


default search action
AutoML 2022: Baltimore, MD, USA
- Isabelle Guyon, Marius Lindauer, Mihaela van der Schaar, Frank Hutter, Roman Garnett:

International Conference on Automated Machine Learning, AutoML 2022, 25-27 July 2022, Johns Hopkins University, Baltimore, MD, USA. Proceedings of Machine Learning Research 188, PMLR 2022 - Qi Zhao, Tim Köonigl, Christian Wressnegger:

Non-Uniform Adversarially Robust Pruning. 1/1-16 - Kenan Sehic, Alexandre Gramfort, Joseph Salmon, Luigi Nardi:

LassoBench: A High-Dimensional Hyperparameter Optimization Benchmark Suite for Lasso. 2/1-24 - Florian Pfisterer, Lennart Schneider, Julia Moosbauer, Martin Binder, Bernd Bischl:

YAHPO Gym - An Efficient Multi-Objective Multi-Fidelity Benchmark for Hyperparameter Optimization. 3/1-39 - Duc N. M. Hoang, Kaixiong Zhou, Tianlong Chen, Xia Hu, Zhangyang Wang:

AutoCoG: A Unified Data-Model Co-Search Framework for Graph Neural Networks. 4/1-16 - Juan Pablo Muñoz, Nikolay Lyalyushkin, Chaunte Willetta Lacewell, Anastasia Senina, Daniel Cummings, Anthony Sarah, Alexander Kozlov, Nilesh Jain:

Automated Super-Network Generation for Scalable Neural Architecture Search. 5/1-15 - Damir Pulatov, Marie Anastacio, Lars Kotthoff, Holger H. Hoos:

Opening the Black Box: Automated Software Analysis for Algorithm Selection. 6/1-18 - Anastasia Makarova, Huibin Shen, Valerio Perrone, Aaron Klein, Jean Baptiste Faddoul, Andreas Krause, Matthias W. Seeger, Cédric Archambeau:

Automatic Termination for Hyperparameter Optimization. 7/1-21 - Xingyou Song, Sagi Perel, Chansoo Lee, Greg Kochanski, Daniel Golovin:

Open Source Vizier: Distributed Infrastructure and API for Reliable and Flexible Blackbox Optimization. 8/1-17 - Lennart Schneider, Florian Pfisterer, Paul Kent, Jürgen Branke, Bernd Bischl, Janek Thomas:

Tackling Neural Architecture Search With Quality Diversity Optimization. 9/1-30 - Lijun Zhang, Xiao Liu, Hui Guan:

A Tree-Structured Multi-Task Model Recommender. 10/1-12 - Mehdi Bahrami, Wei-Peng Chen, Lei Liu, Mukul R. Prasad:

BERT-Sort: A Zero-shot MLM Semantic Encoder on Ordinal Features for AutoML. 11/1-26 - Parikshit Ram:

On the Optimality Gap of Warm-Started Hyperparameter Optimization. 12/1-14 - Kevin Alexander Laube, Maximus Mutschler, Andreas Zell:

What to expect of hardware metric predictors in NAS. 13/1-15 - Xingchen Wan, Cong Lu, Jack Parker-Holder, Philip J. Ball, Vu Nguyen, Binxin Ru, Michael A. Osborne:

Bayesian Generational Population-Based Training. 14/1-27 - Hsin-Pai Cheng, Feng Liang, Meng Li, Bowen Cheng, Feng Yan, Hai Li, Vikas Chandra, Yiran Chen:

ScaleNAS: Multi-Path One-Shot NAS for Scale-Aware High-Resolution Representation. 15/1-18 - David Salinas, Matthias W. Seeger, Aaron Klein, Valerio Perrone, Martin Wistuba, Cédric Archambeau:

Syne Tune: A Library for Large Scale Hyperparameter Tuning and Reproducible Research. 16/1-23 - Guanghui Zhu, Zhuoer Xu, Chunfeng Yuan, Yihua Huang:

DIFER: Differentiable Automated Feature Engineering. 17/1-17 - Kaitlin Maile, Emmanuel Rachelson, Hervé Luga, Dennis George Wilson:

When, where, and how to add new neurons to ANNs. 18/1-12 - Trapit Bansal, Salaheddin Alzubi, Tong Wang, Jay-Yoon Lee, Andrew McCallum:

Meta-Adapters: Parameter Efficient Few-shot Fine-tuning through Meta-Learning. 19/1-18 - Yingjie Miao, Xingyou Song, John D. Co-Reyes, Daiyi Peng, Summer Yue, Eugene Brevdo, Aleksandra Faust:

Differentiable Architecture Search for Reinforcement Learning. 20/1-17

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














