default search action
Chee Keong Kwoh 0001
Chee-Keong Kwoh 0001 – Kwoh Chee Keong 0001
Person information
- affiliation: Nanyang Technological University, School of Computer Engineering, Singapore
- affiliation (PhD 1995): University of London, Imperial College of Science, Technology and Medicine, UK
Other persons with the same name
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j111]Lin-Xuan Hou, Hai-Cheng Yi, Zhu-Hong You, Shi-Hong Chen, Jia Zheng, Chee Keong Kwoh:
MathEagle: Accurate prediction of drug-drug interaction events via multi-head attention and heterogeneous attribute graph learning. Comput. Biol. Medicine 177: 108642 (2024) - [j110]Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li:
Contrastive Domain Adaptation for Time-Series Via Temporal Mixup. IEEE Trans. Artif. Intell. 5(3): 1185-1194 (2024) - [j109]Mohamed Ragab, Emadeldeen Eldele, Zhenghua Chen, Min Wu, Chee-Keong Kwoh, Xiaoli Li:
Self-Supervised Autoregressive Domain Adaptation for Time Series Data. IEEE Trans. Neural Networks Learn. Syst. 35(1): 1341-1351 (2024) - 2023
- [j108]Xiaolei Yu, Zhibin Zhao, Xingwu Zhang, Shaohua Tian, Chee-Keong Kwoh, Xiaoli Li, Xuefeng Chen:
A universal transfer network for machinery fault diagnosis. Comput. Ind. 151: 103976 (2023) - [j107]Teng Ann Ng, Shamima Rashid, Chee Keong Kwoh:
Virulence network of interacting domains of influenza a and mouse proteins. Frontiers Bioinform. 3 (2023) - [j106]Bentao Zou, Yuefen Wang, Chee Keong Kwoh, Yonghua Cen:
Directed collaboration patterns in funded teams: A perspective of knowledge flow. Inf. Process. Manag. 60(2): 103237 (2023) - [j105]Rui Yin, Zihan Luo, Pei Zhuang, Min Zeng, Min Li, Zhuoyi Lin, Chee Keong Kwoh:
ViPal: A framework for virulence prediction of influenza viruses with prior viral knowledge using genomic sequences. J. Biomed. Informatics 142: 104388 (2023) - [j104]Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee-Keong Kwoh, Xiaoli Li, Cuntai Guan:
Self-Supervised Contrastive Representation Learning for Semi-Supervised Time-Series Classification. IEEE Trans. Pattern Anal. Mach. Intell. 45(12): 15604-15618 (2023) - [j103]Shamima Rashid, Suresh Sundaram, Chee Keong Kwoh:
Empirical Study of Protein Feature Representation on Deep Belief Networks Trained With Small Data for Secondary Structure Prediction. IEEE ACM Trans. Comput. Biol. Bioinform. 20(2): 955-966 (2023) - [j102]Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee-Keong Kwoh, Xiaoli Li, Cuntai Guan:
ADAST: Attentive Cross-Domain EEG-Based Sleep Staging Framework With Iterative Self-Training. IEEE Trans. Emerg. Top. Comput. Intell. 7(1): 210-221 (2023) - [j101]Zhuoyi Lin, Lei Feng, Xingzhi Guo, Yu Zhang, Rui Yin, Chee Keong Kwoh, Chi Xu:
COMET: Convolutional Dimension Interaction for Collaborative Filtering. ACM Trans. Intell. Syst. Technol. 14(4): 59:1-59:18 (2023) - [j100]Mohamed Ragab, Emadeldeen Eldele, Wee Ling Tan, Chuan-Sheng Foo, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li:
ADATIME: A Benchmarking Suite for Domain Adaptation on Time Series Data. ACM Trans. Knowl. Discov. Data 17(8): 106:1-106:18 (2023) - [j99]Zhuoyi Lin, Sheng Zang, Rundong Wang, Zhu Sun, J. Senthilnath, Chi Xu, Chee Keong Kwoh:
Attention Over Self-Attention: Intention-Aware Re-Ranking With Dynamic Transformer Encoders for Recommendation. IEEE Trans. Knowl. Data Eng. 35(8): 7782-7795 (2023) - [c64]Zhang Wan, Zhuoyi Lin, Shamima Rashid, Shaun Yue-Hao Ng, Rui Yin, J. Senthilnath, Chee Keong Kwoh:
PESI: Paratope-Epitope Set Interaction for SARS-CoV-2 Neutralization Prediction. BIBM 2023: 49-56 - [c63]Yubo Hou, Tram Truong-Huu, Zhenghua Chen, Chee-Keong Kwoh, Sin G. Teo:
PROTEUS: Domain Adaptation for Dynamic Features in AI-assisted Windows Malware Detection. ICDM (Workshops) 2023: 1322-1331 - [i20]Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li:
Label-efficient Time Series Representation Learning: A Review. CoRR abs/2302.06433 (2023) - [i19]Gabriel Tjio, Ping Liu, Chee-Keong Kwoh, Joey Tianyi Zhou:
Adaptive Stylization Modulation for Domain Generalized Semantic Segmentation. CoRR abs/2304.09347 (2023) - [i18]Gabriel Tjio, Ping Liu, Yawei Luo, Chee Keong Kwoh, Joey Tianyi Zhou:
Generating Reliable Pixel-Level Labels for Source Free Domain Adaptation. CoRR abs/2307.00893 (2023) - 2022
- [j98]Hai-Cheng Yi, Zhu-Hong You, De-Shuang Huang, Chee Keong Kwoh:
Graph representation learning in bioinformatics: trends, methods and applications. Briefings Bioinform. 23(1) (2022) - [j97]Rui Yin, Xianghe Zhu, Min Zeng, Pengfei Wu, Min Li, Chee Keong Kwoh:
A framework for predicting variable-length epitopes of human-adapted viruses using machine learning methods. Briefings Bioinform. 23(5) (2022) - [j96]Shamima Rashid, Teng Ann Ng, Chee Keong Kwoh:
Jupytope: computational extraction of structural properties of viral epitopes. Briefings Bioinform. 23(6) (2022) - [j95]Yahui Long, Min Wu, Yong Liu, Yuan Fang, Chee Keong Kwoh, Jinmiao Chen, Jiawei Luo, Xiaoli Li:
Pre-training graph neural networks for link prediction in biomedical networks. Bioinform. 38(8): 2254-2262 (2022) - [j94]Mahdi Pursalim, Kwoh Chee Keong:
An Efficient Multiresolution Clustering for Motif Discovery in Complex Networks. IEEE ACM Trans. Comput. Biol. Bioinform. 19(1): 284-294 (2022) - [j93]Rui Yin, Nyi Nyi Thwin, Pei Zhuang, Zhuoyi Lin, Chee Keong Kwoh:
IAV-CNN: A 2D Convolutional Neural Network Model to Predict Antigenic Variants of Influenza A Virus. IEEE ACM Trans. Comput. Biol. Bioinform. 19(6): 3497-3506 (2022) - [j92]Dong Huang, Chang-Dong Wang, Jian-Huang Lai, Chee Keong Kwoh:
Toward Multidiversified Ensemble Clustering of High-Dimensional Data: From Subspaces to Metrics and Beyond. IEEE Trans. Cybern. 52(11): 12231-12244 (2022) - [j91]Mohamed Ragab, Zhenghua Chen, Wenyu Zhang, Emadeldeen Eldele, Min Wu, Chee Keong Kwoh, Xiaoli Li:
Conditional Contrastive Domain Generalization for Fault Diagnosis. IEEE Trans. Instrum. Meas. 71: 1-12 (2022) - [c62]Yue Liu, Junfeng Zhang, Shulin Wang, Wei Zhang, Xiangxiang Zeng, Chee Keong Kwoh:
A heterogeneous graph cross-omics attention model for single-cell representation learning. BIBM 2022: 270-275 - [c61]Chenyang Li, Chee Keong Kwoh, Xiaoli Li, Lingfei Mo, Ruqiang Yan:
Rotating Machinery Fault Diagnosis Based on Multi-sensor Information Fusion Using Graph Attention Network. ICARCV 2022: 678-683 - [e2]Hisao Ishibuchi, Chee-Keong Kwoh, Ah-Hwee Tan, Dipti Srinivasan, Chunyan Miao, Anupam Trivedi, Keeley A. Crockett:
IEEE Symposium Series on Computational Intelligence, SSCI 2022, Singapore, December 4-7, 2022. IEEE 2022, ISBN 978-1-6654-8768-9 [contents] - [i17]Zhuoyi Lin, Sheng Zang, Rundong Wang, Zhu Sun, Chi Xu, Chee Keong Kwoh:
Attention over Self-attention: Intention-aware Re-ranking with Dynamic Transformer Encoders for Recommendation. CoRR abs/2201.05333 (2022) - [i16]Mohamed Ragab, Emadeldeen Eldele, Wee Ling Tan, Chuan-Sheng Foo, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li:
ADATIME: A Benchmarking Suite for Domain Adaptation on Time Series Data. CoRR abs/2203.08321 (2022) - [i15]Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li, Cuntai Guan:
Self-supervised Contrastive Representation Learning for Semi-supervised Time-Series Classification. CoRR abs/2208.06616 (2022) - [i14]Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li:
Self-supervised Learning for Label-Efficient Sleep Stage Classification: A Comprehensive Evaluation. CoRR abs/2210.06286 (2022) - [i13]Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li:
CoTMix: Contrastive Domain Adaptation for Time-Series via Temporal Mixup. CoRR abs/2212.01555 (2022) - 2021
- [j90]Yu Zhang, Cangzhi Jia, Melissa Jane Fullwood, Chee Keong Kwoh:
DeepCPP: a deep neural network based on nucleotide bias information and minimum distribution similarity feature selection for RNA coding potential prediction. Briefings Bioinform. 22(2): 2073-2084 (2021) - [j89]Sezin Kircali Ata, Min Wu, Yuan Fang, Le Ou-Yang, Chee Keong Kwoh, Xiaoli Li:
Recent advances in network-based methods for disease gene prediction. Briefings Bioinform. 22(4) (2021) - [j88]Yu Zhang, Cangzhi Jia, Chee Keong Kwoh:
Predicting the interaction biomolecule types for lncRNA: an ensemble deep learning approach. Briefings Bioinform. 22(4) (2021) - [j87]Yu Zhang, Yichao Cai, Xavier Roca, Chee Keong Kwoh, Melissa Jane Fullwood:
Chromatin loop anchors predict transcript and exon usage. Briefings Bioinform. 22(6) (2021) - [j86]Rui Yin, Zihan Luo, Pei Zhuang, Zhuoyi Lin, Chee Keong Kwoh:
VirPreNet: a weighted ensemble convolutional neural network for the virulence prediction of influenza A virus using all eight segments. Bioinform. 37(6): 737-743 (2021) - [j85]Yahui Long, Min Wu, Yong Liu, Jie Zheng, Chee Keong Kwoh, Jiawei Luo, Xiaoli Li:
Graph contextualized attention network for predicting synthetic lethality in human cancers. Bioinform. 37(16): 2432-2440 (2021) - [j84]Yu Zhang, Yahui Long, Chee Keong Kwoh:
Class similarity network for coding and long non-coding RNA classification. BMC Bioinform. 22(1): 609 (2021) - [j83]Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Ruqiang Yan, Xiaoli Li:
Attention-based sequence to sequence model for machine remaining useful life prediction. Neurocomputing 466: 58-68 (2021) - [j82]Zhuoyi Lin, Lei Feng, Rui Yin, Chi Xu, Chee Keong Kwoh:
GLIMG: Global and local item graphs for top-N recommender systems. Inf. Sci. 580: 1-14 (2021) - [j81]Mohamed Ragab, Zhenghua Chen, Min Wu, Chuan Sheng Foo, Chee Keong Kwoh, Ruqiang Yan, Xiaoli Li:
Contrastive Adversarial Domain Adaptation for Machine Remaining Useful Life Prediction. IEEE Trans. Ind. Informatics 17(8): 5239-5249 (2021) - [j80]Mohamed Ragab, Zhenghua Chen, Min Wu, Haoliang Li, Chee-Keong Kwoh, Ruqiang Yan, Xiaoli Li:
Adversarial Multiple-Target Domain Adaptation for Fault Classification. IEEE Trans. Instrum. Meas. 70: 1-11 (2021) - [j79]Sezin Kircali Ata, Yuan Fang, Min Wu, Jiaqi Shi, Chee Keong Kwoh, Xiaoli Li:
Multi-View Collaborative Network Embedding. ACM Trans. Knowl. Discov. Data 15(3): 39:1-39:18 (2021) - [j78]Dong Huang, Chang-Dong Wang, Hongxing Peng, Jianhuang Lai, Chee-Keong Kwoh:
Enhanced Ensemble Clustering via Fast Propagation of Cluster-Wise Similarities. IEEE Trans. Syst. Man Cybern. Syst. 51(1): 508-520 (2021) - [c60]Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li, Cuntai Guan:
Time-Series Representation Learning via Temporal and Contextual Contrasting. IJCAI 2021: 2352-2359 - [i12]Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li, Cuntai Guan:
Time-Series Representation Learning via Temporal and Contextual Contrasting. CoRR abs/2106.14112 (2021) - [i11]Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li, Cuntai Guan:
Adversarial Domain Adaptation with Self-Training for EEG-based Sleep Stage Classification. CoRR abs/2107.04470 (2021) - [i10]Mohamed Ragab, Emadeldeen Eldele, Zhenghua Chen, Min Wu, Chee-Keong Kwoh, Xiaoli Li:
Self-supervised Autoregressive Domain Adaptation for Time Series Data. CoRR abs/2111.14834 (2021) - 2020
- [j77]Yu Zhang, Yahui Long, Rui Yin, Chee Keong Kwoh:
DL-CRISPR: A Deep Learning Method for Off-Target Activity Prediction in CRISPR/Cas9 With Data Augmentation. IEEE Access 8: 76610-76617 (2020) - [j76]Pingjian Ding, Wenjue Ouyang, Jiawei Luo, Chee-Keong Kwoh:
Heterogeneous information network and its application to human health and disease. Briefings Bioinform. 21(4): 1327-1346 (2020) - [j75]Rui Yin, Emil Luusua, Jan Dabrowski, Yu Zhang, Chee Keong Kwoh:
Tempel: time-series mutation prediction of influenza A viruses via attention-based recurrent neural networks. Bioinform. 36(9): 2697-2704 (2020) - [j74]Yahui Long, Min Wu, Chee Keong Kwoh, Jiawei Luo, Xiaoli Li:
Predicting human microbe-drug associations via graph convolutional network with conditional random field. Bioinform. 36(19): 4918-4927 (2020) - [j73]Dengju Yao, Xiaojuan Zhan, Xiaorong Zhan, Chee Keong Kwoh, Peng Li, Jinke Wang:
A random forest based computational model for predicting novel lncRNA-disease associations. BMC Bioinform. 21(1): 126 (2020) - [j72]Yu Zhang, Yahui Long, Chee Keong Kwoh:
Deep learning based DNA: RNA triplex forming potential prediction. BMC Bioinform. 21(1): 522 (2020) - [j71]Rui Yin, Yu Zhang, Xinrui Zhou, Chee Keong Kwoh:
Time series computational prediction of vaccines for influenza A H3N2 with recurrent neural networks. J. Bioinform. Comput. Biol. 18(1): 2040002:1-2040002:17 (2020) - [j70]Dong Huang, Chang-Dong Wang, Jian-Sheng Wu, Jian-Huang Lai, Chee-Keong Kwoh:
Ultra-Scalable Spectral Clustering and Ensemble Clustering. IEEE Trans. Knowl. Data Eng. 32(6): 1212-1226 (2020) - [c59]Yahui Long, Yu Zhang, Min Wu, Shaoliang Peng, Chee Keong Kwoh, Jiawei Luo, Xiaoli Li:
Predicting Drugs for COVID-19/SARS-CoV-2 via Heterogeneous Graph Attention Networks. BIBM 2020: 455-459 - [c58]Yu Zhang, Zhuoyi Lin, Chee Keong Kwoh:
Information Theory-Based Feature Selection: Minimum Distribution Similarity with Removed Redundancy. ICCS (5) 2020: 3-17 - [c57]Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li:
Adversarial Transfer Learning for Machine Remaining Useful Life Prediction. ICPHM 2020: 1-7 - [c56]Xiaosha Cai, Dong Huang, Chang-Dong Wang, Chee-Keong Kwoh:
Spectral Clustering by Subspace Randomization and Graph Fusion for High-Dimensional Data. PAKDD (1) 2020: 330-342 - [i9]Sezin Kircali Ata, Yuan Fang, Min Wu, Jiaqi Shi, Chee Keong Kwoh, Xiaoli Li:
Multi-View Collaborative Network Embedding. CoRR abs/2005.08189 (2020) - [i8]Mohamed Ragab, Zhenghua Chen, Min Wu, Chee-Keong Kwoh, Ruqiang Yan, Xiaoli Li:
Attention Sequence to Sequence Model for Machine Remaining Useful Life Prediction. CoRR abs/2007.09868 (2020) - [i7]Sezin Kircali Ata, Min Wu, Yuan Fang, Le Ou-Yang, Chee Keong Kwoh, Xiaoli Li:
Recent Advances in Network-based Methods for Disease Gene Prediction. CoRR abs/2007.10848 (2020) - [i6]Zhuoyi Lin, Lei Feng, Rui Yin, Chi Xu, Chee-Keong Kwoh:
GLIMG: Global and Local Item Graphs for Top-N Recommender Systems. CoRR abs/2007.14018 (2020) - [i5]Zhuoyi Lin, Lei Feng, Xingzhi Guo, Rui Yin, Chee Keong Kwoh, Chi Xu:
COMET: Convolutional Dimension Interaction for Deep Matrix Factorization. CoRR abs/2007.14129 (2020)
2010 – 2019
- 2019
- [j69]Xinrui Zhou, Rui Yin, Jie Zheng, Chee Keong Kwoh:
An Encoding Scheme Capturing Generic Priors and Properties of Amino Acids Improves Protein Classification. IEEE Access 7: 7348-7356 (2019) - [j68]Ali Ezzat, Min Wu, Xiaoli Li, Chee Keong Kwoh:
Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey. Briefings Bioinform. 20(4): 1337-1357 (2019) - [j67]Meng Zhang, Fuyi Li, Tatiana T. Marquez-Lago, André Leier, Cunshuo Fan, Chee Keong Kwoh, Kuo-Chen Chou, Jiangning Song, Cangzhi Jia:
MULTiPly: a novel multi-layer predictor for discovering general and specific types of promoters. Bioinform. 35(17): 2957-2965 (2019) - [j66]Dengju Yao, Xiaojuan Zhan, Chee-Keong Kwoh:
An improved random forest-based computational model for predicting novel miRNA-disease associations. BMC Bioinform. 20(1): 624 (2019) - [j65]Mohan R. Pradhan, Minh N. Nguyen, Srinivasaraghavan Kannan, Stephen J. Fox, Chee Keong Kwoh, David P. Lane, Chandra S. Verma:
Characterization of Hydration Properties in Structural Ensembles of Biomolecules. J. Chem. Inf. Model. 59(7): 3316-3329 (2019) - [j64]Pingjian Ding, Rui Yin, Jiawei Luo, Chee Keong Kwoh:
Ensemble Prediction of Synergistic Drug Combinations Incorporating Biological, Chemical, Pharmacological, and Network Knowledge. IEEE J. Biomed. Health Informatics 23(3): 1336-1345 (2019) - [c55]Zhuoyi Lin, Lei Feng, Chee-Keong Kwoh, Chi Xu:
Fast Top-N Personalized Recommendation on Item Graph. IEEE BigData 2019: 3903-3908 - [r4]Rui Yin, Chee Keong Kwoh, Jie Zheng:
Whole Genome Sequencing Analysis. Encyclopedia of Bioinformatics and Computational Biology (3) 2019: 176-183 - [r3]Fransiskus Xaverius Ivan, Chee-Keong Kwoh, Vincent T. K. Chow, Jie Zheng:
Genome Analysis - Identification of Genes Involved in Host-Pathogen Protein-Protein Interaction Networks. Encyclopedia of Bioinformatics and Computational Biology (3) 2019: 410-424 - [r2]Liangzhen Zheng, Amr Alhossary, Chee-Keong Kwoh, Yuguang Mu:
Molecular Dynamics and Simulation. Encyclopedia of Bioinformatics and Computational Biology (2) 2019: 550-566 - [r1]Xu Han, Chee Keong Kwoh:
Natural Language Processing Approaches in Bioinformatics. Encyclopedia of Bioinformatics and Computational Biology (1) 2019: 561-574 - [i4]Dong Huang, Chang-Dong Wang, Jian-Sheng Wu, Jian-Huang Lai, Chee-Keong Kwoh:
Ultra-Scalable Spectral Clustering and Ensemble Clustering. CoRR abs/1903.01057 (2019) - 2018
- [j63]Xinrui Zhou, Jie Zheng, Fransiskus Xaverius Ivan, Rui Yin, Shoba Ranganathan, Vincent T. K. Chow, Chee-Keong Kwoh:
Computational analysis of the receptor binding specificity of novel influenza A/H7N9 viruses. BMC Genom. 19(S2) (2018) - [j62]Amr Alhossary, Yaw Awuni, Chee Keong Kwoh, Yuguang Mu:
Proposing drug fragments for dengue virus NS5 protein. J. Bioinform. Comput. Biol. 16(3): 1840017:1-1840017:20 (2018) - [j61]Rui Yin, Xinrui Zhou, Jie Zheng, Chee Keong Kwoh:
Computational identification of physicochemical signatures for host tropism of influenza A virus. J. Bioinform. Comput. Biol. 16(6): 1840023:1-1840023:21 (2018) - [i3]Dong Huang, Chang-Dong Wang, Hongxing Peng, Jianhuang Lai, Chee-Keong Kwoh:
Enhanced Ensemble Clustering via Fast Propagation of Cluster-wise Similarities. CoRR abs/1810.12544 (2018) - 2017
- [j60]Ali Ezzat, Peilin Zhao, Min Wu, Xiaoli Li, Chee Keong Kwoh:
Drug-Target Interaction Prediction with Graph Regularized Matrix Factorization. IEEE ACM Trans. Comput. Biol. Bioinform. 14(3): 646-656 (2017) - [c54]Fransiskus Xaverius Ivan, Xinrui Zhou, Akhila Deshpande, Rui Yin, Jie Zheng, Chee Keong Kwoh:
Phylogenetic Tree based Method for Uncovering Co-mutational Site-pairs in Influenza Viruses. BCB 2017: 21-26 - [c53]Chee Keong Kwoh:
AI and Big Data Analytics for Health and Bioinformatics. CSBio 2017: 1 - [c52]Rui Yin, Xinrui Zhou, Fransiskus Xaverius Ivan, Jie Zheng, Vincent T. K. Chow, Chee Keong Kwoh:
Identification of Potential Critical Virulent Sites Based on Hemagglutinin of Influenza a Virus in Past Pandemic Strains. ICBBS 2017: 30-36 - [i2]Dong Huang, Chang-Dong Wang, Jian-Huang Lai, Chee-Keong Kwoh:
Toward Multi-Diversified Ensemble Clustering of High-Dimensional Data. CoRR abs/1710.03113 (2017) - 2016
- [j59]Xu Han, Jung-Jae Kim, Chee Keong Kwoh:
Active learning for ontological event extraction incorporating named entity recognition and unknown word handling. J. Biomed. Semant. 7: 22 (2016) - [j58]Ali Ezzat, Min Wu, Xiaoli Li, Chee Keong Kwoh:
Drug-target interaction prediction via class imbalance-aware ensemble learning. BMC Bioinform. 17(S-19): 267-276 (2016) - [j57]Hong Pan, Joanna D. Holbrook, Neerja Karnani, Chee Keong Kwoh:
Gene, Environment and Methylation (GEM): a tool suite to efficiently navigate large scale epigenome wide association studies and integrate genotype and interaction between genotype and environment. BMC Bioinform. 17: 299 (2016) - [j56]Swamidoss Issac Niwas, Vinit Jakhetiya, Weisi Lin, Chee Keong Kwoh, Chelvin C. Sng, Maria Cecilia Aquino, Victor Koh, Paul T. K. Chew:
Complex wavelet based quality assessment for AS-OCT images with application to Angle Closure Glaucoma diagnosis. Comput. Methods Programs Biomed. 130: 13-21 (2016) - [j55]Swamidoss Issac Niwas, Weisi Lin, Xiaolong Bai, Chee Keong Kwoh, C.-C. Jay Kuo, Chelvin C. Sng, Maria Cecilia Aquino, Paul T. K. Chew:
Automated anterior segment OCT image analysis for Angle Closure Glaucoma mechanisms classification. Comput. Methods Programs Biomed. 130: 65-75 (2016) - [j54]Xiaolong Bai, Swamidoss Issac Niwas, Weisi Lin, Bing-Feng Ju, Chee Keong Kwoh, Lipo Wang, Chelvin C. Sng, Maria Cecilia Aquino, Paul T. K. Chew:
Learning ECOC Code Matrix for Multiclass Classification with Application to Glaucoma Diagnosis. J. Medical Syst. 40(4): 78:1-78:10 (2016) - [j53]Swamidoss Issac Niwas, Weisi Lin, Chee Keong Kwoh, C.-C. Jay Kuo, Chelvin C. Sng, Maria Cecilia Aquino, Paul T. K. Chew:
Cross-Examination for Angle-Closure Glaucoma Feature Detection. IEEE J. Biomed. Health Informatics 20(1): 343-354 (2016) - [c51]Xu Han, Chee Keong Kwoh, Jung-Jae Kim:
Clustering based active learning for biomedical Named Entity Recognition. IJCNN 2016: 1253-1260 - 2015
- [j52]Amr Alhossary, Stephanus Daniel Handoko, Yuguang Mu, Chee Keong Kwoh:
Fast, accurate, and reliable molecular docking with QuickVina 2. Bioinform. 31(13): 2214-2216 (2015) - [j51]Fan Zhang, Min Wu, Xuejuan Li, Xiaoli Li, Chee Keong Kwoh, Jie Zheng:
Predicting essential genes and synthetic lethality via influence propagation in signaling pathways of cancer cell fates. J. Bioinform. Comput. Biol. 13(3): 1541002:1-1541002:14 (2015) - [j50]S. Issac Niwas, Weisi Lin, Xiaolong Bai, Chee Keong Kwoh, Chelvin C. Sng, Maria Cecilia Aquino, Paul T. K. Chew:
Reliable Feature Selection for Automated Angle Closure Glaucoma Mechanism Detection. J. Medical Syst. 39(3): 21 (2015) - [j49]Thuy-Diem Nguyen, Bertil Schmidt, Zejun Zheng, Chee-Keong Kwoh:
Efficient and Accurate OTU Clustering with GPU-Based Sequence Alignment and Dynamic Dendrogram Cutting. IEEE ACM Trans. Comput. Biol. Bioinform. 12(5): 1060-1073 (2015) - [i1]Jian-Ping Mei, Chee Keong Kwoh, Peng Yang, Xiaoli Li:
Classification and its application to drug-target interaction prediction. CoRR abs/1502.04469 (2015) - 2014
- [j48]Peng Yang, Min Wu, Jing Guo, Chee Keong Kwoh, Teresa M. Przytycka, Jie Zheng:
LDsplit: screening for cis-regulatory motifs stimulating meiotic recombination hotspots by analysis of DNA sequence polymorphisms. BMC Bioinform. 15: 48 (2014) - [j47]Qian Liu, Steven C. H. Hoi, Chee Keong Kwoh, Limsoon Wong, Jinyan Li:
Integrating water exclusion theory into βcontacts to predict binding free energy changes and binding hot spots. BMC Bioinform. 15: 57 (2014) - [j46]Chinh Tran To Su, Thuy-Diem Nguyen, Jie Zheng, Chee Keong Kwoh:
IFACEwat: the interfacial water-implemented re-ranking algorithm to improve the discrimination of near native structures for protein rigid docking. BMC Bioinform. 15(S-16): S9 (2014) - [j45]