


default search action
21st AISTATS 2018: Playa Blanca, Lanzarote, Canary Islands, Spain
- Amos J. Storkey, Fernando Pérez-Cruz:

International Conference on Artificial Intelligence and Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain. Proceedings of Machine Learning Research 84, PMLR 2018 - Krzysztof Choromanski, Mark Rowland, Tamás Sarlós, Vikas Sindhwani, Richard E. Turner, Adrian Weller:

The Geometry of Random Features. 1-9 - Sungsoo Ahn, Michael Chertkov, Jinwoo Shin, Adrian Weller:

Gauged Mini-Bucket Elimination for Approximate Inference. 10-19 - Aleksander Madry, Slobodan Mitrovic, Ludwig Schmidt:

A Fast Algorithm for Separated Sparsity via Perturbed Lagrangians. 20-28 - Mark Rowland, Marc G. Bellemare, Will Dabney, Rémi Munos, Yee Whye Teh:

An Analysis of Categorical Distributional Reinforcement Learning. 29-37 - Thomas Möllenhoff, Zhenzhang Ye, Tao Wu, Daniel Cremers:

Combinatorial Preconditioners for Proximal Algorithms on Graphs. 38-47 - Guy Uziel, Ran El-Yaniv:

Growth-Optimal Portfolio Selection under CVaR Constraints. 48-57 - Peng Xu, Bryan D. He, Christopher De Sa, Ioannis Mitliagkas, Christopher Ré:

Accelerated Stochastic Power Iteration. 58-67 - Woosang Lim, Rundong Du, Bo Dai, Kyomin Jung, Le Song, Haesun Park:

Multi-scale Nystrom Method. 68-76 - Satoshi Hara, Kohei Hayashi:

Making Tree Ensembles Interpretable: A Bayesian Model Selection Approach. 77-85 - James R. Foulds:

Mixed Membership Word Embeddings for Computational Social Science. 86-95 - Emma Pierson, Sam Corbett-Davies, Sharad Goel:

Fast Threshold Tests for Detecting Discrimination. 96-105 - Juho Piironen, Aki Vehtari:

Iterative Supervised Principal Components. 106-114 - Chieh Wu, Stratis Ioannidis, Mario Sznaier, Xiangyu Li, David R. Kaeli, Jennifer G. Dy:

Iterative Spectral Method for Alternative Clustering. 115-123 - Dennis Forster, Jörg Lücke:

Can clustering scale sublinearly with its clusters? A variational EM acceleration of GMMs and k-means. 124-132 - Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, Barnabás Póczos:

Parallelised Bayesian Optimisation via Thompson Sampling. 133-142 - Rahul G. Krishnan, Dawen Liang, Matthew D. Hoffman:

On the challenges of learning with inference networks on sparse, high-dimensional data. 143-151 - Makoto Yamada, Yuta Umezu, Kenji Fukumizu, Ichiro Takeuchi:

Post Selection Inference with Kernels. 152-160 - Joel Ratsaby:

On how complexity affects the stability of a predictor. 161-167 - Zhiqiang Xu, Xin Gao:

On Truly Block Eigensolvers via Riemannian Optimization. 168-177 - Heng Guo, Kaan Kara, Ce Zhang:

Layerwise Systematic Scan: Deep Boltzmann Machines and Beyond. 178-187 - Rajiv Khanna, Anastasios Kyrillidis:

IHT dies hard: Provable accelerated Iterative Hard Thresholding. 188-198 - Jinshan Zeng, Ke Ma, Yuan Yao:

Finding Global Optima in Nonconvex Stochastic Semidefinite Optimization with Variance Reduction. 199-207 - Dehan Kong, Howard D. Bondell, Weining Shen:

Outlier Detection and Robust Estimation in Nonparametric Regression. 208-216 - Luca Ambrogioni, Eric Maris:

Integral Transforms from Finite Data: An Application of Gaussian Process Regression to Fourier Analysis. 217-225 - Gabriele Abbati, Alessandra Tosi, Michael A. Osborne

, Seth R. Flaxman:
AdaGeo: Adaptive Geometric Learning for Optimization and Sampling. 226-234 - Xiand Gao, Xiaobo Li, Shuzhong Zhang:

Online Learning with Non-Convex Losses and Non-Stationary Regret. 235-243 - Christophe Dupuy, Francis R. Bach:

Learning Determinantal Point Processes in Sublinear Time. 244-257 - Kaiqing Zhang, Zhuoran Yang, Zhaoran Wang:

Nonlinear Structured Signal Estimation in High Dimensions via Iterative Hard Thresholding. 258-268 - Hiroyuki Kasai, Hiroyuki Sato, Bamdev Mishra:

Riemannian stochastic quasi-Newton algorithm with variance reduction and its convergence analysis. 269-278 - Young Hun Jung, Ambuj Tewari:

Online Boosting Algorithms for Multi-label Ranking. 279-287 - Sijia Liu, Jie Chen, Pin-Yu Chen, Alfred O. Hero III:

Zeroth-Order Online Alternating Direction Method of Multipliers: Convergence Analysis and Applications. 288-297 - Paul Rolland, Jonathan Scarlett, Ilija Bogunovic, Volkan Cevher

:
High-Dimensional Bayesian Optimization via Additive Models with Overlapping Groups. 298-307 - Jan Kremer, Fei Sha, Christian Igel:

Robust Active Label Correction. 308-316 - Amit Gruber, Chen Yanover, Tal El-Hay, Anders Sönnerborg, Vanni Borghi, Francesca Incardona, Yaara Goldschmidt:

Factorial HMMs with Collapsed Gibbs Sampling for Optimizing Long-term HIV Therapy. 317-326 - Pankaj Pansari, Chris Russell, M. Pawan Kumar:

Optimal Submodular Extensions for Marginal Estimation. 327-335 - Nir Rosenfeld, Amir Globerson:

Semi-Supervised Learning with Competitive Infection Models. 336-346 - Nir Rosenfeld, Yishay Mansour, Elad Yom-Tov:

Discriminative Learning of Prediction Intervals. 347-355 - Wenlin Wang, Zhe Gan, Wenqi Wang, Dinghan Shen, Jiaji Huang, Wei Ping, Sanjeev Satheesh, Lawrence Carin:

Topic Compositional Neural Language Model. 356-365 - Eric T. Nalisnick, Padhraic Smyth:

Learning Priors for Invariance. 366-375 - Scott Cheng-Hsin Yang, Yue Yu, Arash Givchi, Pei Wang, Wai Keen Vong, Patrick Shafto:

Optimal Cooperative Inference. 376-385 - David Liau, Zhao Song, Eric Price, Ger Yang:

Stochastic Multi-armed Bandits in Constant Space. 386-394 - Dehua Cheng, Natali Ruchansky, Yan Liu:

Matrix completability analysis via graph k-connectivity. 395-403 - Xiang Cheng, Fred (Farbod) Roosta, Stefan Palombo, Peter L. Bartlett, Michael W. Mahoney:

FLAG n' FLARE: Fast Linearly-Coupled Adaptive Gradient Methods. 404-414 - Riikka Huusari, Hachem Kadri, Cécile Capponi:

Multi-view Metric Learning in Vector-valued Kernel Spaces. 415-424 - William Herlands, Edward McFowland

, Andrew Gordon Wilson, Daniel B. Neill:
Gaussian Process Subset Scanning for Anomalous Pattern Detection in Non-iid Data. 425-434 - Jacopo Cavazza, Pietro Morerio, Benjamin D. Haeffele, Connor Lane, Vittorio Murino, René Vidal:

Dropout as a Low-Rank Regularizer for Matrix Factorization. 435-444 - Tianbao Yang, Zhe Li, Lijun Zhang:

A Simple Analysis for Exp-concave Empirical Minimization with Arbitrary Convex Regularizer. 445-453 - Masaaki Takada, Taiji Suzuki, Hironori Fujisawa:

Independently Interpretable Lasso: A New Regularizer for Sparse Regression with Uncorrelated Variables. 454-463 - Francesco Locatello, Rajiv Khanna, Joydeep Ghosh, Gunnar Rätsch:

Boosting Variational Inference: an Optimization Perspective. 464-472 - Aurélien Bellet, Rachid Guerraoui

, Mahsa Taziki, Marc Tommasi:
Personalized and Private Peer-to-Peer Machine Learning. 473-481 - Rose Yu, Max Guangyu Li, Yan Liu:

Tensor Regression Meets Gaussian Processes. 482-490 - Emanuel Laude, Tao Wu, Daniel Cremers:

A Nonconvex Proximal Splitting Algorithm under Moreau-Yosida Regularization. 491-499 - Vivek Kumar Bagaria, Govinda M. Kamath, Vasilis Ntranos, Martin J. Zhang, David Tse:

Medoids in Almost-Linear Time via Multi-Armed Bandits. 500-509 - Zhiyang Wang, Ruida Zhou, Cong Shen:

Regional Multi-Armed Bandits. 510-518 - Yang Cao, Liyan Xie, Yao Xie, Huan Xu:

Nearly second-order optimality of online joint detection and estimation via one-sample update schemes. 519-528 - Or Sharir, Amnon Shashua:

Sum-Product-Quotient Networks. 529-537 - Sunil Gupta, Alistair Shilton, Santu Rana, Svetha Venkatesh:

Exploiting Strategy-Space Diversity for Batch Bayesian Optimization. 538-547 - Stéphan Clémençon, François Portier:

Beating Monte Carlo Integration: a Nonasymptotic Study of Kernel Smoothing Methods. 548-556 - Michel Besserve, Naji Shajarisales, Bernhard Schölkopf, Dominik Janzing:

Group invariance principles for causal generative models. 557-565 - Nataliya Sokolovska, Yann Chevaleyre, Jean-Daniel Zucker:

A Provable Algorithm for Learning Interpretable Scoring Systems. 566-574 - Hyunjik Kim, Yee Whye Teh:

Scaling up the Automatic Statistician: Scalable Structure Discovery using Gaussian Processes. 575-584 - Shinsaku Sakaue, Masakazu Ishihata, Shin-ichi Minato:

Efficient Bandit Combinatorial Optimization Algorithm with Zero-suppressed Binary Decision Diagrams. 585-594 - Hejia Zhang, Po-Hsuan Chen, Peter J. Ramadge:

Transfer Learning on fMRI Datasets. 595-603 - Chaofan Chen, Cynthia Rudin:

An Optimization Approach to Learning Falling Rule Lists. 604-612 - Courtney Paquette, Hongzhou Lin, Dmitriy Drusvyatskiy, Julien Mairal, Zaïd Harchaoui:

Catalyst for Gradient-based Nonconvex Optimization. 613-622 - Hongteng Xu, Dixin Luo, Xu Chen, Lawrence Carin:

Benefits from Superposed Hawkes Processes. 623-631 - Julian Katz-Samuels, Clayton Scott:

Nonparametric Preference Completion. 632-641 - Mathieu Sinn, Ambrish Rawat:

Non-parametric estimation of Jensen-Shannon Divergence in Generative Adversarial Network training. 642-651 - Danica J. Sutherland, Heiko Strathmann, Michael Arbel, Arthur Gretton:

Efficient and principled score estimation with Nyström kernel exponential families. 652-660 - Liqun Chen, Shuyang Dai, Yunchen Pu, Erjin Zhou, Chunyuan Li, Qinliang Su, Changyou Chen, Lawrence Carin:

Symmetric Variational Autoencoder and Connections to Adversarial Learning. 661-669 - Sergey Bartunov, Dmitry P. Vetrov:

Few-shot Generative Modelling with Generative Matching Networks. 670-678 - Tianyu Li, Guillaume Rabusseau, Doina Precup:

Nonlinear Weighted Finite Automata. 679-688 - Hugh Salimbeni, Stefanos Eleftheriadis, James Hensman:

Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models. 689-697 - Iñigo Urteaga, Chris Wiggins:

Variational inference for the multi-armed contextual bandit. 698-706 - Robert M. Gower, Nicolas Le Roux, Francis R. Bach:

Tracking the gradients using the Hessian: A new look at variance reducing stochastic methods. 707-715 - Michal Derezinski, Manfred K. Warmuth:

Subsampling for Ridge Regression via Regularized Volume Sampling. 716-725 - Pavel Izmailov, Alexander Novikov, Dmitry Kropotov:

Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor Train Decomposition. 726-735 - Michal Derezinski, Dhruv Mahajan, S. Sathiya Keerthi, S. V. N. Vishwanathan, Markus Weimer:

Batch-Expansion Training: An Efficient Optimization Framework. 736-744 - Zi Wang, Clement Gehring, Pushmeet Kohli, Stefanie Jegelka:

Batched Large-scale Bayesian Optimization in High-dimensional Spaces. 745-754 - Feras Saad, Vikash Mansinghka:

Temporally-Reweighted Chinese Restaurant Process Mixtures for Clustering, Imputing, and Forecasting Multivariate Time Series. 755-764 - Renbo Zhao, Volkan Cevher

:
Stochastic Three-Composite Convex Minimization with a Linear Operator. 765-774 - Cynthia Rudin, Yining Wang:

Direct Learning to Rank And Rerank. 775-783 - Olivier Bachem, Mario Lucic, Silvio Lattanzi:

One-shot Coresets: The Case of k-Clustering. 784-792 - Lingfei Wu, Ian En-Hsu Yen, Jinfeng Yi, Fangli Xu, Qi Lei, Michael Witbrock:

Random Warping Series: A Random Features Method for Time-Series Embedding. 793-802 - Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh, Parijat Dube, Priya Nagpurkar:

Slow and Stale Gradients Can Win the Race: Error-Runtime Trade-offs in Distributed SGD. 803-812 - Futoshi Futami, Issei Sato, Masashi Sugiyama:

Variational Inference based on Robust Divergences. 813-822 - Aditya Grover, Ramki Gummadi, Miguel Lázaro-Gredilla, Dale Schuurmans, Stefano Ermon:

Variational Rejection Sampling. 823-832 - Aditya Grover, Todor M. Markov, Peter M. Attia, Norman Jin, Nicolas Perkins, Bryan Cheong, Michael H. Chen, Zi Yang, Stephen J. Harris, William C. Chueh, Stefano Ermon:

Best arm identification in multi-armed bandits with delayed feedback. 833-842 - Liyuan Xu, Junya Honda, Masashi Sugiyama:

A fully adaptive algorithm for pure exploration in linear bandits. 843-851 - Rajat Sen, Karthikeyan Shanmugam

, Sanjay Shakkottai:
Contextual Bandits with Stochastic Experts. 852-861 - Sven Schmit, Carlos Riquelme:

Human Interaction with Recommendation Systems. 862-870 - I (Eli) Chien, Chung-Yi Lin, I-Hsiang Wang:

Community Detection in Hypergraphs: Optimal Statistical Limit and Efficient Algorithms. 871-879 - Mathieu Blondel, Vivien Seguy, Antoine Rolet:

Smooth and Sparse Optimal Transport. 880-889 - Ilija Bogunovic, Junyao Zhao, Volkan Cevher

:
Robust Maximization of Non-Submodular Objectives. 890-899 - Patrick Blöbaum, Dominik Janzing, Takashi Washio, Shohei Shimizu, Bernhard Schölkopf:

Cause-Effect Inference by Comparing Regression Errors. 900-909 - Alexis Bellot, Mihaela van der Schaar:

Tree-based Bayesian Mixture Model for Competing Risks. 910-918 - Julien Pérolat, Bilal Piot, Olivier Pietquin:

Actor-Critic Fictitious Play in Simultaneous Move Multistage Games. 919-928 - Antonio Sutera, Célia Châtel, Gilles Louppe, Louis Wehenkel, Pierre Geurts:

Random Subspace with Trees for Feature Selection Under Memory Constraints. 929-937 - Jakob Runge:

Conditional independence testing based on a nearest-neighbor estimator of conditional mutual information. 938-947 - Tomi Silander, Janne Leppä-aho, Elias Jääsaari, Teemu Roos:

Quotient Normalized Maximum Likelihood Criterion for Learning Bayesian Network Structures. 948-957 - Achintya Kundu, Francis R. Bach, Chiranjib Bhattacharyya:

Convex Optimization over Intersection of Simple Sets: improved Convergence Rate Guarantees via an Exact Penalty Approach. i - Christian A. Naesseth, Scott W. Linderman, Rajesh Ranganath, David M. Blei:

Variational Sequential Monte Carlo. 968-977 - Masaaki Imaizumi, Takanori Maehara, Yuichi Yoshida:

Statistically Efficient Estimation for Non-Smooth Probability Densities. 978-987 - Xu Hu, Guillaume Obozinski:

SDCA-Powered Inexact Dual Augmented Lagrangian Method for Fast CRF Learning. 988-997 - Mathurin Massias, Olivier Fercoq, Alexandre Gramfort, Joseph Salmon:

Generalized Concomitant Multi-Task Lasso for Sparse Multimodal Regression. 998-1007 - Atsushi Nitanda, Taiji Suzuki:

Gradient Layer: Enhancing the Convergence of Adversarial Training for Generative Models. 1008-1016 - Jianqing Fan, Wenyan Gong, Chris Junchi Li, Qiang Sun:

Statistical Sparse Online Regression: A Diffusion Approximation Perspective. 1017-1026 - Fanhua Shang, Yuanyuan Liu, Kaiwen Zhou, James Cheng, Kelvin Kai Wing Ng, Yuichi Yoshida:

Guaranteed Sufficient Decrease for Stochastic Variance Reduced Gradient Optimization. 1027-1036 - Lawrence M. Murray, Daniel Lundén, Jan Kudlicka, David Broman, Thomas B. Schön:

Delayed Sampling and Automatic Rao-Blackwellization of Probabilistic Programs. 1037-1046 - Pritish Mohapatra, C. V. Jawahar, M. Pawan Kumar:

Learning to Round for Discrete Labeling Problems. 1047-1056 - Reinhard Heckel, Max Simchowitz, Kannan Ramchandran, Martin J. Wainwright:

Approximate ranking from pairwise comparisons. 1057-1066 - Michael C. Hughes, Gabriel Hope, Leah Weiner, Thomas H. McCoy Jr., Roy H. Perlis, Erik B. Sudderth, Finale Doshi-Velez:

Semi-Supervised Prediction-Constrained Topic Models. 1067-1076 - Yichen Wang, Evangelos A. Theodorou, Apurv Verma, Le Song:

A Stochastic Differential Equation Framework for Guiding Online User Activities in Closed Loop. 1077-1086 - Pan Xu, Tianhao Wang, Quanquan Gu:

Accelerated Stochastic Mirror Descent: From Continuous-time Dynamics to Discrete-time Algorithms. 1087-1096 - Xiao Zhang, Lingxiao Wang, Quanquan Gu:

A Unified Framework for Nonconvex Low-Rank plus Sparse Matrix Recovery. 1097-1107 - Hongyi Ding, Mohammad Emtiyaz Khan, Issei Sato, Masashi Sugiyama:

Bayesian Nonparametric Poisson-Process Allocation for Time-Sequence Modeling. 1108-1116 - Masayuki Karasuyama, Hiroshi Mamitsuka:

Factor Analysis on a Graph. 1117-1126 - Junxiang Chen, Yale Chang, Peter J. Castaldi, Michael H. Cho, Brian D. Hobbs, Jennifer G. Dy:

Crowdclustering with Partition Labels. 1127-1136 - Ruiyi Zhang, Chunyuan Li, Changyou Chen, Lawrence Carin:

Learning Structural Weight Uncertainty for Sequential Decision-Making. 1137-1146 - Jiahao Xie, Hui Qian, Zebang Shen, Chao Zhang:

Towards Memory-Friendly Deterministic Incremental Gradient Method. 1147-1156 - Hunter Lang, David A. Sontag, Aravindan Vijayaraghavan:

Optimality of Approximate Inference Algorithms on Stable Instances. 1157-1166 - Ho Chung Leon Law, Danica J. Sutherland, Dino Sejdinovic, Seth R. Flaxman:

Bayesian Approaches to Distribution Regression. 1167-1176 - Marko Mitrovic, Moran Feldman, Andreas Krause, Amin Karbasi:

Submodularity on Hypergraphs: From Sets to Sequences. 1177-1184 - Bowei Yan, Purnamrita Sarkar, Xiuyuan Cheng:

Provable Estimation of the Number of Blocks in Block Models. 1185-1194 - Michael T. Smith, Mauricio A. Álvarez, Max Zwiessele, Neil D. Lawrence:

Differentially Private Regression with Gaussian Processes. 1195-1203 - Sai Praneeth Reddy Karimireddy, Sebastian U. Stich, Martin Jaggi:

Adaptive balancing of gradient and update computation times using global geometry and approximate subproblems. 1204-1213 - Jakub M. Tomczak, Max Welling:

VAE with a VampPrior. 1214-1223 - Avi Pfeffer, Brian E. Ruttenberg, William Kretschmer, Alison O'Connor:

Structured Factored Inference for Probabilistic Programming. 1224-1232 - Sashank J. Reddi, Manzil Zaheer, Suvrit Sra, Barnabás Póczos, Francis R. Bach, Ruslan Salakhutdinov, Alexander J. Smola:

A Generic Approach for Escaping Saddle points. 1233-1242 - Nathan Kallus, Angela Zhou:

Policy Evaluation and Optimization with Continuous Treatments. 1243-1251 - Alan Lazarus, Dirk Husmeier, Theodore Papamarkou:

Multiphase MCMC Sampling for Parameter Inference in Nonlinear Ordinary Differential Equations. 1252-1260 - Xinkun Nie, Xiaoying Tian, Jonathan Taylor, James Zou:

Why Adaptively Collected Data Have Negative Bias and How to Correct for It. 1261-1269 - Sheng Chen, Arindam Banerjee:

Sparse Linear Isotonic Models. 1270-1279 - Jean-Yves Franceschi, Alhussein Fawzi, Omar Fawzi:

Robustness of classifiers to uniform $\ell_p$ and Gaussian noise. 1280-1288 - Xi Tan, Vinayak A. Rao, Jennifer Neville:

Nested CRP with Hawkes-Gaussian Processes. 1289-1298 - Huaian Diao, Zhao Song, Wen Sun, David P. Woodruff:

Sketching for Kronecker Product Regression and P-splines. 1299-1308 - Ardavan Saeedi, Matthew D. Hoffman, Stephen J. DiVerdi, Asma Ghandeharioun, Matthew J. Johnson, Ryan P. Adams:

Multimodal Prediction and Personalization of Photo Edits with Deep Generative Models. 1309-1317 - Chris Hickey, Graham Cormode:

Cheap Checking for Cloud Computing: Statistical Analysis via Annotated Data Streams. 1318-1326 - Shashank Singh, Barnabás Póczos, Jian Ma

:
Minimax Reconstruction Risk of Convolutional Sparse Dictionary Learning. 1327-1336 - Michael Arbel, Arthur Gretton:

Kernel Conditional Exponential Family. 1337-1346 - Chandrashekar Lakshminarayanan, Csaba Szepesvári:

Linear Stochastic Approximation: How Far Does Constant Step-Size and Iterate Averaging Go? 1347-1355 - Yining Wang, Simon S. Du, Sivaraman Balakrishnan, Aarti Singh:

Stochastic Zeroth-order Optimization in High Dimensions. 1356-1365 - Yuzhe Ma, Robert Nowak, Philippe Rigollet, Xuezhou Zhang, Xiaojin Zhu:

Teacher Improves Learning by Selecting a Training Subset. 1366-1375 - Penporn Koanantakool, Alnur Ali, Ariful Azad, Aydin Buluç, Dmitriy Morozov, Leonid Oliker, Katherine A. Yelick, Sang-Yun Oh

:
Communication-Avoiding Optimization Methods for Distributed Massive-Scale Sparse Inverse Covariance Estimation. 1376-1386 - Pranjal Awasthi, Bahman Kalantari, Yikai Zhang:

Robust Vertex Enumeration for Convex Hulls in High Dimensions. 1387-1396 - Taiji Suzuki:

Fast generalization error bound of deep learning from a kernel perspective. 1397-1406 - Jacob R. Gardner, Geoff Pleiss, Ruihan Wu, Kilian Q. Weinberger, Andrew Gordon Wilson:

Product Kernel Interpolation for Scalable Gaussian Processes. 1407-1416 - Mohammadreza Soltani, Chinmay Hegde:

Towards Provable Learning of Polynomial Neural Networks Using Low-Rank Matrix Estimation. 1417-1426 - Patrick Jähnichen, Florian Wenzel, Marius Kloft, Stephan Mandt:

Scalable Generalized Dynamic Topic Models. 1427-1435 - Michael Riis Andersen, Ole Winther, Lars Kai Hansen

, Russell A. Poldrack, Oluwasanmi Koyejo:
Bayesian Structure Learning for Dynamic Brain Connectivity. 1436-1446 - Mark Eisen, Aryan Mokhtari, Alejandro Ribeiro:

Large Scale Empirical Risk Minimization via Truncated Adaptive Newton Method. 1447-1455 - Gauthier Gidel, Fabian Pedregosa, Simon Lacoste-Julien:

Frank-Wolfe Splitting via Augmented Lagrangian Method. 1456-1465 - Asish Ghoshal, Jean Honorio

:
Learning linear structural equation models in polynomial time and sample complexity. 1466-1475 - Jerry Chee, Panos Toulis:

Convergence diagnostics for stochastic gradient descent with constant learning rate. 1476-1485 - Asish Ghoshal, Jean Honorio

:
Learning Sparse Polymatrix Games in Polynomial Time and Sample Complexity. 1486-1494 - Seung-Jean Kim, Johan Lim, Joong-Ho Won:

Nonparametric Sharpe Ratio Function Estimation in Heteroscedastic Regression Models via Convex Optimization. 1495-1504 - Brahim Khalil Abid, Robert M. Gower:

Stochastic algorithms for entropy-regularized optimal transport problems. 1505-1512 - Steffen Grünewälder:

Plug-in Estimators for Conditional Expectations and Probabilities. 1513-1521 - Francois Belletti, Alex Beutel, Sagar Jain, Ed Huai-hsin Chi:

Factorized Recurrent Neural Architectures for Longer Range Dependence. 1522-1530 - Yixi Xu, Jean Honorio

, Xiao Wang:
On the Statistical Efficiency of Compositional Nonparametric Prediction. 1531-1539 - Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang, Justin Bayer, Patrick van der Smagt

:
Metrics for Deep Generative Models. 1540-1550 - Marwa El Halabi, Francis R. Bach, Volkan Cevher

:
Combinatorial Penalties: Which structures are preserved by convex relaxations? 1551-1560 - Stephen Mussmann, Percy Liang:

Generalized Binary Search For Split-Neighborly Problems. 1561-1569 - Jussi Viinikka, Ralf Eggeling, Mikko Koivisto:

Intersection-Validation: A Method for Evaluating Structure Learning without Ground Truth. 1570-1578 - Debdeep Pati, Anirban Bhattacharya, Yun Yang:

On Statistical Optimality of Variational Bayes. 1579-1588 - Jason Ge, Zhaoran Wang, Mengdi Wang, Han Liu:

Minimax-Optimal Privacy-Preserving Sparse PCA in Distributed Systems. 1589-1598 - Shinji Ito, Daisuke Hatano, Hanna Sumita, Akihiro Yabe, Takuro Fukunaga, Naonori Kakimura, Ken-ichi Kawarabayashi:

Online Regression with Partial Information: Generalization and Linear Projection. 1599-1607 - Aude Genevay, Gabriel Peyré, Marco Cuturi:

Learning Generative Models with Sinkhorn Divergences. 1608-1617 - Scott W. Linderman, Gonzalo E. Mena, Hal James Cooper, Liam Paninski, John P. Cunningham:

Reparameterizing the Birkhoff Polytope for Variational Permutation Inference. 1618-1627 - Lirong Xue, Samory Kpotufe:

Achieving the time of 1-NN, but the accuracy of k-NN. 1628-1636 - Khan Mohammad Al Farabi, Somdeb Sarkhel, Deepak Venugopal:

Efficient Weight Learning in High-Dimensional Untied MLNs. 1637-1645 - Harikrishna Narasimhan:

Learning with Complex Loss Functions and Constraints. 1646-1654 - Saverio Salzo, Lorenzo Rosasco, Johan A. K. Suykens:

Solving lp-norm regularization with tensor kernels. 1655-1663 - Omer Gottesman, Weiwei Pan, Finale Doshi-Velez:

Weighted Tensor Decomposition for Learning Latent Variables with Partial Data. 1664-1672 - Eralp Turgay, Doruk Öner, Cem Tekin:

Multi-objective Contextual Bandit Problem with Similarity Information. 1673-1681 - Hong Ge, Kai Xu, Zoubin Ghahramani:

Turing: Composable inference for probabilistic programming. 1682-1690 - Beilun Wang, Arshdeep Sekhon, Yanjun Qi:

Fast and Scalable Learning of Sparse Changes in High-Dimensional Gaussian Graphical Model Structure. 1691-1700 - Sanket Kamthe, Marc Peter Deisenroth:

Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control. 1701-1710 - Bai Jiang:

Approximate Bayesian Computation with Kullback-Leibler Divergence as Data Discrepancy. 1711-1721 - Ruben Martinez-Cantin, Kevin Tee, Michael McCourt:

Practical Bayesian optimization in the presence of outliers. 1722-1731 - Mehryar Mohri, Scott Yang:

Competing with Automata-based Expert Sequences. 1732-1740 - Devavrat Shah, Christina E. Lee:

Reducing Crowdsourcing to Graphon Estimation, Statistically. 1741-1750 - Ershad Banijamali, Rui Shu, Mohammad Ghavamzadeh, Hung Bui, Ali Ghodsi:

Robust Locally-Linear Controllable Embedding. 1751-1759 - Karthik Abinav Sankararaman, Aleksandrs Slivkins:

Combinatorial Semi-Bandits with Knapsacks. 1760-1770 - David Alvarez-Melis, Tommi S. Jaakkola, Stefanie Jegelka:

Structured Optimal Transport. 1771-1780 - Shiqing Yu, Mathias Drton, Ali Shojaie:

Graphical Models for Non-Negative Data Using Generalized Score Matching. 1781-1790 - Bin Gu, Zhouyuan Huo, Heng Huang:

Asynchronous Doubly Stochastic Group Regularized Learning. 1791-1800 - Ching-An Cheng, Byron Boots:

Convergence of Value Aggregation for Imitation Learning. 1801-1809 - Dylan J. Foster, Karthik Sridharan, Daniel Reichman:

Inference in Sparse Graphs with Pairwise Measurements and Side Information. 1810-1818 - Arkabandhu Chowdhury, Christopher M. Jermaine:

Parallel and Distributed MCMC via Shepherding Distributions. 1819-1827 - Pedro Mercado, Antoine Gautier, Francesco Tudisco, Matthias Hein:

The Power Mean Laplacian for Multilayer Graph Clustering. 1828-1838 - Sumeet Katariya, Lalit K. Jain, Nandana Sengupta, James Evans, Robert Nowak:

Adaptive Sampling for Coarse Ranking. 1839-1848 - Ehsan Kazemi, Lin Chen, Sanjoy Dasgupta, Amin Karbasi:

Comparison Based Learning from Weak Oracles. 1849-1858 - Xuhui Fan, Bin Li, Scott A. Sisson:

The Binary Space Partitioning-Tree Process. 1859-1867 - Mihai Cucuringu, Hemant Tyagi:

On denoising modulo 1 samples of a function. 1868-1876 - Morteza Noshad, Alfred O. Hero III:

Scalable Hash-Based Estimation of Divergence Measures. 1877-1885 - Aryan Mokhtari, Hamed Hassani, Amin Karbasi:

Conditional Gradient Method for Stochastic Submodular Maximization: Closing the Gap. 1886-1895 - Lin Chen, Hamed Hassani, Amin Karbasi:

Online Continuous Submodular Maximization. 1896-1905 - Ferdian Jovan, Jeremy L. Wyatt, Nick Hawes:

Efficient Bayesian Methods for Counting Processes in Partially Observable Environments. 1906-1913 - Michael Shvartsman, Narayanan Sundaram, Mikio Aoi, Adam Charles, Theodore L. Willke, Jonathan D. Cohen:

Matrix-normal models for fMRI analysis. 1914-1923 - Jeffrey Pennington, Samuel S. Schoenholz, Surya Ganguli:

The emergence of spectral universality in deep networks. 1924-1932 - Matt Olfat, Anil Aswani:

Spectral Algorithms for Computing Fair Support Vector Machines. 1933-1942 - He Zhao, Piyush Rai, Lan Du, Wray L. Buntine:

Bayesian Multi-label Learning with Sparse Features and Labels, and Label Co-occurrences. 1943-1951 - Rahi Kalantari, Joydeep Ghosh, Mingyuan Zhou

:
Nonparametric Bayesian sparse graph linear dynamical systems. 1952-1960 - Jaan Altosaar, Rajesh Ranganath, David M. Blei:

Proximity Variational Inference. 1961-1969 - Yuxin Chen, Oisin Mac Aodha, Shihan Su, Pietro Perona, Yisong Yue:

Near-Optimal Machine Teaching via Explanatory Teaching Sets. 1970-1978 - Siddarth Srinivasan, Geoffrey J. Gordon, Byron Boots:

Learning Hidden Quantum Markov Models. 1979-1987 - Shiau Hong Lim, Gregory Calvez:

Labeled Graph Clustering via Projected Gradient Descent. 1988-1997 - Dong Yin, Ashwin Pananjady, Maximilian Lam, Dimitris S. Papailiopoulos, Kannan Ramchandran, Peter L. Bartlett:

Gradient Diversity: a Key Ingredient for Scalable Distributed Learning. 1998-2007 - Yuting Ye, Lihua Lei, Cheng Ju:

HONES: A Fast and Tuning-free Homotopy Method For Online Newton Step. 2008-2017 - Krzysztof Onak, Xiaorui Sun:

Probability-Revealing Samples. 2018-2026 - Tatsunori Hashimoto, Steve Yadlowsky, John C. Duchi:

Derivative Free Optimization Via Repeated Classification. 2027-2036 - Yanning Shen, Tianyi Chen, Georgios B. Giannakis:

Online Ensemble Multi-kernel Learning Adaptive to Non-stationary and Adversarial Environments. 2037-2046 - Chendi Huang, Yuan Yao:

A Unified Dynamic Approach to Sparse Model Selection. 2047-2055 - Costis Daskalakis, Christos Tzamos, Manolis Zampetakis

:
Bootstrapping EM via Power EM and Convergence in the Naive Bayes Model. 2056-2064 - Yingzhen Yang:

Dimensionality Reduced $\ell^{0}$-Sparse Subspace Clustering. 2065-2074

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














