default search action
Mykola Pechenizkiy
Person information
- affiliation: Eindhoven University of Technology, Netherlands
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j65]Akrati Saxena, George Fletcher, Mykola Pechenizkiy:
FairSNA: Algorithmic Fairness in Social Network Analysis. ACM Comput. Surv. 56(8): 213:1-213:45 (2024) - [j64]Ricky Maulana Fajri, Akrati Saxena, Yulong Pei, Mykola Pechenizkiy:
FAL-CUR: Fair Active Learning using Uncertainty and Representativeness on Fair Clustering. Expert Syst. Appl. 242: 122842 (2024) - [j63]Hilde J. P. Weerts, Florian Pfisterer, Matthias Feurer, Katharina Eggensperger, Edward Bergman, Noor H. Awad, Joaquin Vanschoren, Mykola Pechenizkiy, Bernd Bischl, Frank Hutter:
Can Fairness be Automated? Guidelines and Opportunities for Fairness-aware AutoML. J. Artif. Intell. Res. 79: 639-677 (2024) - [c193]Meng Fang, Shilong Deng, Yudi Zhang, Zijing Shi, Ling Chen, Mykola Pechenizkiy, Jun Wang:
Large Language Models Are Neurosymbolic Reasoners. AAAI 2024: 17985-17993 - [c192]Jiaxu Zhao, Zijing Shi, Yitong Li, Yulong Pei, Ling Chen, Meng Fang, Mykola Pechenizkiy:
More than Minorities and Majorities: Understanding Multilateral Bias in Language Generation. ACL (Findings) 2024: 9987-10001 - [c191]Kaiting Liu, Zahra Atashgahi, Ghada Sokar, Mykola Pechenizkiy, Decebal Constantin Mocanu:
Supervised Feature Selection via Ensemble Gradient Information from Sparse Neural Networks. AISTATS 2024: 3952-3960 - [c190]Bram Grooten, Tristan Tomilin, Gautham Vasan, Matthew E. Taylor, A. Rupam Mahmood, Meng Fang, Mykola Pechenizkiy, Decebal Constantin Mocanu:
MaDi: Learning to Mask Distractions for Generalization in Visual Deep Reinforcement Learning. AAMAS 2024: 733-742 - [c189]Yucheng Yang, Tianyi Zhou, Lei Han, Meng Fang, Mykola Pechenizkiy:
Automatic Curriculum for Unsupervised Reinforcement Learning. AAMAS 2024: 2002-2010 - [c188]Zahra Atashgahi, Tennison Liu, Mykola Pechenizkiy, Raymond N. J. Veldhuis, Decebal Constantin Mocanu, Mihaela van der Schaar:
Unveiling the Power of Sparse Neural Networks for Feature Selection. ECAI 2024: 2669-2676 - [c187]Wenhan Han, Meng Fang, Zihan Zhang, Yu Yin, Zirui Song, Ling Chen, Mykola Pechenizkiy, Qingyu Chen:
MedINST: Meta Dataset of Biomedical Instructions. EMNLP (Findings) 2024: 8221-8240 - [c186]Qin Zhang, Sihan Cai, Jiaxu Zhao, Mykola Pechenizkiy, Meng Fang:
CHAmbi: A New Benchmark on Chinese Ambiguity Challenges for Large Language Models. EMNLP (Findings) 2024: 14883-14898 - [c185]Hilde J. P. Weerts, Raphaële Xenidis, Fabien Tarissan, Henrik Palmer Olsen, Mykola Pechenizkiy:
The Neutrality Fallacy: When Algorithmic Fairness Interventions are (Not) Positive Action. FAccT 2024: 2060-2070 - [c184]Yucheng Yang, Tianyi Zhou, Qiang He, Lei Han, Mykola Pechenizkiy, Meng Fang:
Task Adaptation from Skills: Information Geometry, Disentanglement, and New Objectives for Unsupervised Reinforcement Learning. ICLR 2024 - [c183]Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Kumar Jaiswal, Mykola Pechenizkiy, Yi Liang, Michael Bendersky, Zhangyang Wang, Shiwei Liu:
Outlier Weighed Layerwise Sparsity (OWL): A Missing Secret Sauce for Pruning LLMs to High Sparsity. ICML 2024 - [c182]Danil Provodin, Maurits Clemens Kaptein, Mykola Pechenizkiy:
Efficient Exploration in Average-Reward Constrained Reinforcement Learning: Achieving Near-Optimal Regret With Posterior Sampling. ICML 2024 - [c181]Ricky Maulana Fajri, Yulong Pei, Lu Yin, Mykola Pechenizkiy:
A Structural-Clustering Based Active Learning for Graph Neural Networks. IDA (1) 2024: 28-40 - [c180]Zahra Atashgahi, Mykola Pechenizkiy, Raymond N. J. Veldhuis, Decebal Constantin Mocanu:
Adaptive Sparsity Level During Training for Efficient Time Series Forecasting with Transformers. ECML/PKDD (1) 2024: 3-20 - [c179]Rianne Margaretha Schouten, Wouter Duivesteijn, Pekka Räsänen, Jacob M. Paul, Mykola Pechenizkiy:
Exceptional Subitizing Patterns: Exploring Mathematical Abilities of Finnish Primary School Children with Piecewise Linear Regression. ECML/PKDD (10) 2024: 66-82 - [c178]Adam Dubowski, Hilde J. P. Weerts, Anouk Wolters, Mykola Pechenizkiy:
Subgroup Harm Assessor: Identifying Potential Fairness-Related Harms and Predictive Bias. ECML/PKDD (8) 2024: 413-417 - [p5]Dennis Collaris, Mykola Pechenizkiy, Jarke J. van Wijk:
RATE-Analytics: Next Generation Predictive Analytics for Data-Driven Banking and Insurance. Commit2Data 2024: 8:1-8:11 - [i104]Meng Fang, Shilong Deng, Yudi Zhang, Zijing Shi, Ling Chen, Mykola Pechenizkiy, Jun Wang:
Large Language Models Are Neurosymbolic Reasoners. CoRR abs/2401.09334 (2024) - [i103]Igor G. Smit, Zaharah Allah Bukhsh, Mykola Pechenizkiy, Kostas Alogariastos, Kasper Hendriks, Yingqian Zhang:
Learning Efficient and Fair Policies for Uncertainty-Aware Collaborative Human-Robot Order Picking. CoRR abs/2404.08006 (2024) - [i102]Hilde J. P. Weerts, Raphaële Xenidis, Fabien Tarissan, Henrik Palmer Olsen, Mykola Pechenizkiy:
The Neutrality Fallacy: When Algorithmic Fairness Interventions are (Not) Positive Action. CoRR abs/2404.12143 (2024) - [i101]Danil Provodin, Maurits Kaptein, Mykola Pechenizkiy:
Efficient Exploration in Average-Reward Constrained Reinforcement Learning: Achieving Near-Optimal Regret With Posterior Sampling. CoRR abs/2405.19017 (2024) - [i100]Tim D'Hondt, Mykola Pechenizkiy, Robert Peharz:
One-Shot Federated Learning with Bayesian Pseudocoresets. CoRR abs/2406.02177 (2024) - [i99]Calarina Muslimani, Bram Grooten, Deepak Ranganatha Sastry Mamillapalli, Mykola Pechenizkiy, Decebal Constantin Mocanu, Matthew E. Taylor:
Boosting Robustness in Preference-Based Reinforcement Learning with Dynamic Sparsity. CoRR abs/2406.06495 (2024) - [i98]Qiao Xiao, Pingchuan Ma, Adriana Fernandez-Lopez, Boqian Wu, Lu Yin, Stavros Petridis, Mykola Pechenizkiy, Maja Pantic, Decebal Constantin Mocanu, Shiwei Liu:
Dynamic Data Pruning for Automatic Speech Recognition. CoRR abs/2406.18373 (2024) - [i97]Tianjin Huang, Meng Fang, Li Shen, Fan Liu, Yulong Pei, Mykola Pechenizkiy, Shiwei Liu, Tianlong Chen:
(PASS) Visual Prompt Locates Good Structure Sparsity through a Recurrent HyperNetwork. CoRR abs/2407.17412 (2024) - [i96]Wieger Wesselink, Bram Grooten, Qiao Xiao, Cassio de Campos, Mykola Pechenizkiy:
Nerva: a Truly Sparse Implementation of Neural Networks. CoRR abs/2407.17437 (2024) - [i95]Zahra Atashgahi, Tennison Liu, Mykola Pechenizkiy, Raymond N. J. Veldhuis, Decebal Constantin Mocanu, Mihaela van der Schaar:
Unveiling the Power of Sparse Neural Networks for Feature Selection. CoRR abs/2408.04583 (2024) - [i94]Ricky Maulana Fajri, Yulong Pei, Lu Yin, Mykola Pechenizkiy:
Robust Active Learning (RoAL): Countering Dynamic Adversaries in Active Learning with Elastic Weight Consolidation. CoRR abs/2408.07364 (2024) - [i93]Ben Halstead, Yun Sing Koh, Patricia Riddle, Mykola Pechenizkiy, Albert Bifet:
A Probabilistic Framework for Adapting to Changing and Recurring Concepts in Data Streams. CoRR abs/2408.09324 (2024) - [i92]Danil Provodin, Bram van den Akker, Christina Katsimerou, Maurits Kaptein, Mykola Pechenizkiy:
Rethinking Knowledge Transfer in Learning Using Privileged Information. CoRR abs/2408.14319 (2024) - [i91]Qiao Xiao, Boqian Wu, Lu Yin, Christopher Neil Gadzinski, Tianjin Huang, Mykola Pechenizkiy, Decebal Constantin Mocanu:
Are Sparse Neural Networks Better Hard Sample Learners? CoRR abs/2409.09196 (2024) - [i90]Boqian Wu, Qiao Xiao, Shunxin Wang, Nicola Strisciuglio, Mykola Pechenizkiy, Maurice van Keulen, Decebal Constantin Mocanu, Elena Mocanu:
Dynamic Sparse Training versus Dense Training: The Unexpected Winner in Image Corruption Robustness. CoRR abs/2410.03030 (2024) - [i89]Wenhan Han, Meng Fang, Zihan Zhang, Yu Yin, Zirui Song, Ling Chen, Mykola Pechenizkiy, Qingyu Chen:
MedINST: Meta Dataset of Biomedical Instructions. CoRR abs/2410.13458 (2024) - 2023
- [j62]Akrati Saxena, Cristina Gutiérrez Bierbooms, Mykola Pechenizkiy:
Fairness-aware fake news mitigation using counter information propagation. Appl. Intell. 53(22): 27483-27504 (2023) - [j61]Syed Ihtesham Hussain Shah, Muddasar Naeem, Giovanni Paragliola, Antonio Coronato, Mykola Pechenizkiy:
An AI-empowered infrastructure for risk prevention during medical examination. Expert Syst. Appl. 225: 120048 (2023) - [j60]Ben Halstead, Yun Sing Koh, Patricia Riddle, Mykola Pechenizkiy, Albert Bifet:
Combining Diverse Meta-Features to Accurately Identify Recurring Concept Drift in Data Streams. ACM Trans. Knowl. Discov. Data 17(8): 107:1-107:36 (2023) - [j59]Zahra Atashgahi, Xuhao Zhang, Neil Kichler, Shiwei Liu, Lu Yin, Mykola Pechenizkiy, Raymond N. J. Veldhuis, Decebal Constantin Mocanu:
Supervised Feature Selection with Neuron Evolution in Sparse Neural Networks. Trans. Mach. Learn. Res. 2023 (2023) - [c177]Lu Yin, Shiwei Liu, Meng Fang, Tianjin Huang, Vlado Menkovski, Mykola Pechenizkiy:
Lottery Pools: Winning More by Interpolating Tickets without Increasing Training or Inference Cost. AAAI 2023: 10945-10953 - [c176]Iftitahu Ni'mah, Meng Fang, Vlado Menkovski, Mykola Pechenizkiy:
NLG Evaluation Metrics Beyond Correlation Analysis: An Empirical Metric Preference Checklist. ACL (1) 2023: 1240-1266 - [c175]Jiaxu Zhao, Meng Fang, Zijing Shi, Yitong Li, Ling Chen, Mykola Pechenizkiy:
CHBias: Bias Evaluation and Mitigation of Chinese Conversational Language Models. ACL (1) 2023: 13538-13556 - [c174]Bram Grooten, Ghada Sokar, Shibhansh Dohare, Elena Mocanu, Matthew E. Taylor, Mykola Pechenizkiy, Decebal Constantin Mocanu:
Automatic Noise Filtering with Dynamic Sparse Training in Deep Reinforcement Learning. AAMAS 2023: 1932-1941 - [c173]Sheetal Borar, Hilde J. P. Weerts, Binyam Gebre, Mykola Pechenizkiy:
Improving Recommender System Diversity with Variational Autoencoders. BIAS 2023: 85-99 - [c172]Zirui Liang, Yuntao Li, Tianjin Huang, Akrati Saxena, Yulong Pei, Mykola Pechenizkiy:
Heterophily-Based Graph Neural Network for Imbalanced Classification. COMPLEX NETWORKS (1) 2023: 74-86 - [c171]Hilde J. P. Weerts, Raphaële Xenidis, Fabien Tarissan, Henrik Palmer Olsen, Mykola Pechenizkiy:
Algorithmic Unfairness Through the Lens of EU Non-Discrimination Law. EWAF 2023 - [c170]Hilde J. P. Weerts, Raphaële Xenidis, Fabien Tarissan, Henrik Palmer Olsen, Mykola Pechenizkiy:
Algorithmic Unfairness through the Lens of EU Non-Discrimination Law: Or Why the Law is not a Decision Tree. FAccT 2023: 805-816 - [c169]Ben Halstead, Yun Sing Koh, Patricia Riddle, Mykola Pechenizkiy, Albert Bifet:
FALL: A Modular Adaptive Learning Platform for Streaming Data. ICDE 2023: 3619-3622 - [c168]Shiwei Liu, Tianlong Chen, Xiaohan Chen, Xuxi Chen, Qiao Xiao, Boqian Wu, Tommi Kärkkäinen, Mykola Pechenizkiy, Decebal Constantin Mocanu, Zhangyang Wang:
More ConvNets in the 2020s: Scaling up Kernels Beyond 51x51 using Sparsity. ICLR 2023 - [c167]Tianjin Huang, Lu Yin, Zhenyu Zhang, Li Shen, Meng Fang, Mykola Pechenizkiy, Zhangyang Wang, Shiwei Liu:
Are Large Kernels Better Teachers than Transformers for ConvNets? ICML 2023: 14023-14038 - [c166]Dennis Collaris, Pratik Gajane, Joost Jorritsma, Jarke J. van Wijk, Mykola Pechenizkiy:
LEMON: Alternative Sampling for More Faithful Explanation Through Local Surrogate Models. IDA 2023: 77-90 - [c165]Lu Yin, Gen Li, Meng Fang, Li Shen, Tianjin Huang, Zhangyang Wang, Vlado Menkovski, Xiaolong Ma, Mykola Pechenizkiy, Shiwei Liu:
Dynamic Sparsity Is Channel-Level Sparsity Learner. NeurIPS 2023 - [c164]Yudi Zhang, Yali Du, Biwei Huang, Ziyan Wang, Jun Wang, Meng Fang, Mykola Pechenizkiy:
Interpretable Reward Redistribution in Reinforcement Learning: A Causal Approach. NeurIPS 2023 - [c163]Tristan Tomilin, Meng Fang, Yudi Zhang, Mykola Pechenizkiy:
COOM: A Game Benchmark for Continual Reinforcement Learning. NeurIPS 2023 - [c162]Tianjin Huang, Shiwei Liu, Tianlong Chen, Meng Fang, Li Shen, Vlado Menkovski, Lu Yin, Yulong Pei, Mykola Pechenizkiy:
Enhancing Adversarial Training via Reweighting Optimization Trajectory. ECML/PKDD (1) 2023: 113-130 - [c161]Jiaxu Zhao, Lu Yin, Shiwei Liu, Meng Fang, Mykola Pechenizkiy:
REST: Enhancing Group Robustness in DNNs Through Reweighted Sparse Training. ECML/PKDD (2) 2023: 313-329 - [e10]Mingyu Feng, Tanja Käser, Partha P. Talukdar, Rakesh Agrawal, Y. Narahari, Mykola Pechenizkiy:
Proceedings of the 16th International Conference on Educational Data Mining, EDM 2023, Bengaluru, India, July 11-14, 2023. International Educational Data Mining Society 2023 [contents] - [i88]Bram Grooten, Ghada Sokar, Shibhansh Dohare, Elena Mocanu, Matthew E. Taylor, Mykola Pechenizkiy, Decebal Constantin Mocanu:
Automatic Noise Filtering with Dynamic Sparse Training in Deep Reinforcement Learning. CoRR abs/2302.06548 (2023) - [i87]Zahra Atashgahi, Xuhao Zhang, Neil Kichler, Shiwei Liu, Lu Yin, Mykola Pechenizkiy, Raymond N. J. Veldhuis, Decebal Constantin Mocanu:
Supervised Feature Selection with Neuron Evolution in Sparse Neural Networks. CoRR abs/2303.07200 (2023) - [i86]Hilde J. P. Weerts, Florian Pfisterer, Matthias Feurer, Katharina Eggensperger, Edward Bergman, Noor H. Awad, Joaquin Vanschoren, Mykola Pechenizkiy, Bernd Bischl, Frank Hutter:
Can Fairness be Automated? Guidelines and Opportunities for Fairness-aware AutoML. CoRR abs/2303.08485 (2023) - [i85]Iftitahu Ni'mah, Meng Fang, Vlado Menkovski, Mykola Pechenizkiy:
NLG Evaluation Metrics Beyond Correlation Analysis: An Empirical Metric Preference Checklist. CoRR abs/2305.08566 (2023) - [i84]Jiaxu Zhao, Meng Fang, Zijing Shi, Yitong Li, Ling Chen, Mykola Pechenizkiy:
CHBias: Bias Evaluation and Mitigation of Chinese Conversational Language Models. CoRR abs/2305.11262 (2023) - [i83]Hilde J. P. Weerts, Raphaële Xenidis, Fabien Tarissan, Henrik Palmer Olsen, Mykola Pechenizkiy:
Algorithmic Unfairness through the Lens of EU Non-Discrimination Law: Or Why the Law is not a Decision Tree. CoRR abs/2305.13938 (2023) - [i82]Zahra Atashgahi, Mykola Pechenizkiy, Raymond N. J. Veldhuis, Decebal Constantin Mocanu:
Adaptive Sparsity Level during Training for Efficient Time Series Forecasting with Transformers. CoRR abs/2305.18382 (2023) - [i81]Yudi Zhang, Yali Du, Biwei Huang, Ziyan Wang, Jun Wang, Meng Fang, Mykola Pechenizkiy:
GRD: A Generative Approach for Interpretable Reward Redistribution in Reinforcement Learning. CoRR abs/2305.18427 (2023) - [i80]Tianjin Huang, Lu Yin, Zhenyu Zhang, Li Shen, Meng Fang, Mykola Pechenizkiy, Zhangyang Wang, Shiwei Liu:
Are Large Kernels Better Teachers than Transformers for ConvNets? CoRR abs/2305.19412 (2023) - [i79]Lu Yin, Gen Li, Meng Fang, Li Shen, Tianjin Huang, Zhangyang Wang, Vlado Menkovski, Xiaolong Ma, Mykola Pechenizkiy, Shiwei Liu:
Dynamic Sparsity Is Channel-Level Sparsity Learner. CoRR abs/2305.19454 (2023) - [i78]Tianjin Huang, Shiwei Liu, Tianlong Chen, Meng Fang, Li Shen, Vlado Menkovski, Lu Yin, Yulong Pei, Mykola Pechenizkiy:
Enhancing Adversarial Training via Reweighting Optimization Trajectory. CoRR abs/2306.14275 (2023) - [i77]Danil Provodin, Pratik Gajane, Mykola Pechenizkiy, Maurits Kaptein:
Provably Efficient Exploration in Constrained Reinforcement Learning: Posterior Sampling Is All You Need. CoRR abs/2309.15737 (2023) - [i76]Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Mykola Pechenizkiy, Yi Liang, Zhangyang Wang, Shiwei Liu:
Outlier Weighed Layerwise Sparsity (OWL): A Missing Secret Sauce for Pruning LLMs to High Sparsity. CoRR abs/2310.05175 (2023) - [i75]Zirui Liang, Yuntao Li, Tianjin Huang, Akrati Saxena, Yulong Pei, Mykola Pechenizkiy:
Heterophily-Based Graph Neural Network for Imbalanced Classification. CoRR abs/2310.08725 (2023) - [i74]Iftitahu Ni'mah, Samaneh Khoshrou, Vlado Menkovski, Mykola Pechenizkiy:
KeyGen2Vec: Learning Document Embedding via Multi-label Keyword Generation in Question-Answering. CoRR abs/2310.19650 (2023) - [i73]Can Jin, Tianjin Huang, Yihua Zhang, Mykola Pechenizkiy, Sijia Liu, Shiwei Liu, Tianlong Chen:
Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective. CoRR abs/2312.01397 (2023) - [i72]Jiaxu Zhao, Lu Yin, Shiwei Liu, Meng Fang, Mykola Pechenizkiy:
REST: Enhancing Group Robustness in DNNs through Reweighted Sparse Training. CoRR abs/2312.03044 (2023) - [i71]Ricky Maulana Fajri, Yulong Pei, Lu Yin, Mykola Pechenizkiy:
A Structural-Clustering Based Active Learning for Graph Neural Networks. CoRR abs/2312.04307 (2023) - [i70]Boqian Wu, Qiao Xiao, Shiwei Liu, Lu Yin, Mykola Pechenizkiy, Decebal Constantin Mocanu, Maurice van Keulen, Elena Mocanu:
E2ENet: Dynamic Sparse Feature Fusion for Accurate and Efficient 3D Medical Image Segmentation. CoRR abs/2312.04727 (2023) - [i69]Jiaxu Zhao, Meng Fang, Shirui Pan, Wenpeng Yin, Mykola Pechenizkiy:
GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language Models. CoRR abs/2312.06315 (2023) - [i68]Bram Grooten, Tristan Tomilin, Gautham Vasan, Matthew E. Taylor, A. Rupam Mahmood, Meng Fang, Mykola Pechenizkiy, Decebal Constantin Mocanu:
MaDi: Learning to Mask Distractions for Generalization in Visual Deep Reinforcement Learning. CoRR abs/2312.15339 (2023) - 2022
- [j58]Rianne Margaretha Schouten, Marcos L. P. Bueno, Wouter Duivesteijn, Mykola Pechenizkiy:
Mining sequences with exceptional transition behaviour of varying order using quality measures based on information-theoretic scoring functions. Data Min. Knowl. Discov. 36(1): 379-413 (2022) - [j57]Akrati Saxena, George Fletcher, Mykola Pechenizkiy:
NodeSim: node similarity based network embedding for diverse link prediction. EPJ Data Sci. 11(1): 24 (2022) - [j56]Fang Lv, Wei Wang, Linxuan Han, Di Wang, Yulong Pei, Junheng Huang, Bailing Wang, Mykola Pechenizkiy:
Mining trading patterns of pyramid schemes from financial time series data. Future Gener. Comput. Syst. 134: 388-398 (2022) - [j55]Akrati Saxena, George Fletcher, Mykola Pechenizkiy:
HM-EIICT: Fairness-aware link prediction in complex networks using community information. J. Comb. Optim. 44(4): 2853-2870 (2022) - [j54]Tianjin Huang, Vlado Menkovski, Yulong Pei, Yuhao Wang, Mykola Pechenizkiy:
Direction-aggregated Attack for Transferable Adversarial Examples. ACM J. Emerg. Technol. Comput. Syst. 18(3): 60:1-60:22 (2022) - [j53]Zahra Atashgahi, Ghada Sokar, Tim van der Lee, Elena Mocanu, Decebal Constantin Mocanu, Raymond N. J. Veldhuis, Mykola Pechenizkiy:
Quick and robust feature selection: the strength of energy-efficient sparse training for autoencoders. Mach. Learn. 111(1): 377-414 (2022) - [j52]Yulong Pei, Tianjin Huang, Werner van Ipenburg, Mykola Pechenizkiy:
ResGCN: attention-based deep residual modeling for anomaly detection on attributed networks. Mach. Learn. 111(2): 519-541 (2022) - [j51]Ben Halstead, Yun Sing Koh, Patricia Riddle, Russel Pears, Mykola Pechenizkiy, Albert Bifet, Gustavo Olivares, Guy Coulson:
Analyzing and repairing concept drift adaptation in data stream classification. Mach. Learn. 111(10): 3489-3523 (2022) - [j50]Zahra Atashgahi, Joost Pieterse, Shiwei Liu, Decebal Constantin Mocanu, Raymond N. J. Veldhuis, Mykola Pechenizkiy:
A brain-inspired algorithm for training highly sparse neural networks. Mach. Learn. 111(12): 4411-4452 (2022) - [j49]Jefrey Lijffijt, Dimitra Gkorou, Pieter Van Hertum, Alexander Ypma, Mykola Pechenizkiy, Joaquin Vanschoren:
Introduction to the Special Section on AI in Manufacturing: Current Trends and Challenges. SIGKDD Explor. 24(2): 81-85 (2022) - [j48]Masoud Mansoury, Himan Abdollahpouri, Mykola Pechenizkiy, Bamshad Mobasher, Robin Burke:
A Graph-Based Approach for Mitigating Multi-Sided Exposure Bias in Recommender Systems. ACM Trans. Inf. Syst. 40(2): 32:1-32:31 (2022) - [c160]Tristan Tomilin, Tianhong Dai, Meng Fang, Mykola Pechenizkiy:
LevDoom: A Benchmark for Generalization on Level Difficulty in Reinforcement Learning. CoG 2022: 72-79 - [c159]Ben Halstead, Yun Sing Koh, Patricia Riddle, Mykola Pechenizkiy, Albert Bifet:
A Probabilistic Framework for Adapting to Changing and Recurring Concepts in Data Streams. DSAA 2022: 1-10 - [c158]Afrizal Doewes, Akrati Saxena, Yulong Pei, Mykola Pechenizkiy:
Individual Fairness Evaluation for Automated Essay Scoring System. EDM 2022 - [c157]Collin F. Lynch, Mirko Marras, Mykola Pechenizkiy, Anna N. Rafferty, Steven Ritter, Vinitra Swamy, Renzhe Yu:
FATED 2022: Fairness, Accountability, and Transparency in Educational Data. EDM 2022 - [c156]Danil Provodin, Pratik Gajane, Mykola Pechenizkiy, Maurits Kaptein:
The Impact of Batch Learning in Stochastic Linear Bandits. ICDM 2022: 1149-1154 - [c155]Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elena Mocanu, Mykola Pechenizkiy, Zhangyang Wang, Decebal Constantin Mocanu:
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity. ICLR 2022 - [c154]Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, Zhangyang Wang, Mykola Pechenizkiy:
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training. ICLR 2022 - [c153]Lu Yin, Vlado Menkovski, Yulong Pei, Mykola Pechenizkiy:
Semantic-Based Few-Shot Classification by Psychometric Learning. IDA 2022: 392-403 - [c152]Ghada Sokar, Elena Mocanu, Decebal Constantin Mocanu, Mykola Pechenizkiy, Peter Stone:
Dynamic Sparse Training for Deep Reinforcement Learning. IJCAI 2022: 3437-3443 - [c151]Tianjin Huang, Tianlong Chen, Meng Fang, Vlado Menkovski, Jiaxu Zhao, Lu Yin, Yulong Pei, Decebal Constantin Mocanu, Zhangyang Wang, Mykola Pechenizkiy, Shiwei Liu:
You Can Have Better Graph Neural Networks by Not Training Weights at All: Finding Untrained GNNs Tickets. LoG 2022: 8 - [c150]Yibin Lei, Yu Cao, Dianqi Li, Tianyi Zhou, Meng Fang, Mykola Pechenizkiy:
Phrase-level Textual Adversarial Attack with Label Preservation. NAACL-HLT (Findings) 2022: 1095-1112 - [c149]Ghada Sokar, Zahra Atashgahi, Mykola Pechenizkiy, Decebal Constantin Mocanu:
Where to Pay Attention in Sparse Training for Feature Selection? NeurIPS 2022 - [c148]Qiao Xiao, Boqian Wu, Yu Zhang, Shiwei Liu, Mykola Pechenizkiy, Elena Mocanu, Decebal Constantin Mocanu:
Dynamic Sparse Network for Time Series Classification: Learning What to "See". NeurIPS 2022 - [c147]Dennis Collaris, Hilde J. P. Weerts, Daphne Miedema, Jarke J. van Wijk, Mykola Pechenizkiy:
Characterizing Data Scientists' Mental Models of Local Feature Importance. NordiCHI 2022: 9:1-9:12 - [c146]Ghada Sokar, Decebal Constantin Mocanu, Mykola Pechenizkiy:
Avoiding Forgetting and Allowing Forward Transfer in Continual Learning via Sparse Networks. ECML/PKDD (3) 2022: 85-101 - [c145]Tianjin Huang, Yulong Pei, Vlado Menkovski, Mykola Pechenizkiy:
Hop-Count Based Self-supervised Anomaly Detection on Attributed Networks. ECML/PKDD (1) 2022: 225-241 - [c144]Rianne Margaretha Schouten, Wouter Duivesteijn, Mykola Pechenizkiy:
Exceptional Model Mining for Repeated Cross-Sectional Data (EMM-RCS). SDM 2022: 585-593 - [c143]Lu Yin, Vlado Menkovski, Meng Fang, Tianjin Huang, Yulong Pei, Mykola Pechenizkiy:
Superposing many tickets into one: A performance booster for sparse neural network training. UAI 2022: 2267-2277 - [i67]