


Остановите войну!
for scientists:


default search action
Mihaela van der Schaar
Mihaela van der Schaar-Mitrea
Person information

- affiliation: University of Cambridge, epartment of Applied Mathematics and Theoretical Physics, UK
- affiliation: University of California, Los Angeles, Electrical Engineering Department
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j255]Onur Atan
, Saeed Ghoorchian
, Setareh Maghsudi
, Mihaela van der Schaar:
Data-Driven Online Recommender Systems With Costly Information Acquisition. IEEE Trans. Serv. Comput. 16(1): 235-245 (2023) - [i229]Zhaozhi Qian, Bogdan-Constantin Cebere, Mihaela van der Schaar:
Synthcity: facilitating innovative use cases of synthetic data in different data modalities. CoRR abs/2301.07573 (2023) - [i228]Alan Jeffares, Tennison Liu, Jonathan Crabbé, Mihaela van der Schaar:
Joint Training of Deep Ensembles Fails Due to Learner Collusion. CoRR abs/2301.11323 (2023) - [i227]Evgeny S. Saveliev, Mihaela van der Schaar:
TemporAI: Facilitating Machine Learning Innovation in Time Domain Tasks for Medicine. CoRR abs/2301.12260 (2023) - [i226]Alicia Curth, Mihaela van der Schaar:
In Search of Insights, Not Magic Bullets: Towards Demystification of the Model Selection Dilemma in Heterogeneous Treatment Effect Estimation. CoRR abs/2302.02923 (2023) - [i225]Nabeel Seedat, Alan Jeffares, Fergus Imrie, Mihaela van der Schaar:
Improving Adaptive Conformal Prediction Using Self-Supervised Learning. CoRR abs/2302.12238 (2023) - [i224]Boris van Breugel, Hao Sun, Zhaozhi Qian, Mihaela van der Schaar:
Membership Inference Attacks against Synthetic Data through Overfitting Detection. CoRR abs/2302.12580 (2023) - [i223]Samuel Holt, Alihan Hüyük, Zhaozhi Qian, Hao Sun, Mihaela van der Schaar:
Neural Laplace Control for Continuous-time Delayed Systems. CoRR abs/2302.12604 (2023) - [i222]Yuchao Qin, Mihaela van der Schaar, Changhee Lee:
T-Phenotype: Discovering Phenotypes of Predictive Temporal Patterns in Disease Progression. CoRR abs/2302.12619 (2023) - [i221]Alicia Curth, Mihaela van der Schaar:
Understanding the Impact of Competing Events on Heterogeneous Treatment Effect Estimation from Time-to-Event Data. CoRR abs/2302.12718 (2023) - [i220]Alexander Norcliffe, Bogdan Cebere, Fergus Imrie, Pietro Liò, Mihaela van der Schaar:
SurvivalGAN: Generating Time-to-Event Data for Survival Analysis. CoRR abs/2302.12749 (2023) - [i219]Mahed Abroshan, Oscar Giles, Sam F. Greenbury, Jack Roberts, Mihaela van der Schaar, Jannetta S. Steyn, Alan Wilson, May Yong:
Learning machines for health and beyond. CoRR abs/2303.01513 (2023) - [i218]Jeroen Berrevoets, Krzysztof Kacprzyk, Zhaozhi Qian, Mihaela van der Schaar:
Causal Deep Learning. CoRR abs/2303.02186 (2023) - [i217]Alan Jeffares, Tennison Liu, Jonathan Crabbé, Fergus Imrie, Mihaela van der Schaar:
TANGOS: Regularizing Tabular Neural Networks through Gradient Orthogonalization and Specialization. CoRR abs/2303.05506 (2023) - [i216]Eleonora Giunchiglia, Fergus Imrie, Mihaela van der Schaar, Thomas Lukasiewicz:
Machine Learning with Requirements: a Manifesto. CoRR abs/2304.03674 (2023) - [i215]Boris van Breugel, Mihaela van der Schaar:
Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic Data. CoRR abs/2304.03722 (2023) - [i214]Jonathan Crabbé, Mihaela van der Schaar:
Evaluating the Robustness of Interpretability Methods through Explanation Invariance and Equivariance. CoRR abs/2304.06715 (2023) - [i213]Boris van Breugel, Zhaozhi Qian, Mihaela van der Schaar:
Synthetic data, real errors: how (not) to publish and use synthetic data. CoRR abs/2305.09235 (2023) - 2022
- [j254]Cong Shen, Zhaozhi Qian, Alihan Hüyük, Mihaela van der Schaar:
MARS: Assisting Human with Information Processing Tasks Using Machine Learning. ACM Trans. Comput. Heal. 3(2): 21:1-21:19 (2022) - [j253]Changhee Lee
, Alexander Light, Evgeny S. Saveliev
, Mihaela van der Schaar, Vincent J. Gnanapragasam
:
Developing machine learning algorithms for dynamic estimation of progression during active surveillance for prostate cancer. npj Digit. Medicine 5 (2022) - [j252]Cem Tekin
, Sepehr Elahi
, Mihaela van der Schaar:
Feedback Adaptive Learning for Medical and Educational Application Recommendation. IEEE Trans. Serv. Comput. 15(4): 2144-2157 (2022) - [c344]Alihan Hüyük, William R. Zame, Mihaela van der Schaar:
Inferring Lexicographically-Ordered Rewards from Preferences. AAAI 2022: 5737-5745 - [c343]Yao Zhang, Jeroen Berrevoets, Mihaela van der Schaar:
Identifiable Energy-based Representations: An Application to Estimating Heterogeneous Causal Effects. AISTATS 2022: 4158-4177 - [c342]Alexis Bellot, Kim Branson, Mihaela van der Schaar:
Neural graphical modelling in continuous-time: consistency guarantees and algorithms. ICLR 2022 - [c341]Alex J. Chan, Alicia Curth, Mihaela van der Schaar:
Inverse Online Learning: Understanding Non-Stationary and Reactionary Policies. ICLR 2022 - [c340]Changhee Lee, Fergus Imrie, Mihaela van der Schaar:
Self-Supervision Enhanced Feature Selection with Correlated Gates. ICLR 2022 - [c339]Alizée Pace, Alex J. Chan, Mihaela van der Schaar:
POETREE: Interpretable Policy Learning with Adaptive Decision Trees. ICLR 2022 - [c338]Zhaozhi Qian, Krzysztof Kacprzyk, Mihaela van der Schaar:
D-CODE: Discovering Closed-form ODEs from Observed Trajectories. ICLR 2022 - [c337]Ahmed M. Alaa, Boris van Breugel, Evgeny S. Saveliev, Mihaela van der Schaar:
How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating and Auditing Generative Models. ICML 2022: 290-306 - [c336]Jonathan Crabbé, Mihaela van der Schaar:
Label-Free Explainability for Unsupervised Models. ICML 2022: 4391-4420 - [c335]Samuel Holt, Zhaozhi Qian, Mihaela van der Schaar:
Neural Laplace: Learning diverse classes of differential equations in the Laplace domain. ICML 2022: 8811-8832 - [c334]Alihan Hüyük, Daniel Jarrett, Mihaela van der Schaar:
Inverse Contextual Bandits: Learning How Behavior Evolves over Time. ICML 2022: 9506-9524 - [c333]Daniel Jarrett, Bogdan Cebere, Tennison Liu, Alicia Curth, Mihaela van der Schaar:
HyperImpute: Generalized Iterative Imputation with Automatic Model Selection. ICML 2022: 9916-9937 - [c332]Nabeel Seedat, Jonathan Crabbé, Mihaela van der Schaar:
Data-SUITE: Data-centric identification of in-distribution incongruous examples. ICML 2022: 19467-19496 - [c331]Nabeel Seedat, Fergus Imrie, Alexis Bellot, Zhaozhi Qian, Mihaela van der Schaar:
Continuous-Time Modeling of Counterfactual Outcomes Using Neural Controlled Differential Equations. ICML 2022: 19497-19521 - [c330]Mihaela van der Schaar:
Machine Learning for Medicine and Healthcare. ICPRAM 2022: 5 - [c329]Ioana Bica, Mihaela van der Schaar:
Transfer Learning on Heterogeneous Feature Spaces for Treatment Effects Estimation. NeurIPS 2022 - [c328]Alex J. Chan, Mihaela van der Schaar:
Synthetic Model Combination: An Instance-wise Approach to Unsupervised Ensemble Learning. NeurIPS 2022 - [c327]Jonathan Crabbé, Alicia Curth, Ioana Bica, Mihaela van der Schaar:
Benchmarking Heterogeneous Treatment Effect Models through the Lens of Interpretability. NeurIPS 2022 - [c326]Jonathan Crabbé, Mihaela van der Schaar:
Concept Activation Regions: A Generalized Framework For Concept-Based Explanations. NeurIPS 2022 - [c325]Fergus Imrie, Alexander Norcliffe, Pietro Lió, Mihaela van der Schaar:
Composite Feature Selection Using Deep Ensembles. NeurIPS 2022 - [c324]Daniel Jarrett, Alihan Hüyük, Mihaela van der Schaar:
Online Decision Mediation. NeurIPS 2022 - [c323]Nabeel Seedat, Jonathan Crabbé, Ioana Bica, Mihaela van der Schaar:
Data-IQ: Characterizing subgroups with heterogeneous outcomes in tabular data. NeurIPS 2022 - [e2]Isabelle Guyon, Marius Lindauer, Mihaela van der Schaar, Frank Hutter, Roman Garnett:
International Conference on Automated Machine Learning, AutoML 2022, 25-27 July 2022, Johns Hopkins University, Baltimore, MD, USA. Proceedings of Machine Learning Research 188, PMLR 2022 [contents] - [i212]Jeroen Berrevoets, Fergus Imrie, Trent Kyono, James Jordon, Mihaela van der Schaar:
To Impute or not to Impute? - Missing Data in Treatment Effect Estimation. CoRR abs/2202.02096 (2022) - [i211]Nabeel Seedat, Jonathan Crabbé, Mihaela van der Schaar:
Data-SUITE: Data-centric identification of in-distribution incongruous examples. CoRR abs/2202.08836 (2022) - [i210]Alihan Hüyük, William R. Zame, Mihaela van der Schaar:
Inferring Lexicographically-Ordered Rewards from Preferences. CoRR abs/2202.10153 (2022) - [i209]Tobias Hatt, Jeroen Berrevoets, Alicia Curth, Stefan Feuerriegel, Mihaela van der Schaar:
Combining Observational and Randomized Data for Estimating Heterogeneous Treatment Effects. CoRR abs/2202.12891 (2022) - [i208]Jonathan Crabbé, Mihaela van der Schaar:
Label-Free Explainability for Unsupervised Models. CoRR abs/2203.01928 (2022) - [i207]Alex J. Chan, Alicia Curth, Mihaela van der Schaar:
Inverse Online Learning: Understanding Non-Stationary and Reactionary Policies. CoRR abs/2203.07338 (2022) - [i206]Alizée Pace, Alex J. Chan, Mihaela van der Schaar:
POETREE: Interpretable Policy Learning with Adaptive Decision Trees. CoRR abs/2203.08057 (2022) - [i205]Samuel Holt, Zhaozhi Qian, Mihaela van der Schaar:
Neural Laplace: Learning diverse classes of differential equations in the Laplace domain. CoRR abs/2206.04843 (2022) - [i204]Jeroen Berrevoets, Nabeel Seedat, Fergus Imrie, Mihaela van der Schaar:
Differentiable and Transportable Structure Learning. CoRR abs/2206.06354 (2022) - [i203]Daniel Jarrett, Bogdan Cebere, Tennison Liu, Alicia Curth, Mihaela van der Schaar:
HyperImpute: Generalized Iterative Imputation with Automatic Model Selection. CoRR abs/2206.07769 (2022) - [i202]Nabeel Seedat, Fergus Imrie, Alexis Bellot, Zhaozhi Qian, Mihaela van der Schaar:
Continuous-Time Modeling of Counterfactual Outcomes Using Neural Controlled Differential Equations. CoRR abs/2206.08311 (2022) - [i201]Jonathan Crabbé, Alicia Curth, Ioana Bica, Mihaela van der Schaar:
Benchmarking Heterogeneous Treatment Effect Models through the Lens of Interpretability. CoRR abs/2206.08363 (2022) - [i200]Krzysztof Kacprzyk, Zhaozhi Qian, Mihaela van der Schaar:
D-CIPHER: Discovery of Closed-form PDEs. CoRR abs/2206.10586 (2022) - [i199]Hao Sun, Boris van Breugel, Jonathan Crabbé, Nabeel Seedat, Mihaela van der Schaar:
DAUX: a Density-based Approach for Uncertainty eXplanations. CoRR abs/2207.05161 (2022) - [i198]Yanke Li, Tobias Hatt, Ioana Bica, Mihaela van der Schaar:
DAPDAG: Domain Adaptation via Perturbed DAG Reconstruction. CoRR abs/2208.01373 (2022) - [i197]Alicia Curth, Alihan Hüyük, Mihaela van der Schaar:
Adaptively Identifying Patient Populations With Treatment Benefit in Clinical Trials. CoRR abs/2208.05844 (2022) - [i196]Jonathan Crabbé, Mihaela van der Schaar:
Concept Activation Regions: A Generalized Framework For Concept-Based Explanations. CoRR abs/2209.11222 (2022) - [i195]Alex J. Chan, Mihaela van der Schaar:
Synthetic Model Combination: An Instance-wise Approach to Unsupervised Ensemble Learning. CoRR abs/2210.05320 (2022) - [i194]Ioana Bica, Mihaela van der Schaar:
Transfer Learning on Heterogeneous Feature Spaces for Treatment Effects Estimation. CoRR abs/2210.06183 (2022) - [i193]Fergus Imrie, Bogdan Cebere, Eoin F. McKinney, Mihaela van der Schaar:
AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in Healthcare with Automated Machine Learning. CoRR abs/2210.12090 (2022) - [i192]Nabeel Seedat, Jonathan Crabbé, Ioana Bica, Mihaela van der Schaar:
Data-IQ: Characterizing subgroups with heterogeneous outcomes in tabular data. CoRR abs/2210.13043 (2022) - [i191]Fergus Imrie, Alexander Norcliffe, Pietro Liò, Mihaela van der Schaar:
Composite Feature Selection using Deep Ensembles. CoRR abs/2211.00631 (2022) - [i190]Nabeel Seedat, Fergus Imrie, Mihaela van der Schaar:
DC-Check: A Data-Centric AI checklist to guide the development of reliable machine learning systems. CoRR abs/2211.05764 (2022) - [i189]Tennison Liu, Alex J. Chan, Boris van Breugel, Mihaela van der Schaar:
Practical Approaches for Fair Learning with Multitype and Multivariate Sensitive Attributes. CoRR abs/2211.06138 (2022) - [i188]Jeroen Berrevoets, Krzysztof Kacprzyk, Zhaozhi Qian, Mihaela van der Schaar:
Navigating causal deep learning. CoRR abs/2212.00911 (2022) - 2021
- [j251]Trent Kyono, Fiona J. Gilbert
, Mihaela van der Schaar:
Triage of 2D Mammographic Images Using Multi-view Multi-task Convolutional Neural Networks. ACM Trans. Comput. Heal. 2(3): 26:1-26:24 (2021) - [j250]Mihaela van der Schaar, Ahmed M. Alaa, R. Andres Floto, Alexander Gimson, Stefan Scholtes, Angela M. Wood
, Eoin F. McKinney, Daniel Jarrett, Pietro Lió
, Ari Ercole
:
How artificial intelligence and machine learning can help healthcare systems respond to COVID-19. Mach. Learn. 110(1): 1-14 (2021) - [j249]Zhaozhi Qian
, Ahmed M. Alaa, Mihaela van der Schaar:
CPAS: the UK's national machine learning-based hospital capacity planning system for COVID-19. Mach. Learn. 110(1): 15-35 (2021) - [j248]Ahmed M. Alaa
, Deepti Gurdasani, Adrian L. Harris
, Jem Rashbass, Mihaela van der Schaar:
Machine learning to guide the use of adjuvant therapies for breast cancer. Nat. Mach. Intell. 3(8): 716-726 (2021) - [j247]Xingchi Liu
, Mahsa Derakhshani
, Sangarapillai Lambotharan
, Mihaela van der Schaar:
Risk-Aware Multi-Armed Bandits With Refined Upper Confidence Bounds. IEEE Signal Process. Lett. 28: 269-273 (2021) - [j246]Setareh Maghsudi
, Andrew S. Lan
, Jie Xu
, Mihaela van der Schaar:
Personalized Education in the Artificial Intelligence Era: What to Expect Next. IEEE Signal Process. Mag. 38(3): 37-50 (2021) - [j245]Trent Kyono
, Mihaela van der Schaar:
Exploiting Causal Structure for Robust Model Selection in Unsupervised Domain Adaptation. IEEE Trans. Artif. Intell. 2(6): 494-507 (2021) - [j244]Changhee Lee
, Jem Rashbass, Mihaela van der Schaar:
Outcome-Oriented Deep Temporal Phenotyping of Disease Progression. IEEE Trans. Biomed. Eng. 68(8): 2423-2434 (2021) - [j243]Yuanzhang Xiao
, Mihaela van der Schaar:
Dynamic Stochastic Demand Response With Energy Storage. IEEE Trans. Smart Grid 12(6): 4813-4821 (2021) - [c322]Changhee Lee, Mihaela van der Schaar:
A Variational Information Bottleneck Approach to Multi-Omics Data Integration. AISTATS 2021: 1513-1521 - [c321]Alicia Curth, Mihaela van der Schaar:
Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory to Learning Algorithms. AISTATS 2021: 1810-1818 - [c320]Can Xu
, Ahmed M. Alaa, Ioana Bica, Brent D. Ershoff, Maxime Cannesson, Mihaela van der Schaar:
Learning Matching Representations for Individualized Organ Transplantation Allocation. AISTATS 2021: 2134-2142 - [c319]Hyun-Suk Lee, Cong Shen, William R. Zame, Jang-Won Lee, Mihaela van der Schaar:
SDF-Bayes: Cautious Optimism in Safe Dose-Finding Clinical Trials with Drug Combinations and Heterogeneous Patient Groups. AISTATS 2021: 2980-2988 - [c318]Mihaela van der Schaar:
Building next-generation healthcare systems using distributed machine learning. ICDCN 2021: 4 - [c317]Ahmed M. Alaa, Alex James Chan, Mihaela van der Schaar:
Generative Time-series Modeling with Fourier Flows. ICLR 2021 - [c316]Ioana Bica, Daniel Jarrett, Alihan Hüyük, Mihaela van der Schaar:
Learning "What-if" Explanations for Sequential Decision-Making. ICLR 2021 - [c315]Alex James Chan, Mihaela van der Schaar:
Scalable Bayesian Inverse Reinforcement Learning. ICLR 2021 - [c314]Alihan Hüyük, Daniel Jarrett, Cem Tekin, Mihaela van der Schaar:
Explaining by Imitating: Understanding Decisions by Interpretable Policy Learning. ICLR 2021 - [c313]Daniel Jarrett, Jinsung Yoon, Ioana Bica, Zhaozhi Qian, Ari Ercole, Mihaela van der Schaar:
Clairvoyance: A Pipeline Toolkit for Medical Time Series. ICLR 2021 - [c312]Alexis Bellot, Mihaela van der Schaar:
Policy Analysis using Synthetic Controls in Continuous-Time. ICML 2021: 759-768 - [c311]Jeroen Berrevoets, Ahmed M. Alaa, Zhaozhi Qian, James Jordon, Alexander E. S. Gimson, Mihaela van der Schaar:
Learning Queueing Policies for Organ Transplantation Allocation using Interpretable Counterfactual Survival Analysis. ICML 2021: 792-802 - [c310]Jonathan Crabbé, Mihaela van der Schaar:
Explaining Time Series Predictions with Dynamic Masks. ICML 2021: 2166-2177 - [c309]Daniel Jarrett, Alihan Hüyük, Mihaela van der Schaar:
Inverse Decision Modeling: Learning Interpretable Representations of Behavior. ICML 2021: 4755-4771 - [c308]Ioana Bica, Daniel Jarrett, Mihaela van der Schaar:
Invariant Causal Imitation Learning for Generalizable Policies. NeurIPS 2021: 3952-3964 - [c307]Boris van Breugel, Trent Kyono, Jeroen Berrevoets, Mihaela van der Schaar:
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks. NeurIPS 2021: 22221-22233 - [c306]Alex J. Chan, Ioana Bica, Alihan Hüyük, Daniel Jarrett, Mihaela van der Schaar:
The Medkit-Learn(ing) Environment: Medical Decision Modelling through Simulation. NeurIPS Datasets and Benchmarks 2021 - [c305]Alicia Curth, David Svensson, James Weatherall, Mihaela van der Schaar:
Really Doing Great at Estimating CATE? A Critical Look at ML Benchmarking Practices in Treatment Effect Estimation. NeurIPS Datasets and Benchmarks 2021 - [c304]Zhaozhi Qian, Yao Zhang, Ioana Bica, Angela M. Wood, Mihaela van der Schaar:
SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes. NeurIPS 2021: 3178-3190 - [c303]Kamile Stankeviciute, Ahmed M. Alaa, Mihaela van der Schaar:
Conformal Time-series Forecasting. NeurIPS 2021: 6216-6228 - [c302]Zhaozhi Qian, William R. Zame, Lucas M. Fleuren, Paul W. G. Elbers, Mihaela van der Schaar:
Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease Progression. NeurIPS 2021: 11364-11383 - [c301]Jonathan Crabbé, Zhaozhi Qian, Fergus Imrie, Mihaela van der Schaar:
Explaining Latent Representations with a Corpus of Examples. NeurIPS 2021: 12154-12166 - [c300]Alicia Curth, Mihaela van der Schaar:
On Inductive Biases for Heterogeneous Treatment Effect Estimation. NeurIPS 2021: 15883-15894 - [c299]Yuchao Qin, Fergus Imrie, Alihan Hüyük, Daniel Jarrett, Alexander Gimson, Mihaela van der Schaar:
Closing the loop in medical decision support by understanding clinical decision-making: A case study on organ transplantation. NeurIPS 2021: 23205-23217 - [c298]Zhaozhi Qian, Alicia Curth, Mihaela van der Schaar:
Estimating Multi-cause Treatment Effects via Single-cause Perturbation. NeurIPS 2021: 23754-23767 - [c297]Trent Kyono, Yao Zhang, Alexis Bellot, Mihaela van der Schaar:
MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms. NeurIPS 2021: 23806-23817 - [c296]Alicia Curth, Changhee Lee, Mihaela van der Schaar:
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data. NeurIPS 2021: 26740-26753 - [c295]Daniel Jarrett, Ioana Bica, Mihaela van der Schaar:
Time-series Generation by Contrastive Imitation. NeurIPS 2021: 28968-28982 - [c294]Russell Greiner, Neeraj Kumar, Thomas Alexander Gerds, Mihaela van der Schaar:
Preface: AAAI Spring Symposium on Survival Prediction - Algorithms, Challenges, and Applications 2021. SPACA 2021: 1-2 - [c293]Alexis Bellot, Mihaela van der Schaar:
Application of kernel hypothesis testing on set-valued data. UAI 2021: 194-204 - [c292]Alexis Bellot, Mihaela van der Schaar:
A kernel two-sample test with selection bias. UAI 2021: 205-214 - [e1]Russell Greiner, Neeraj Kumar, Thomas Alexander Gerds, Mihaela van der Schaar:
Proceedings of AAAI Symposium on Survival Prediction - Algorithms, Challenges and Applications, SPACA 2021, Stanford University, Palo Alto, CA, USA, March 22-24, 2021. Proceedings of Machine Learning Research 146, PMLR 2021 [contents] - [i187]Setareh Maghsudi, Andrew S. Lan, Jie Xu, Mihaela van der Schaar:
Personalized Education in the AI Era: What to Expect Next? CoRR abs/2101.10074 (2021) - [i186]Alicia Curth, Mihaela van der Schaar:
Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory to Learning Algorithms. CoRR abs/2101.10943 (2021) - [i185]Hyun-Suk Lee, Cong Shen, William R. Zame, Jang-Won Lee, Mihaela van der Schaar:
SDF-Bayes: Cautious Optimism in Safe Dose-Finding Clinical Trials with Drug Combinations and Heterogeneous Patient Groups. CoRR abs/2101.10998 (2021) - [i184]Can Xu, Ahmed M. Alaa, Ioana Bica, Brent D. Ershoff, Maxime Cannesson, Mihaela van der Schaar:
Learning Matching Representations for Individualized Organ Transplantation Allocation. CoRR abs/2101.11769 (2021) - [i183]Alexis Bellot, Mihaela van der Schaar:
Policy Analysis using Synthetic Controls in Continuous-Time. CoRR abs/2102.01577 (2021) - [i182]Changhee Lee, Mihaela van der Schaar:
A Variational Information Bottleneck Approach to Multi-Omics Data Integration. CoRR abs/2102.03014 (2021) - [i181]Trent Kyono, Ioana Bica, Zhaozhi Qian, Mihaela van der Schaar:
Selecting Treatment Effects Models for Domain Adaptation Using Causal Knowledge. CoRR abs/2102.06271 (2021) - [i180]Alex J. Chan, Mihaela van der Schaar:
Scalable Bayesian Inverse Reinforcement Learning. CoRR abs/2102.06483 (2021) - [i179]Ahmed M. Alaa, Boris van Breugel, Evgeny Saveliev, Mihaela van der Schaar:
How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating and Auditing Generative Models. CoRR abs/2102.08921 (2021) - [i178]Victor D. Bourgin, Ioana Bica, Mihaela van der Schaar:
Model-Attentive Ensemble Learning for Sequence Modeling. CoRR abs/2102.11500 (2021) - [i177]