


default search action
22nd AISTATS 2019: Naha, Okinawa, Japan
- Kamalika Chaudhuri, Masashi Sugiyama:

The 22nd International Conference on Artificial Intelligence and Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan. Proceedings of Machine Learning Research 89, PMLR 2019 - Fabian Pedregosa, Kilian Fatras, Mattia Casotto:

Proximal Splitting Meets Variance Reduction. 1-10 - Quan Geng, Wei Ding, Ruiqi Guo, Sanjiv Kumar:

Optimal Noise-Adding Mechanism in Additive Differential Privacy. 11-20 - Matey Neykov:

Tossing Coins Under Monotonicity. 21-30 - Matey Neykov:

Gaussian Regression with Convex Constraints. 31-38 - Adrian Rivera Cardoso, Huan Xu:

Risk-Averse Stochastic Convex Bandit. 39-47 - Antoine Dedieu:

Error bounds for sparse classifiers in high-dimensions. 48-56 - Alexis Bellot, Mihaela van der Schaar:

Boosting Transfer Learning with Survival Data from Heterogeneous Domains. 57-65 - Matthias Bauer, Andriy Mnih:

Resampled Priors for Variational Autoencoders. 66-75 - Marcel Hirt, Petros Dellaportas:

Scalable Bayesian Learning for State Space Models using Variational Inference with SMC Samplers. 76-86 - Ruiyi Zhang, Zheng Wen, Changyou Chen, Chen Fang, Tong Yu, Lawrence Carin:

Scalable Thompson Sampling via Optimal Transport. 87-96 - Emma Pierson, Pang Wei Koh, Tatsunori B. Hashimoto, Daphne Koller, Jure Leskovec, Nick Eriksson, Percy Liang:

Inferring Multidimensional Rates of Aging from Cross-Sectional Data. 97-107 - Junliang Du, Antonio R. Linero:

Interaction Detection with Bayesian Decision Tree Ensembles. 108-117 - Matt Barnes, Artur Dubrawski:

On the Interaction Effects Between Prediction and Clustering. 118-126 - Yibo Lin, Zhao Song, Lin F. Yang

:
Towards a Theoretical Understanding of Hashing-Based Neural Nets. 127-137 - Pan Zhou, Xiao-Tong Yuan, Jiashi Feng:

Faster First-Order Methods for Stochastic Non-Convex Optimization on Riemannian Manifolds. 138-147 - Yuan Zhou, Bradley J. Gram-Hansen, Tobias Kohn, Tom Rainforth, Hongseok Yang, Frank Wood:

LF-PPL: A Low-Level First Order Probabilistic Programming Language for Non-Differentiable Models. 148-157 - Gunwoong Park, Hyewon Park:

Identifiability of Generalized Hypergeometric Distribution (GHD) Directed Acyclic Graphical Models. 158-166 - Michalis K. Titsias, Francisco J. R. Ruiz:

Unbiased Implicit Variational Inference. 167-176 - Ilja Kuzborskij, Leonardo Cella, Nicolò Cesa-Bianchi:

Efficient Linear Bandits through Matrix Sketching. 177-185 - Mark Rowland, Jiri Hron, Yunhao Tang, Krzysztof Choromanski, Tamás Sarlós, Adrian Weller:

Orthogonal Estimation of Wasserstein Distances. 186-195 - Simon S. Du, Wei Hu:

Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave Saddle Point Problems without Strong Convexity. 196-205 - Shinsaku Sakaue:

Greedy and IHT Algorithms for Non-convex Optimization with Monotone Costs of Non-zeros. 206-215 - Hunter Lang, David A. Sontag, Aravindan Vijayaraghavan:

Block Stability for MAP Inference. 216-225 - Jiasen Yang, Vinayak A. Rao, Jennifer Neville:

A Stein-Papangelou Goodness-of-Fit Test for Point Processes. 226-235 - Krzysztof Choromanski, Aldo Pacchiano, Jeffrey Pennington, Yunhao Tang:

KAMA-NNs: Low-dimensional Rotation Based Neural Networks. 236-245 - Quentin Berthet, Varun Kanade:

Statistical Windows in Testing for the Initial Distribution of a Reversible Markov Chain. 246-255 - Joseph Tassarotti, Jean-Baptiste Tristan, Michael L. Wick:

Sketching for Latent Dirichlet-Categorical Models. 256-265 - Randy Ardywibowo, Guang Zhao, Zhangyang Wang, Bobak Mortazavi, Shuai Huang, Xiaoning Qian:

Adaptive Activity Monitoring with Uncertainty Quantification in Switching Gaussian Process Models. 266-275 - Rishabh K. Iyer, Jeffrey A. Bilmes:

Near Optimal Algorithms for Hard Submodular Programs with Discounted Cooperative Costs. 276-285 - Dan Garber, Atara Kaplan:

Fast Stochastic Algorithms for Low-rank and Nonsmooth Matrix Problems. 286-294 - Dan Garber:

Logarithmic Regret for Online Gradient Descent Beyond Strong Convexity. 295-303 - Filip Hanzely, Peter Richtárik:

Accelerated Coordinate Descent with Arbitrary Sampling and Best Rates for Minibatches. 304-312 - Bhaskar Mukhoty, Govind Gopakumar, Prateek Jain, Purushottam Kar:

Globally-convergent Iteratively Reweighted Least Squares for Robust Regression Problems. 313-322 - Alexandre Hollocou, Thomas Bonald, Marc Lelarge:

Modularity-based Sparse Soft Graph Clustering. 323-332 - Martin Jankowiak, Theofanis Karaletsos:

Pathwise Derivatives for Multivariate Distributions. 333-342 - Bo Liu, Xiao-Tong Yuan, Lezi Wang, Qingshan Liu, Junzhou Huang, Dimitris N. Metaxas:

Distributed Inexact Newton-type Pursuit for Non-convex Sparse Learning. 343-352 - Bo Chang, Shenyi Pan, Harry Joe:

Vine copula structure learning via Monte Carlo tree search. 353-361 - Jialin Dong, Yuanming Shi:

Blind Demixing via Wirtinger Flow with Random Initialization. 362-370 - Gaurush Hiranandani, Shant Boodaghians, Ruta Mehta, Oluwasanmi Koyejo:

Performance Metric Elicitation from Pairwise Classifier Comparisons. 371-379 - Alexander Jung, Natalia Vesselinova:

Analysis of Network Lasso for Semi-Supervised Regression. 380-387 - Nikos Kargas, Nicholas D. Sidiropoulos

:
Learning Mixtures of Smooth Product Distributions: Identifiability and Algorithm. 388-396 - Jie Shen, Pranjal Awasthi, Ping Li:

Robust Matrix Completion from Quantized Observations. 397-407 - Zelda Mariet, Vitaly Kuznetsov:

Foundations of Sequence-to-Sequence Modeling for Time Series. 408-417 - Yang Cao, Zheng Wen, Branislav Kveton, Yao Xie:

Nearly Optimal Adaptive Procedure with Change Detection for Piecewise-Stationary Bandit. 418-427 - Renbo Zhao, William B. Haskell, Vincent Y. F. Tan:

An Optimal Algorithm for Stochastic Three-Composite Optimization. 428-437 - Wang Chi Cheung, Vincent Y. F. Tan, Zixin Zhong:

A Thompson Sampling Algorithm for Cascading Bandits. 438-447 - Yi-Shan Wu, Po-An Wang, Chi-Jen Lu:

Lifelong Optimization with Low Regret. 448-456 - Parthe Pandit, Mojtaba Sahraee-Ardakan, Arash A. Amini, Sundeep Rangan, Alyson K. Fletcher:

Sparse Multivariate Bernoulli Processes in High Dimensions. 457-466 - Julian Zimmert, Yevgeny Seldin:

An Optimal Algorithm for Stochastic and Adversarial Bandits. 467-475 - Steven Kleinegesse

, Michael U. Gutmann:
Efficient Bayesian Experimental Design for Implicit Models. 476-485 - Leonard Adolphs, Hadi Daneshmand, Aurélien Lucchi, Thomas Hofmann:

Local Saddle Point Optimization: A Curvature Exploitation Approach. 486-495 - Alexander Marx, Jilles Vreeken:

Testing Conditional Independence on Discrete Data using Stochastic Complexity. 496-505 - Matthew Staib, Bryan Wilder, Stefanie Jegelka:

Distributionally Robust Submodular Maximization. 506-516 - Dixian Zhu, Zhe Li, Xiaoyu Wang, Boqing Gong, Tianbao Yang:

A Robust Zero-Sum Game Framework for Pool-based Active Learning. 517-526 - Fredrik D. Johansson, David A. Sontag, Rajesh Ranganath:

Support and Invertibility in Domain-Invariant Representations. 527-536 - Virginia Aglietti, Theodoros Damoulas, Edwin V. Bonilla:

Efficient Inference in Multi-task Cox Process Models. 537-546 - Emanuel Laude, Tao Wu, Daniel Cremers:

Optimization of Inf-Convolution Regularized Nonconvex Composite Problems. 547-556 - Bai Li, Changyou Chen, Hao Liu, Lawrence Carin:

On Connecting Stochastic Gradient MCMC and Differential Privacy. 557-566 - Brandon Carter, Jonas Mueller, Siddhartha Jain, David K. Gifford:

What made you do this? Understanding black-box decisions with sufficient input subsets. 567-576 - Sinong Wang, Jiashang Liu, Ness B. Shroff, Pengyu Yang:

Computation Efficient Coded Linear Transform. 577-585 - Oren Mangoubi, Aaron Smith:

Mixing of Hamiltonian Monte Carlo on strongly log-concave distributions 2: Numerical integrators. 586-595 - Changhee Lee, William R. Zame, Ahmed M. Alaa, Mihaela van der Schaar:

Temporal Quilting for Survival Analysis. 596-605 - Mathieu Blondel, André F. T. Martins, Vlad Niculae:

Learning Classifiers with Fenchel-Young Losses: Generalized Entropies, Margins, and Algorithms. 606-615 - Yitong Li, Michael Murias, Samantha Major, Geraldine Dawson, David E. Carlson:

On Target Shift in Adversarial Domain Adaptation. 616-625 - Sven Schmit, Virag Shah, Ramesh Johari:

Optimal Testing in the Experiment-rich Regime. 626-633 - David A. Roberts, Marcus Gallagher, Thomas Taimre:

Reversible Jump Probabilistic Programming. 634-643 - Akifumi Okuno, Geewook Kim, Hidetoshi Shimodaira:

Graph Embedding with Shifted Inner Product Similarity and Its Improved Approximation Capability. 644-653 - Huijie Feng, Yang Ning:

High-dimensional Mixed Graphical Model with Ordinal Data: Parameter Estimation and Statistical Inference. 654-663 - Akifumi Okuno, Hidetoshi Shimodaira:

Robust Graph Embedding with Noisy Link Weights. 664-673 - Yue Yu, Jiaxiang Wu, Junzhou Huang:

Exploring Fast and Communication-Efficient Algorithms in Large-Scale Distributed Networks. 674-683 - Yuchen Zhang, Percy Liang:

Defending against Whitebox Adversarial Attacks via Randomized Discretization. 684-693 - Shun-ichi Amari, Ryo Karakida, Masafumi Oizumi:

Fisher Information and Natural Gradient Learning in Random Deep Networks. 694-702 - Matthew J. Holland:

Robust descent using smoothed multiplicative noise. 703-711 - Matthew J. Holland:

Classification using margin pursuit. 712-720 - Raef Bassily:

Linear Queries Estimation with Local Differential Privacy. 721-729 - Georgi Dikov, Justin Bayer:

Bayesian Learning of Neural Network Architectures. 730-738 - Raghu Bollapragada, Damien Scieur, Alexandre d'Aspremont:

Nonlinear Acceleration of Primal-Dual Algorithms. 739-747 - Ieva Kazlauskaite, Carl Henrik Ek, Neill D. F. Campbell:

Gaussian Process Latent Variable Alignment Learning. 748-757 - Juho Lee, Lancelot F. James, Seungjin Choi, Francois Caron:

A Bayesian model for sparse graphs with flexible degree distribution and overlapping community structure. 758-767 - Gaël Letarte, Emilie Morvant, Pascal Germain:

Pseudo-Bayesian Learning with Kernel Fourier Transform as Prior. 768-776 - Luca Ambrogioni, Umut Güçlü, Julia Berezutskaya, Eva W. P. van den Borne, Yagmur Güçlütürk, Max Hinne, Eric Maris, Marcel van Gerven:

Forward Amortized Inference for Likelihood-Free Variational Marginalization. 777-786 - Luca Ambrogioni, Patrick Ebel, Max Hinne, Umut Güçlü, Marcel van Gerven, Eric Maris:

SpikeCaKe: Semi-Analytic Nonparametric Bayesian Inference for Spike-Spike Neuronal Connectivity. 787-795 - Jonathan H. Huggins, Trevor Campbell, Mikolaj Kasprzak, Tamara Broderick:

Scalable Gaussian Process Inference with Finite-data Mean and Variance Guarantees. 796-805 - Jonas Moritz Kohler, Hadi Daneshmand, Aurélien Lucchi, Thomas Hofmann, Ming Zhou, Klaus Neymeyr:

Exponential convergence rates for Batch Normalization: The power of length-direction decoupling in non-convex optimization. 806-815 - Hanyu Shi, Martin Gerlach, Isabel Diersen, Doug Downey, Luis A. Nunes Amaral:

A new evaluation framework for topic modeling algorithms based on synthetic corpora. 816-826 - Zoltán Szabó, Bharath K. Sriperumbudur:

On Kernel Derivative Approximation with Random Fourier Features. 827-836 - George Papamakarios, David C. Sterratt, Iain Murray:

Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows. 837-848 - Ievgen Redko, Nicolas Courty, Rémi Flamary, Devis Tuia:

Optimal Transport for Multi-source Domain Adaptation under Target Shift. 849-858 - Aapo Hyvärinen, Hiroaki Sasaki, Richard E. Turner:

Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive Learning. 859-868 - Masaaki Imaizumi, Kenji Fukumizu:

Deep Neural Networks Learn Non-Smooth Functions Effectively. 869-878 - Sunipa Dev, Jeff M. Phillips:

Attenuating Bias in Word vectors. 879-887 - Tengyuan Liang, Tomaso A. Poggio, Alexander Rakhlin, James Stokes:

Fisher-Rao Metric, Geometry, and Complexity of Neural Networks. 888-896 - Hadrien Hendrikx, Francis R. Bach, Laurent Massoulié:

Accelerated Decentralized Optimization with Local Updates for Smooth and Strongly Convex Objectives. 897-906 - Tengyuan Liang, James Stokes:

Interaction Matters: A Note on Non-asymptotic Local Convergence of Generative Adversarial Networks. 907-915 - Zhehui Chen, Xingguo Li, Lin Yang, Jarvis D. Haupt, Tuo Zhao:

On Constrained Nonconvex Stochastic Optimization: A Case Study for Generalized Eigenvalue Decomposition. 916-925 - Yingru Liu, Dongliang Xie, Xin Wang:

Generalized Boltzmann Machine with Deep Neural Structure. 926-934 - Jiong Zhang, Parameswaran Raman, Shihao Ji, Hsiang-Fu Yu, S. V. N. Vishwanathan, Inderjit S. Dhillon:

Extreme Stochastic Variational Inference: Distributed Inference for Large Scale Mixture Models. 935-943 - Michal Derezinski, Manfred K. Warmuth, Daniel Hsu:

Correcting the bias in least squares regression with volume-rescaled sampling. 944-953 - Sumeet Katariya, Branislav Kveton, Zheng Wen, Vamsi K. Potluru:

Conservative Exploration using Interleaving. 954-963 - Jalil Taghia, Thomas B. Schön:

Conditionally Independent Multiresolution Gaussian Processes. 964-973 - Jean Tarbouriech, Alessandro Lazaric:

Active Exploration in Markov Decision Processes. 974-982 - Xiaoyu Li, Francesco Orabona:

On the Convergence of Stochastic Gradient Descent with Adaptive Stepsizes. 983-992 - Bingcong Li, Tianyi Chen, Georgios B. Giannakis:

Bandit Online Learning with Unknown Delays. 993-1002 - Yingyi Ma, Vignesh Ganapathiraman, Xinhua Zhang:

Learning Invariant Representations with Kernel Warping. 1003-1012 - Yu Chen, Telmo de Menezes e Silva Filho, Ricardo B. C. Prudêncio, Tom Diethe, Peter A. Flach:

$β^3$-IRT: A New Item Response Model and its Applications. 1013-1021 - Peter Schulam, Suchi Saria:

Can You Trust This Prediction? Auditing Pointwise Reliability After Learning. 1022-1031 - Ryo Karakida, Shotaro Akaho, Shun-ichi Amari:

Universal Statistics of Fisher Information in Deep Neural Networks: Mean Field Approach. 1032-1041 - John Hainline, Brendan Juba, Hai S. Le, David P. Woodruff:

Conditional Sparse $L_p$-norm Regression With Optimal Probability. 1042-1050 - Marco Mondelli, Andrea Montanari:

On the Connection Between Learning Two-Layer Neural Networks and Tensor Decomposition. 1051-1060 - Pierre Laforgue, Stéphan Clémençon, Florence d'Alché-Buc:

Autoencoding any Data through Kernel Autoencoders. 1061-1069 - Yifan Wu, Barnabás Póczos, Aarti Singh:

Towards Understanding the Generalization Bias of Two Layer Convolutional Linear Classifiers with Gradient Descent. 1070-1078 - Wang Chi Cheung, David Simchi-Levi, Ruihao Zhu:

Learning to Optimize under Non-Stationarity. 1079-1087 - Mihai Cucuringu, Peter Davies, Aldo Glielmo, Hemant Tyagi:

SPONGE: A generalized eigenproblem for clustering signed networks. 1088-1098 - Hongyang Zhang, Junru Shao, Ruslan Salakhutdinov:

Deep Neural Networks with Multi-Branch Architectures Are Intrinsically Less Non-Convex. 1099-1109 - Yifan Sun, Halyun Jeong, Julie Nutini, Mark Schmidt:

Are we there yet? Manifold identification of gradient-related proximal methods. 1110-1119 - Jayadev Acharya, Ziteng Sun, Huanyu Zhang:

Hadamard Response: Estimating Distributions Privately, Efficiently, and with Little Communication. 1120-1129 - Jingyu He, Saar Yalov, P. Richard Hahn:

XBART: Accelerated Bayesian Additive Regression Trees. 1130-1138 - Ryan Giordano, William T. Stephenson, Runjing Liu, Michael I. Jordan, Tamara Broderick:

A Swiss Army Infinitesimal Jackknife. 1139-1147 - Daniel T. Zhang, Young Hun Jung, Ambuj Tewari:

Online Multiclass Boosting with Bandit Feedback. 1148-1156 - Shuyang Gao, Rob Brekelmans, Greg Ver Steeg, Aram Galstyan:

Auto-Encoding Total Correlation Explanation. 1157-1166 - Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel, Bo Li, Ce Zhang, Dawn Song, Costas J. Spanos:

Towards Efficient Data Valuation Based on the Shapley Value. 1167-1176 - Rafael Oliveira, Lionel Ott, Fabio Ramos:

Bayesian optimisation under uncertain inputs. 1177-1184 - Seyoon Ko, Joong-Ho Won:

Optimal Minimization of the Sum of Three Convex Functions with a Linear Operator. 1185-1194 - Sharan Vaswani, Francis R. Bach, Mark Schmidt:

Fast and Faster Convergence of SGD for Over-Parameterized Models and an Accelerated Perceptron. 1195-1204 - Tasuku Soma:

No-regret algorithms for online k-submodular maximization. 1205-1214 - Qian Yu, Songze Li, Netanel Raviv, Seyed Mohammadreza Mousavi Kalan, Mahdi Soltanolkotabi

, Amir Salman Avestimehr:
Lagrange Coded Computing: Optimal Design for Resiliency, Security, and Privacy. 1215-1225 - Yu-Xiang Wang, Borja Balle, Shiva Prasad Kasiviswanathan:

Subsampled Renyi Differential Privacy and Analytical Moments Accountant. 1226-1235 - Jalal Fadili, Guillaume Garrigos, Jérôme Malick, Gabriel Peyré:

Model Consistency for Learning with Mirror-Stratifiable Regularizers. 1236-1244 - Kevin Bascol, Rémi Emonet, Élisa Fromont, Amaury Habrard, Guillaume Metzler, Marc Sebban:

From Cost-Sensitive to Tight F-measure Bounds. 1245-1253 - Shunsuke Kamiya, Ryuhei Miyashiro, Yuichi Takano:

Feature subset selection for the multinomial logit model via mixed-integer optimization. 1254-1263 - Jian Zhang, Avner May, Tri Dao, Christopher Ré:

Low-Precision Random Fourier Features for Memory-constrained Kernel Approximation. 1264-1274 - Thomas Kerdreux, Alexandre d'Aspremont, Sebastian Pokutta:

Restarting Frank-Wolfe. 1275-1283 - Hiroshi Inoue:

Adaptive Ensemble Prediction for Deep Neural Networks based on Confidence Level. 1284-1293 - Romain Brault, Alex Lambert, Zoltán Szabó, Maxime Sangnier, Florence d'Alché-Buc:

Infinite Task Learning in RKHSs. 1294-1302 - Quentin Berthet, Jordan S. Ellenberg:

Detection of Planted Solutions for Flat Satisfiability Problems. 1303-1312 - Kayvan Sadeghi, Alessandro Rinaldo:

Markov Properties of Discrete Determinantal Point Processes. 1313-1321 - Alihan Hüyük, Cem Tekin:

Analysis of Thompson Sampling for Combinatorial Multi-armed Bandit with Probabilistically Triggered Arms. 1322-1330 - Wojciech M. Czarnecki, Razvan Pascanu, Simon Osindero, Siddhant M. Jayakumar, Grzegorz Swirszcz, Max Jaderberg:

Distilling Policy Distillation. 1331-1340 - Clarice Poon, Nicolas Keriven, Gabriel Peyré:

Support Localization and the Fisher Metric for off-the-grid Sparse Regularization. 1341-1350 - Philippe Wenk, Alkis Gotovos, Stefan Bauer, Nico S. Gorbach, Andreas Krause, Joachim M. Buhmann:

Fast Gaussian process based gradient matching for parameter identification in systems of nonlinear ODEs. 1351-1360 - Julius von Kügelgen, Alexander Mey

, Marco Loog:
Semi-Generative Modelling: Covariate-Shift Adaptation with Cause and Effect Features. 1361-1369 - Alnur Ali, J. Zico Kolter, Ryan J. Tibshirani:

A Continuous-Time View of Early Stopping for Least Squares Regression. 1370-1378 - Dan Kushnir, Shirin Jalali, Iraj Saniee:

Towards Clustering High-dimensional Gaussian Mixture Clouds in Linear Running Time. 1379-1387 - Angelo Porrello, Davide Abati, Simone Calderara, Rita Cucchiara:

Classifying Signals on Irregular Domains via Convolutional Cluster Pooling. 1388-1397 - Deborah Cohen, Amit Daniely, Amir Globerson, Gal Elidan:

Learning Rules-First Classifiers. 1398-1406 - Hicham Janati, Marco Cuturi, Alexandre Gramfort:

Wasserstein regularization for sparse multi-task regression. 1407-1416 - Atsushi Nitanda, Taiji Suzuki:

Stochastic Gradient Descent with Exponential Convergence Rates of Expected Classification Errors. 1417-1426 - Anthony Tompkins, Ransalu Senanayake, Philippe Morere, Fabio Ramos:

Black Box Quantiles for Kernel Learning. 1427-1437 - Gilles Louppe, Joeri Hermans, Kyle Cranmer:

Adversarial Variational Optimization of Non-Differentiable Simulators. 1438-1447 - Filip de Roos, Philipp Hennig:

Active Probabilistic Inference on Matrices for Pre-Conditioning in Stochastic Optimization. 1448-1457 - Kfir Y. Levy, Andreas Krause:

Projection Free Online Learning over Smooth Sets. 1458-1466 - Tongfei Chen, Jirí Navrátil, Vijay S. Iyengar, Karthikeyan Shanmugam

:
Confidence Scoring Using Whitebox Meta-models with Linear Classifier Probes. 1467-1475 - Ming Yu, Varun Gupta, Mladen Kolar:

Learning Influence-Receptivity Network Structure with Guarantee. 1476-1485 - Jungseul Ok, Sewoong Oh, Yunhun Jang, Jinwoo Shin, Yung Yi:

Iterative Bayesian Learning for Crowdsourced Regression. 1486-1495 - Yuanxin Li, Cong Ma, Yuxin Chen, Yuejie Chi:

Nonconvex Matrix Factorization from Rank-One Measurements. 1496-1505 - Georgios Arvanitidis, Søren Hauberg, Philipp Hennig, Michael Schober:

Fast and Robust Shortest Paths on Manifolds Learned from Data. 1506-1515 - Peter O'Connor, Efstratios Gavves, Max Welling:

Training a Spiking Neural Network with Equilibrium Propagation. 1516-1523 - Xiao Zhang, Yaodong Yu, Lingxiao Wang, Quanquan Gu:

Learning One-hidden-layer ReLU Networks via Gradient Descent. 1524-1534 - Matias I. Müller, Cristian R. Rojas:

Gain estimation of linear dynamical systems using Thompson Sampling. 1535-1543 - Shengyu Zhu, Biao Chen, Pengfei Yang, Zhitang Chen:

Universal Hypothesis Testing with Kernels: Asymptotically Optimal Tests for Goodness of Fit. 1544-1553 - Gia-Lac Tran, Edwin V. Bonilla, John P. Cunningham, Pietro Michiardi, Maurizio Filippone:

Calibrating Deep Convolutional Gaussian Processes. 1554-1563 - Pierre Ablin, Alexandre Gramfort, Jean-François Cardoso, Francis R. Bach:

Stochastic algorithms with descent guarantees for ICA. 1564-1573 - Aude Genevay, Lénaïc Chizat, Francis R. Bach, Marco Cuturi, Gabriel Peyré:

Sample Complexity of Sinkhorn Divergences. 1574-1583 - Yanzhi Chen, Michael U. Gutmann:

Adaptive Gaussian Copula ABC. 1584-1592 - Julian Katz-Samuels, Clayton Scott:

Top Feasible Arm Identification. 1593-1601 - Kaiwen Zhou, Qinghua Ding, Fanhua Shang, James Cheng, Danli Li, Zhi-Quan Luo:

Direct Acceleration of SAGA using Sampled Negative Momentum. 1602-1610 - Mikhail Belkin, Alexander Rakhlin, Alexandre B. Tsybakov:

Does data interpolation contradict statistical optimality? 1611-1619 - Charlie Nash, Nate Kushman, Christopher K. I. Williams:

Inverting Supervised Representations with Autoregressive Neural Density Models. 1620-1629 - Guillaume Rabusseau, Tianyu Li, Doina Precup:

Connecting Weighted Automata and Recurrent Neural Networks through Spectral Learning. 1630-1639 - Feras A. Saad, Cameron E. Freer, Nathanael L. Ackerman, Vikash K. Mansinghka:

A Family of Exact Goodness-of-Fit Tests for High-Dimensional Discrete Distributions. 1640-1649 - Adrian Rivera Cardoso, Rachel Cummings:

Differentially Private Online Submodular Minimization. 1650-1658 - Shrinu Kushagra, Shai Ben-David, Ihab F. Ilyas:

Semi-supervised clustering for de-duplication. 1659-1667 - Pierre Perrault, Vianney Perchet, Michal Valko:

Finding the bandit in a graph: Sequential search-and-stop. 1668-1677 - Steve Hanneke, Liu Yang:

Statistical Learning under Nonstationary Mixing Processes. 1678-1686 - Ralf Eggeling, Jussi Viinikka, Aleksis Vuoksenmaa, Mikko Koivisto:

On Structure Priors for Learning Bayesian Networks. 1687-1695 - Alexander Bauer, Shinichi Nakajima, Nico Görnitz, Klaus-Robert Müller:

Partial Optimality of Dual Decomposition for MAP Inference in Pairwise MRFs. 1696-1703 - Alexander F. Lapanowski, Irina Gaynanova:

Sparse Feature Selection in Kernel Discriminant Analysis via Optimal Scoring. 1704-1713 - Nagarajan Natarajan, Danny Simmons, Naren Datha, Prateek Jain, Sumit Gulwani:

Learning Natural Programs from a Few Examples in Real-Time. 1714-1722 - Amirreza Shaban, Ching-An Cheng, Nathan Hatch, Byron Boots:

Truncated Back-propagation for Bilevel Optimization. 1723-1732 - Victor Veitch, Morgane Austern, Wenda Zhou, David M. Blei, Peter Orbanz:

Empirical Risk Minimization and Stochastic Gradient Descent for Relational Data. 1733-1742 - Topi Paananen, Juho Piironen

, Michael Riis Andersen, Aki Vehtari:
Variable selection for Gaussian processes via sensitivity analysis of the posterior predictive distribution. 1743-1752 - Ondrej Kuzelka, Vyacheslav Kungurtsev:

Lifted Weight Learning of Markov Logic Networks Revisited. 1753-1761 - Ruibo Tu, Cheng Zhang, Paul Ackermann, Karthika Mohan, Hedvig Kjellström, Kun Zhang:

Causal Discovery in the Presence of Missing Data. 1762-1770 - Konstantinos E. Nikolakakis, Dionysios S. Kalogerias, Anand D. Sarwate:

Learning Tree Structures from Noisy Data. 1771-1782 - Andrea Locatelli, Alexandra Carpentier, Michal Valko:

Active multiple matrix completion with adaptive confidence sets. 1783-1791 - Shikhar Vashishth, Prateek Yadav, Manik Bhandari, Partha P. Talukdar:

Confidence-based Graph Convolutional Networks for Semi-Supervised Learning. 1792-1801 - Gauthier Gidel, Reyhane Askari Hemmat, Mohammad Pezeshki, Rémi Le Priol, Gabriel Huang, Simon Lacoste-Julien, Ioannis Mitliagkas:

Negative Momentum for Improved Game Dynamics. 1802-1811 - Pashupati Hegde, Markus Heinonen, Harri Lähdesmäki, Samuel Kaski:

Deep learning with differential Gaussian process flows. 1812-1821 - Raj Agrawal, Trevor Campbell, Jonathan H. Huggins, Tamara Broderick:

Data-dependent compression of random features for large-scale kernel approximation. 1822-1831 - Hyunghoon Cho, Benjamin Demeo, Jian Peng, Bonnie Berger:

Large-Margin Classification in Hyperbolic Space. 1832-1840 - Pei Wang, Pushpi Paranamana, Patrick Shafto:

Generalizing the theory of cooperative inference. 1841-1850 - Stephen Pasteris, Fabio Vitale, Kevin S. Chan, Shiqiang Wang, Mark Herbster:

MaxHedge: Maximizing a Maximum Online. 1851-1859 - James Requeima, William Tebbutt, Wessel P. Bruinsma, Richard E. Turner:

The Gaussian Process Autoregressive Regression Model (GPAR). 1860-1869 - David Alvarez-Melis, Stefanie Jegelka, Tommi S. Jaakkola:

Towards Optimal Transport with Global Invariances. 1870-1879 - Edouard Grave, Armand Joulin, Quentin Berthet:

Unsupervised Alignment of Embeddings with Wasserstein Procrustes. 1880-1890 - Onur Atan, William R. Zame, Mihaela van der Schaar:

Sequential Patient Recruitment and Allocation for Adaptive Clinical Trials. 1891-1900 - Jan Gasthaus, Konstantinos Benidis, Yuyang Wang, Syama Sundar Rangapuram, David Salinas, Valentin Flunkert, Tim Januschowski:

Probabilistic Forecasting with Spline Quantile Function RNNs. 1901-1910 - Sudeep Raja Putta, Abhishek Shetty:

Exponential Weights on the Hypercube in Polynomial Time. 1911-1919 - Alex Nowak-Vila, Francis R. Bach, Alessandro Rudi:

Sharp Analysis of Learning with Discrete Losses. 1920-1929 - Nikhil Garg, Ramesh Johari:

Designing Optimal Binary Rating Systems. 1930-1939 - Sashank J. Reddi, Satyen Kale, Felix X. Yu, Daniel Niels Holtmann-Rice, Jiecao Chen, Sanjiv Kumar:

Stochastic Negative Mining for Learning with Large Output Spaces. 1940-1949 - Weihao Gao, Ashok Vardhan Makkuva, Sewoong Oh, Pramod Viswanath:

Learning One-hidden-layer Neural Networks under General Input Distributions. 1950-1959 - Zachary Charles, Harrison Rosenberg, Dimitris S. Papailiopoulos:

A Geometric Perspective on the Transferability of Adversarial Directions. 1960-1968 - Mauricio A. Álvarez, Wil O. C. Ward, Cristian Guarnizo:

Non-linear process convolutions for multi-output Gaussian processes. 1969-1977 - Prateek Yadav, Madhav Nimishakavi, Naganand Yadati, Shikhar Vashishth, Arun Rajkumar, Partha Pratim Talukdar:

Lovasz Convolutional Networks. 1978-1987 - Rémy Degenne, Thomas Nedelec, Clément Calauzènes, Vianney Perchet:

Bridging the gap between regret minimization and best arm identification, with application to A/B tests. 1988-1996 - Andrés F. López-Lopera, S. T. John, Nicolas Durrande:

Gaussian Process Modulated Cox Processes under Linear Inequality Constraints. 1997-2006 - Chun-Liang Li, Wei-Cheng Chang, Youssef Mroueh, Yiming Yang, Barnabás Póczos:

Implicit Kernel Learning. 2007-2016 - Pier Giuseppe Sessa, Maryam Kamgarpour, Andreas Krause:

Bounding Inefficiency of Equilibria in Continuous Actions Games using Submodularity and Curvature. 2017-2027 - Jason Pacheco, John W. Fisher III:

Variational Information Planning for Sequential Decision Making. 2028-2036 - Chen Chen, Jaewoo Lee, Dan Kifer

:
Renyi Differentially Private ERM for Smooth Objectives. 2037-2046 - Lin Chen, Mingrui Zhang, Amin Karbasi:

Projection-Free Bandit Convex Optimization. 2047-2056 - Francesco Croce, Maksym Andriushchenko, Matthias Hein:

Provable Robustness of ReLU networks via Maximization of Linear Regions. 2057-2066 - Jayadev Acharya, Clément L. Canonne, Cody Freitag, Himanshu Tyagi:

Test without Trust: Optimal Locally Private Distribution Testing. 2067-2076 - Mehrdad Ghadiri, Mark Schmidt:

Distributed Maximization of "Submodular plus Diversity" Functions for Multi-label Feature Selection on Huge Datasets. 2077-2086 - Amit Deshpande, Anand Louis, Apoorv Vikram Singh:

On Euclidean k-Means Clustering with alpha-Center Proximity. 2087-2095 - Rajat Sen, Kirthevasan Kandasamy, Sanjay Shakkottai:

Noisy Blackbox Optimization using Multi-fidelity Queries: A Tree Search Approach. 2096-2105 - Ilnura Usmanova, Andreas Krause, Maryam Kamgarpour:

Safe Convex Learning under Uncertain Constraints. 2106-2114 - Noureddine El Karoui, Elizabeth Purdom:

The non-parametric bootstrap and spectral analysis in moderate and high-dimension. 2115-2124 - Jaime Roquero Gimenez, Amirata Ghorbani, James Y. Zou:

Knockoffs for the Mass: New Feature Importance Statistics with False Discovery Guarantees. 2125-2133 - Rui Shu, Hung H. Bui, Jay Whang, Stefano Ermon:

Training Variational Autoencoders with Buffered Stochastic Variational Inference. 2134-2143 - Xavier Fontaine, Quentin Berthet, Vianney Perchet:

Regularized Contextual Bandits. 2144-2153 - Jonathan Lacotte, Mohammad Ghavamzadeh, Yinlam Chow, Marco Pavone:

Risk-Sensitive Generative Adversarial Imitation Learning. 2154-2163 - Jiaming Song, Pratyusha Kalluri, Aditya Grover, Shengjia Zhao, Stefano Ermon:

Learning Controllable Fair Representations. 2164-2173 - Alex Bird, Christopher K. I. Williams, Christopher Hawthorne:

Multi-Task Time Series Analysis applied to Drug Response Modelling. 2174-2183 - Jaime Roquero Gimenez, James Y. Zou:

Improving the Stability of the Knockoff Procedure: Multiple Simultaneous Knockoffs and Entropy Maximization. 2184-2192 - Arno Solin, Manon Kok:

Know Your Boundaries: Constraining Gaussian Processes by Variational Harmonic Features. 2193-2202 - Marc G. Bellemare, Nicolas Le Roux, Pablo Samuel Castro, Subhodeep Moitra:

Distributional reinforcement learning with linear function approximation. 2203-2211 - Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Sergei Vassilvitskii:

Matroids, Matchings, and Fairness. 2212-2220 - Wojciech Tarnowski, Piotr Warchol, Stanislaw Jastrzebski, Jacek Tabor, Maciej A. Nowak:

Dynamical Isometry is Achieved in Residual Networks in a Universal Way for any Activation Function. 2221-2230 - Anna Harutyunyan, Will Dabney, Diana Borsa, Nicolas Heess, Rémi Munos, Doina Precup:

The Termination Critic. 2231-2240 - Mohammad Reza Karimi Jaghargh, Andreas Krause, Silvio Lattanzi, Sergei Vassilvitskii:

Consistent Online Optimization: Convex and Submodular. 2241-2250 - Zelda Mariet, Mike Gartrell, Suvrit Sra:

Learning Determinantal Point Processes by Corrective Negative Sampling. 2251-2260 - Emilien Dupont, Suhas Suresha:

Probabilistic Semantic Inpainting with Pixel Constrained CNNs. 2261-2270 - Sun Sun, Yaoliang Yu:

Least Squares Estimation of Weakly Convex Functions. 2271-2280 - Nathan Kallus, Xiaojie Mao, Angela Zhou:

Interval Estimation of Individual-Level Causal Effects Under Unobserved Confounding. 2281-2290 - Linfeng Liu, Liping Liu:

Amortized Variational Inference with Graph Convolutional Networks for Gaussian Processes. 2291-2300 - Rui Xie, Zengyan Wang, Shuyang Bai, Ping Ma, Wenxuan Zhong:

Online Decentralized Leverage Score Sampling for Streaming Multidimensional Time Series. 2301-2311 - Matthieu Clertant, Nataliya Sokolovska, Yann Chevaleyre, Blaise Hanczar:

Interpretable Cascade Classifiers with Abstention. 2312-2320 - Bo Dai, Hanjun Dai, Arthur Gretton, Le Song, Dale Schuurmans, Niao He:

Kernel Exponential Family Estimation via Doubly Dual Embedding. 2321-2330 - Arun Sai Suggala, Adarsh Prasad, Vaishnavh Nagarajan, Pradeep Ravikumar:

Revisiting Adversarial Risk. 2331-2339 - Rishabh K. Iyer, Jeffrey A. Bilmes:

A Memoization Framework for Scaling Submodular Optimization to Large Scale Problems. 2340-2349 - Sebastian M. Schmon, Arnaud Doucet, George Deligiannidis:

Bernoulli Race Particle Filters. 2350-2358 - Kaspar Märtens, Michalis K. Titsias, Christopher Yau:

Augmented Ensemble MCMC sampling in Factorial Hidden Markov Models. 2359-2367 - Anton Mallasto, Søren Hauberg, Aasa Feragen

:
Probabilistic Riemannian submanifold learning with wrapped Gaussian process latent variable models. 2368-2377 - Lawrece Middleton, George Deligiannidis, Arnaud Doucet, Pierre E. Jacob:

Unbiased Smoothing using Particle Independent Metropolis-Hastings. 2378-2387 - Ehsan Amid, Manfred K. Warmuth, Sriram Srinivasan:

Two-temperature logistic regression based on the Tsallis divergence. 2388-2396 - Adji B. Dieng, Yoon Kim, Alexander M. Rush

, David M. Blei:
Avoiding Latent Variable Collapse with Generative Skip Models. 2397-2405 - Fan Bu, Sonia Xu, Katherine A. Heller, Alexander Volfovsky:

SMOGS: Social Network Metrics of Game Success. 2406-2414 - Benjamin Dubois, Jean-François Delmas, Guillaume Obozinski:

Fast Algorithms for Sparse Reduced-Rank Regression. 2415-2424 - Hilal Asi, John C. Duchi:

Modeling simple structures and geometry for better stochastic optimization algorithms. 2425-2434 - Anshuka Rangi, Massimo Franceschetti:

Online learning with feedback graphs and switching costs. 2435-2444 - Awa Dieng, Yameng Liu, Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky:

Interpretable Almost-Exact Matching for Causal Inference. 2445-2453 - Aden Forrow, Jan-Christian Hütter, Mor Nitzan, Philippe Rigollet, Geoffrey Schiebinger, Jonathan Weed:

Statistical Optimal Transport via Factored Couplings. 2454-2465 - I (Eli) Chien, Huozhi Zhou, Pan Li:

HS2: Active learning over hypergraphs with pointwise and pairwise queries. 2466-2475 - Alexander Lin, Yingzhuo Zhang, Jeremy Heng, Stephen A. Allsop, Kay M. Tye, Pierre E. Jacob, Demba E. Ba:

Clustering Time Series with Nonlinear Dynamics: A Bayesian Non-Parametric and Particle-Based Approach. 2476-2484 - Aryan Mokhtari, Asuman E. Ozdaglar, Ali Jadbabaie:

Efficient Nonconvex Empirical Risk Minimization via Adaptive Sample Size Methods. 2485-2494 - Laurent Lessard, Xuezhou Zhang, Xiaojin Zhu:

An Optimal Control Approach to Sequential Machine Teaching. 2495-2503 - Gautam Goel, Adam Wierman:

An Online Algorithm for Smoothed Regression and LQR Control. 2504-2513 - Aditya Grover, Stefano Ermon:

Uncertainty Autoencoders: Learning Compressed Representations via Variational Information Maximization. 2514-2524 - Babak Esmaeili, Hao Wu, Sarthak Jain, Alican Bozkurt, N. Siddharth, Brooks Paige, Dana H. Brooks, Jennifer G. Dy, Jan-Willem van de Meent:

Structured Disentangled Representations. 2525-2534 - Benjamin Mark, Garvesh Raskutti, Rebecca Willett:

Estimating Network Structure from Incomplete Event Data. 2535-2544 - Marco Gaboardi

, Ryan Rogers, Or Sheffet:
Locally Private Mean Estimation: $Z$-test and Tight Confidence Intervals. 2545-2554 - Takeru Matsuda, Aapo Hyvärinen:

Estimation of Non-Normalized Mixture Models. 2555-2563 - Julien Seznec, Andrea Locatelli, Alexandra Carpentier, Alessandro Lazaric, Michal Valko:

Rotting bandits are no harder than stochastic ones. 2564-2572 - Chao Chen, Xiuyan Ni, Qinxun Bai, Yusu Wang:

A Topological Regularizer for Classifiers via Persistent Homology. 2573-2582 - Anastasia Podosinnikova, Amelia Perry, Alexander S. Wein, Francis R. Bach, Alexandre d'Aspremont, David A. Sontag:

Overcomplete Independent Component Analysis via SDP. 2583-2592 - Dmitry Molchanov, Valery Kharitonov, Artem Sobolev, Dmitry P. Vetrov:

Doubly Semi-Implicit Variational Inference. 2593-2602 - Nicole Mücke:

Reducing training time by efficient localized kernel regression. 2603-2610 - Shandian Zhe, Wei W. Xing, Robert M. Kirby:

Scalable High-Order Gaussian Process Regression. 2611-2620 - Veeranjaneyulu Sadhanala, Yu-Xiang Wang, Aaditya Ramdas, Ryan J. Tibshirani:

A Higher-Order Kolmogorov-Smirnov Test. 2621-2630 - Kelvin Hsu, Fabio Ramos:

Bayesian Learning of Conditional Kernel Mean Embeddings for Automatic Likelihood-Free Inference. 2631-2640 - Hsiang-Fu Yu, Cho-Jui Hsieh, Inderjit S. Dhillon:

Parallel Asynchronous Stochastic Coordinate Descent with Auxiliary Variables. 2641-2649 - Théophane Weber, Nicolas Heess, Lars Buesing, David Silver:

Credit Assignment Techniques in Stochastic Computation Graphs. 2650-2660 - Anders Kirk Uhrenholt, Bjørn Sand Jensen:

Efficient Bayesian Optimization for Target Vector Estimation. 2661-2670 - Hsiang Hsu, Salman Salamatian, Flávio P. Calmon:

Correspondence Analysis Using Neural Networks. 2671-2680 - Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-ichi Amari, Alain Trouvé, Gabriel Peyré:

Interpolating between Optimal Transport and MMD using Sinkhorn Divergences. 2681-2690 - Rafael M. Frongillo, Nishant A. Mehta, Tom Morgan, Bo Waggoner:

Multi-Observation Regression. 2691-2700 - Kiárash Shaloudegi, András György:

Adaptive MCMC via Combining Local Samplers. 2701-2710 - Ming Xu, Matias Quiroz, Robert Kohn, Scott A. Sisson:

Variance reduction properties of the reparameterization trick. 2711-2720 - Moses Charikar, Vaggos Chatziafratis, Rad Niazadeh, Grigory Yaroslavtsev:

Hierarchical Clustering for Euclidean Data. 2721-2730 - Zhe Wang, Yi Zhou, Yingbin Liang, Guanghui Lan:

Stochastic Variance-Reduced Cubic Regularization for Nonconvex Optimization. 2731-2740 - Benjamin Rhodes, Michael U. Gutmann:

Variational Noise-Contrastive Estimation. 2741-2750 - Henry R. Chai, Roman Garnett:

Improving Quadrature for Constrained Integrands. 2751-2759 - Ying Zhu, Zhuqing Yu, Guang Cheng:

High Dimensional Inference in Partially Linear Models. 2760-2769 - Pengkai Zhu, Durmus Alp Emre Acar, Nan Feng, Prateek Jain, Venkatesh Saligrama:

Cost aware Inference for IoT Devices. 2770-2779 - Nicolas Durrande, Vincent Adam, Lucas Bordeaux, Stefanos Eleftheriadis, James Hensman:

Banded Matrix Operators for Gaussian Markov Models in the Automatic Differentiation Era. 2780-2789 - Lai Tian, Feiping Nie, Xuelong Li:

A Unified Weight Learning Paradigm for Multi-view Learning. 2790-2800 - Corinna Cortes, Giulia DeSalvo, Claudio Gentile, Mehryar Mohri, Ningshan Zhang:

Region-Based Active Learning. 2801-2809 - Roger Fan, Byoungwook Jang, Yuekai Sun, Shuheng Zhou:

Precision Matrix Estimation with Noisy and Missing Data. 2810-2819 - Wenbo Ren, Jia Liu, Ness B. Shroff:

Exploring k out of Top $ρ$ Fraction of Arms in Stochastic Bandits. 2820-2828 - Chen Yu, Bojan Karlas, Jie Zhong, Ce Zhang, Ji Liu:

AutoML from Service Provider's Perspective: Multi-device, Multi-tenant Model Selection with GP-EI. 2829-2838 - Veronika Rocková, Enakshi Saha:

On Theory for BART. 2839-2848 - Rajat Panda, Ankit Pensia, Nikhil Mehta, Mingyuan Zhou

, Piyush Rai:
Deep Topic Models for Multi-label Learning. 2849-2857 - Thanh Van Nguyen, Raymond K. W. Wong, Chinmay Hegde:

On the Dynamics of Gradient Descent for Autoencoders. 2858-2867 - Zebang Shen, Cong Fang, Peilin Zhao, Junzhou Huang, Hui Qian:

Complexities in Projection-Free Stochastic Non-convex Minimization. 2868-2876 - Mike Wu, Noah D. Goodman, Stefano Ermon:

Differentiable Antithetic Sampling for Variance Reduction in Stochastic Variational Inference. 2877-2886 - Sai Praneeth Karimireddy, Anastasia Koloskova, Sebastian U. Stich, Martin Jaggi:

Efficient Greedy Coordinate Descent for Composite Problems. 2887-2896 - Jiahao Xie, Chao Zhang, Zebang Shen, Chao Mi, Hui Qian:

Decentralized Gradient Tracking for Continuous DR-Submodular Maximization. 2897-2906 - Craig Kelly, Somdeb Sarkhel, Deepak Venugopal:

Adaptive Rao-Blackwellisation in Gibbs Sampling for Probabilistic Graphical Models. 2907-2915 - Dhruv Malik, Ashwin Pananjady, Kush Bhatia, Koulik Khamaru, Peter L. Bartlett, Martin J. Wainwright:

Derivative-Free Methods for Policy Optimization: Guarantees for Linear Quadratic Systems. 2916-2925 - Anirudh Vemula, Wen Sun, J. Andrew Bagnell:

Contrasting Exploration in Parameter and Action Space: A Zeroth-Order Optimization Perspective. 2926-2935 - Difan Zou, Pan Xu, Quanquan Gu:

Sampling from Non-Log-Concave Distributions via Variance-Reduced Gradient Langevin Dynamics. 2936-2945 - Mingming Sun, Ping Li:

Graph to Graph: a Topology Aware Approach for Graph Structures Learning and Generation. 2946-2955 - Yifei Ma, Yu-Xiang Wang, Balakrishnan Narayanaswamy:

Imitation-Regularized Offline Learning. 2956-2965 - Tamara Fernandez, Arthur Gretton:

A maximum-mean-discrepancy goodness-of-fit test for censored data. 2966-2975 - Youssef Mroueh, Tom Sercu, Anant Raj:

Sobolev Descent. 2976-2985 - Daniel Malinsky, Peter Spirtes:

Learning the Structure of a Nonstationary Vector Autoregression. 2986-2994 - Tadashi Kozuno, Eiji Uchibe, Kenji Doya:

Theoretical Analysis of Efficiency and Robustness of Softmax and Gap-Increasing Operators in Reinforcement Learning. 2995-3003 - Qin Ding, Hsiang-Fu Yu, Cho-Jui Hsieh:

A Fast Sampling Algorithm for Maximum Inner Product Search. 3004-3012 - Byoungwook Jang, Alfred O. Hero III:

Minimum Volume Topic Modeling. 3013-3021 - Xuhui Fan, Bin Li, Scott A. Sisson:

Binary Space Partitioning Forest. 3022-3031 - Krishnamurthy Viswanathan, Sushant Sachdeva, Andrew Tomkins, Sujith Ravi:

Improved Semi-Supervised Learning with Multiple Graphs. 3032-3041 - Ershad Banijamali, Yasin Abbasi-Yadkori, Mohammad Ghavamzadeh, Nikos Vlassis:

Optimizing over a Restricted Policy Class in MDPs. 3042-3050 - Mor Shpigel Nacson, Nathan Srebro, Daniel Soudry:

Stochastic Gradient Descent on Separable Data: Exact Convergence with a Fixed Learning Rate. 3051-3059 - Payam Delgosha, Naveen Goela:

Deep Switch Networks for Generating Discrete Data and Language. 3060-3069 - Anand Ramachandran, Steven S. Lumetta, Eric W. Klee, Deming Chen:

A recurrent Markov state-space generative model for sequences. 3070-3079 - Daniel Malinsky, Ilya Shpitser, Thomas S. Richardson:

A Potential Outcomes Calculus for Identifying Conditional Path-Specific Effects. 3080-3088 - Zhongliang Li, Tian Xia, Xingyu Lou, Kaihe Xu, Shaojun Wang, Jing Xiao:

Adversarial Discrete Sequence Generation without Explicit NeuralNetworks as Discriminators. 3089-3098 - Daniel LeJeune, Reinhard Heckel, Richard G. Baraniuk:

Adaptive Estimation for Approximate k-Nearest-Neighbor Computations. 3099-3107 - Yasin Abbasi-Yadkori, Nevena Lazic, Csaba Szepesvári:

Model-Free Linear Quadratic Control via Reduction to Expert Prediction. 3108-3117 - Adarsh Subbaswamy, Peter Schulam, Suchi Saria:

Preventing Failures Due to Dataset Shift: Learning Predictive Models That Transport. 3118-3127 - Nima Anari, Nika Haghtalab, Seffi Naor, Sebastian Pokutta, Mohit Singh, Alfredo Torrico:

Structured Robust Submodular Maximization: Offline and Online Algorithms. 3128-3137 - Lionel Blondé, Alexandros Kalousis

:
Sample-Efficient Imitation Learning via Generative Adversarial Nets. 3138-3148 - Nhat Ho, Viet Huynh, Dinh Q. Phung, Michael I. Jordan:

Probabilistic Multilevel Clustering via Composite Transportation Distance. 3149-3157 - Jialin Song, Yuxin Chen, Yisong Yue:

A General Framework for Multi-fidelity Bayesian Optimization with Gaussian Processes. 3158-3167 - Arun Verma, Manjesh Kumar Hanawal, Csaba Szepesvári, Venkatesh Saligrama:

Online Algorithm for Unsupervised Sensor Selection. 3168-3176 - Vidya Muthukumar, Mitas Ray, Anant Sahai, Peter L. Bartlett:

Best of many worlds: Robust model selection for online supervised learning. 3177-3186 - Ching-An Cheng, Xinyan Yan, Evangelos A. Theodorou, Byron Boots:

Accelerating Imitation Learning with Predictive Models. 3187-3196 - Sayak Ray Chowdhury, Aditya Gopalan:

Online Learning in Kernelized Markov Decision Processes. 3197-3205 - Christos Thrampoulidis, Ankit Singh Rawat:

Lifting high-dimensional non-linear models with Gaussian regressors. 3206-3215 - Happy Mittal, Ayush Bhardwaj, Vibhav Gogate

, Parag Singla:
Domain-Size Aware Markov Logic Networks. 3216-3224 - Osman Emre Dai, Daniel Cullina, Negar Kiyavash:

Database Alignment with Gaussian Features. 3225-3233 - Dmitriy Katz, Karthikeyan Shanmugam

, Chandler Squires, Caroline Uhler:
Size of Interventional Markov Equivalence Classes in random DAG models. 3234-3243 - Luca Falorsi, Pim de Haan, Tim R. Davidson, Patrick Forré:

Reparameterizing Distributions on Lie Groups. 3244-3253 - Xiangru Lian, Ji Liu:

Revisit Batch Normalization: New Understanding and Refinement via Composition Optimization. 3254-3263 - Qimao Yang, Changrong Li, Jun Guo:

Multi-Order Information for Working Set Selection of Sequential Minimal Optimization. 3264-3272 - Zheyang Shen, Markus Heinonen, Samuel Kaski:

Harmonizable mixture kernels with variational Fourier features. 3273-3282 - Shubhanshu Shekhar, Tara Javidi

:
Multiscale Gaussian Process Level Set Estimation. 3283-3291 - Sharad Vikram, Matthew D. Hoffman, Matthew J. Johnson:

The LORACs Prior for VAEs: Letting the Trees Speak for the Data. 3292-3301 - Chunyuan Li, Ke Bai, Jianqiao Li, Guoyin Wang, Changyou Chen, Lawrence Carin:

Adversarial Learning of a Sampler Based on an Unnormalized Distribution. 3302-3311 - Aadirupa Saha, Aditya Gopalan:

Active Ranking with Subset-wise Preferences. 3312-3321 - Hongyang Zhang, Vatsal Sharan, Moses Charikar, Yingyu Liang:

Recovery Guarantees For Quadratic Tensors With Sparse Observations. 3322-3332 - Thanh Tan Nguyen, Ali Shameli, Yasin Abbasi-Yadkori, Anup Rao, Branislav Kveton:

Sample Efficient Graph-Based Optimization with Noisy Observations. 3333-3341 - Heinrich Jiang, Jennifer Jang, Ofir Nachum:

Robustness Guarantees for Density Clustering. 3342-3351 - Shengjie Wang, Wenruo Bai, Chandrashekhar Lavania, Jeff A. Bilmes:

Fixing Mini-batch Sequences with Hierarchical Robust Partitioning. 3352-3361 - Boyu Wang, Hejia Zhang, Peng Liu, Zebang Shen, Joelle Pineau:

Multitask Metric Learning: Theory and Algorithm. 3362-3371 - Daniel Andrade, Yuzuru Okajima:

Efficient Bayes Risk Estimation for Cost-Sensitive Classification. 3372-3381 - Rajiv Khanna, Been Kim, Joydeep Ghosh, Sanmi Koyejo:

Interpreting Black Box Predictions using Fisher Kernels. 3382-3390 - Sephora Madjiheurem, Laura Toni:

Representation Learning on Graphs: A Reinforcement Learning Application. 3391-3399 - Raj Agrawal, Chandler Squires, Karren D. Yang, Karthikeyan Shanmugam

, Caroline Uhler:
ABCD-Strategy: Budgeted Experimental Design for Targeted Causal Structure Discovery. 3400-3409 - Kevin K. Yang, Yuxin Chen, Alycia Lee, Yisong Yue:

Batched Stochastic Bayesian Optimization via Combinatorial Constraints Design. 3410-3419 - Mor Shpigel Nacson, Jason D. Lee, Suriya Gunasekar, Pedro Henrique Pamplona Savarese, Nathan Srebro, Daniel Soudry:

Convergence of Gradient Descent on Separable Data. 3420-3428 - Babak Esmaeili, Hongyi Huang, Byron C. Wallace, Jan-Willem van de Meent:

Structured Neural Topic Models for Reviews. 3429-3439 - Kohei Miyaguchi, Kenji Yamanishi:

Adaptive Minimax Regret against Smooth Logarithmic Losses over High-Dimensional l1-Balls via Envelope Complexity. 3440-3448 - Petar Stojanov, Mingming Gong, Jaime G. Carbonell, Kun Zhang:

Low-Dimensional Density Ratio Estimation for Covariate Shift Correction. 3449-3458 - Anit Kumar Sahu, Manzil Zaheer, Soummya Kar:

Towards Gradient Free and Projection Free Stochastic Optimization. 3468-3477 - Alexander D'Amour:

On Multi-Cause Approaches to Causal Inference with Unobserved Counfounding: Two Cautionary Failure Cases and A Promising Alternative. 3478-3486 - Petar Stojanov, Mingming Gong, Jaime G. Carbonell, Kun Zhang:

Data-Driven Approach to Multiple-Source Domain Adaptation. 3487-3496

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














