default search action
Neil T. Heffernan
Person information
- affiliation: Worcester Polytechnic Institute, Worcester, MA, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c227]Allison Wang, Ethan Prihar, Aaron Haim, Neil T. Heffernan:
Can Large Language Models Generate Middle School Mathematics Explanations Better Than Human Teachers? AIED Companion (2) 2024: 242-250 - [c226]Aaron Haim, Eamon Worden, Neil T. Heffernan:
The Effectiveness of AI Generated, On-Demand Assistance Within Online Learning Platforms. AIED Companion (2) 2024: 369-374 - [c225]Michael Smalenberger, Elham Sohrabi, Mengxue Zhang, Sami Baral, Kelly Smalenberger, Andrew S. Lan, Neil T. Heffernan:
Automatic Short Answer Grading in College Mathematics Using In-Context Meta-learning: An Evaluation of the Transferability of Findings. AIED Companion (1) 2024: 409-417 - [c224]Aaron Haim, Stephen Hutt, Stacy T. Shaw, Neil T. Heffernan:
Promoting Open Science in Artificial Intelligence: An Interactive Tutorial on Licensing, Data, and Containers. AIED Companion (2) 2024: 446-451 - [c223]Anthony F. Botelho, Avery Harrison Closser, Adam C. Sales, Neil T. Heffernan, Kirk P. Vanacore:
Causal Inference in Educational Data Mining. EDM 2024 - [c222]Aaron Haim, Stephen Hutt, Stacy T. Shaw, Neil T. Heffernan:
Promoting Open Science in Educational Data Mining: An Interactive Tutorial on Licensing, Data, and Containers. EDM 2024 - [c221]Neil T. Heffernan, Rose Wang, Christopher MacLellan, Arto Hellas, Chenglu Li, Candace Walkington, Joshua Littenberg-Tobias, David Joyner, Steven Moore, Adish Singla, Zach Pardos, Maciej Pankiewicz, Juho Kim, Shashank Sonkar, Clayton Cohn, Anthony Botelho, Andrew Lan, Lan Jiang, Mingyu Feng, Tanja Käser, Eamon Worden:
Leveraging Large Language Models for Next-Generation Educational Technologies. EDM 2024 - [c220]Andres Felipe Zambrano, Ryan S. Baker, Sami Baral, Neil T. Heffernan, Andrew S. Lan:
From Reaction to Anticipation: Predicting Future Affect. EDM 2024 - [c219]Kirk Vanacore, Ashish Gurung, Adam Sales, Neil T. Heffernan:
The Effect of Assistance on Gamers: Assessing The Impact of On-Demand Hints & Feedback Availability on Learning for Students Who Game the System. LAK 2024: 462-472 - [c218]Ashish Gurung, Kirk Vanacore, Andrew A. McReynolds, Korinn S. Ostrow, Eamon Worden, Adam C. Sales, Neil T. Heffernan:
Multiple Choice vs. Fill-In Problems: The Trade-off Between Scalability and Learning. LAK 2024: 507-517 - [c217]Hai Li, Chenglu Li, Wanli Xing, Sami Baral, Neil T. Heffernan:
Automated Feedback for Student Math Responses Based on Multi-Modality and Fine-Tuning. LAK 2024: 763-770 - [c216]Morgan P. Lee, Abubakir Siedahmed, Neil T. Heffernan:
Expert Features for a Student Support Recommendation Contextual Bandit Algorithm. LAK 2024: 864-870 - [c215]Hai Li, Wanli Xing, Chenglu Li, Wangda Zhu, Neil T. Heffernan:
Positive Affective Feedback Mechanisms in an Online Mathematics Learning Platform. L@S 2024: 371-375 - [c214]Steven Ritter, Stephen E. Fancsali, April Murphy, Neil T. Heffernan, Ben Motz, Debshila Basu Mallick, Jeremy Roschelle, Danielle S. McNamara, Joseph Jay Williams:
Fifth Annual Workshop on A/B Testing and Platform-Enabled Learning Research. L@S 2024: 565-566 - [i11]Paul Denny, Sumit Gulwani, Neil T. Heffernan, Tanja Käser, Steven Moore, Anna N. Rafferty, Adish Singla:
Generative AI for Education (GAIED): Advances, Opportunities, and Challenges. CoRR abs/2402.01580 (2024) - 2023
- [j16]Anthony Botelho, Sami Baral, John A. Erickson, Priyanka Benachamardi, Neil T. Heffernan:
Leveraging natural language processing to support automated assessment and feedback for student open responses in mathematics. J. Comput. Assist. Learn. 39(3): 823-840 (2023) - [c213]Mingyu Feng, Neil T. Heffernan, Kelly Collins, Cristina Heffernan, Robert F. Murphy:
Implementing and Evaluating ASSISTments Online Math Homework Support At large Scale over Two Years: Findings and Lessons Learned. AIED 2023: 28-40 - [c212]Aaron Haim, Stacy T. Shaw, Neil T. Heffernan:
How to Open Science: Promoting Principles and Reproducibility Practices Within the Artificial Intelligence in Education Community. AIED (Posters/Late Breaking Results/...) 2023: 74-78 - [c211]Ethan Prihar, Morgan P. Lee, Mia Hopman, Adam Tauman Kalai, Sofia Vempala, Allison Wang, Gabriel Wickline, Aly Murray, Neil T. Heffernan:
Comparing Different Approaches to Generating Mathematics Explanations Using Large Language Models. AIED (Posters/Late Breaking Results/...) 2023: 290-295 - [c210]Sami Baral, Anthony F. Botelho, Abhishek Santhanam, Ashish Gurung, John A. Erickson, Neil T. Heffernan:
Investigating Patterns of Tone and Sentiment in Teacher Written Feedback Messages. AIED (Posters/Late Breaking Results/...) 2023: 341-346 - [c209]Sami Baral, Anthony Botelho, Abhishek Santhanam, Ashish Gurung, Li Cheng, Neil T. Heffernan:
Auto-scoring Student Responses with Images in Mathematics. EDM 2023 - [c208]Aaron Haim, Robert Gyurcsan, Chris Baxter, Stacy T. Shaw, Neil T. Heffernan:
How to Open Science: Debugging Reproducibility within the Educational Data Mining Conference. EDM 2023 - [c207]Aaron Haim, Stacy T. Shaw, Neil T. Heffernan:
How to Open Science: Promoting Principles and Reproducibility Practices within the Educational Data Mining Community. EDM 2023 - [c206]Morgan P. Lee, Ethan A. Croteau, Ashish Gurung, Anthony F. Botelho, Neil T. Heffernan:
Knowledge Tracing Over Time: A Longitudinal Analysis. EDM 2023 - [c205]Ethan Prihar, Kirk Vanacore, Adam Sales, Neil T. Heffernan:
Effective Evaluation of Online Learning Interventions with Surrogate Measures. EDM 2023 - [c204]Mengxue Zhang, Neil T. Heffernan, Andrew S. Lan:
Modeling and Analyzing Scorer Preferences in Short-Answer Math Questions. EDM 2023 - [c203]Aaron Haim, Stacy T. Shaw, Neil T. Heffernan:
How to Open Science: A Principle and Reproducibility Review of the Learning Analytics and Knowledge Conference. LAK 2023: 156-164 - [c202]Kirk Vanacore, Ashish Gurung, Andrew A. McReynolds, Allison S. Liu, Stacy T. Shaw, Neil T. Heffernan:
Impact of Non-Cognitive Interventions on Student Learning Behaviors and Outcomes: An analysis of seven large-scale experimental inventions. LAK 2023: 165-174 - [c201]Ashish Gurung, Sami Baral, Kirk P. Vanacore, Andrew A. McReynolds, Hilary Kreisberg, Anthony F. Botelho, Stacy T. Shaw, Neil T. Heffernan:
Identification, Exploration, and Remediation: Can Teachers Predict Common Wrong Answers? LAK 2023: 399-410 - [c200]Ethan Prihar, Aaron Haim, Tracy Jia Shen, Adam Sales, Dongwon Lee, Xintao Wu, Neil T. Heffernan:
Investigating the Impact of Skill-Related Videos on Online Learning. L@S 2023: 4-13 - [c199]Ashish Gurung, Sami Baral, Morgan P. Lee, Adam C. Sales, Aaron Haim, Kirk P. Vanacore, Andrew A. McReynolds, Hilary Kreisberg, Cristina Heffernan, Neil T. Heffernan:
How Common are Common Wrong Answers? Crowdsourcing Remediation at Scale. L@S 2023: 70-80 - [c198]Aaron Haim, Chris Baxter, Robert Gyurcsan, Stacy T. Shaw, Neil T. Heffernan:
How to Open Science: Analyzing the Open Science Statement Compliance of the Learning @ Scale Conference. L@S 2023: 174-182 - [c197]Aaron Haim, Stacy T. Shaw, Neil T. Heffernan:
How to Open Science: Promoting Principles and Reproducibility Practices within the Learning @ Scale Community. L@S 2023: 248-250 - [c196]Steven Ritter, Neil T. Heffernan, Joseph Jay Williams, Derek Lomas, Klinton Bicknell, Jeremy Roschelle, Ben Motz, Danielle S. McNamara, Richard G. Baraniuk, Debshila Basu Mallick, René F. Kizilcec, Ryan Baker, Stephen Fancsali, April Murphy:
Fourth Annual Workshop on A/B Testing and Platform-Enabled Learning Research. L@S 2023: 254-256 - [c195]Ethan Prihar, Adam Sales, Neil T. Heffernan:
A Bandit You Can Trust. UMAP 2023: 106-115 - [i10]Mengxue Zhang, Neil T. Heffernan, Andrew S. Lan:
Modeling and Analyzing Scorer Preferences in Short-Answer Math Questions. CoRR abs/2306.00791 (2023) - 2022
- [j15]Wen Huang, Kevin Labille, Xintao Wu, Dongwon Lee, Neil T. Heffernan:
Achieving User-Side Fairness in Contextual Bandits. Hum. Centric Intell. Syst. 2(3-4): 81-94 (2022) - [c194]Aaron Haim, Ethan Prihar, Neil T. Heffernan:
Toward Improving Effectiveness of Crowdsourced, On-Demand Assistance from Educators in Online Learning Platforms. AIED (2) 2022: 29-34 - [c193]Ashish Gurung, Neil T. Heffernan:
Exploring Fairness in Automated Grading and Feedback Generation of Open-Response Math Problems. AIED (2) 2022: 71-76 - [c192]Anthony F. Botelho, Ethan Prihar, Neil T. Heffernan:
Deep Learning or Deep Ignorance? Comparing Untrained Recurrent Models in Educational Contexts. AIED (1) 2022: 281-293 - [c191]Adam Sales, Ethan Prihar, Johann Gagnon-Bartsch, Ashish Gurung, Neil T. Heffernan:
More Powerful A/B Testing Using Auxiliary Data and Deep Learning. AIED (2) 2022: 524-527 - [c190]Sami Baral, Karthik Seetharaman, Anthony F. Botelho, Anzhuo Wang, George T. Heineman, Neil T. Heffernan:
Enhancing Auto-scoring of Student Open Responses in the Presence of Mathematical Terms and Expressions. AIED (1) 2022: 685-690 - [c189]Aaron Haim, Neil T. Heffernan:
Student Perception on the Effectiveness of On-Demand Assistance in Online Learning Platforms. EDM 2022 - [c188]Ethan Prihar, Alexander Moore, Neil T. Heffernan:
Identifying Explanations Within Student-Tutor Chat Logs. EDM 2022 - [c187]Ethan Prihar, Manaal Syed, Korinn Ostrow, Stacy T. Shaw, Adam Sales, Neil T. Heffernan:
Exploring Common Trends in Online Educational Experiments. EDM 2022 - [c186]Raysa Rivera-Bergollo, Sami Baral, Anthony Botelho, Neil T. Heffernan:
Leveraging Auxiliary Data from Similar Problems to Improve Automatic Open Response Scoring. EDM 2022 - [c185]Adam Sales, Neil T. Heffernan:
Causal Inference in Educational Data Mining. EDM 2022 - [c184]Mengxue Zhang, Sami Baral, Neil T. Heffernan, Andrew S. Lan:
Automatic Short Math Answer Grading via In-context Meta-learning. EDM 2022 - [c183]Jim Goodell, Neil T. Heffernan:
Human-Centered Learning Engineering for the Emerging Intelligence Augmentation Economy. HCI (49) 2022: 619-623 - [c182]Ethan Prihar, Aaron Haim, Adam Sales, Neil T. Heffernan:
Automatic Interpretable Personalized Learning. L@S 2022: 1-11 - [c181]Steven Ritter, Neil T. Heffernan, Joseph Jay Williams, Derek Lomas, Ben Motz, Debshila Basu Mallick, Klinton Bicknell, Danielle S. McNamara, René F. Kizilcec, Jeremy Roschelle, Richard G. Baraniuk, Ryan Baker:
Third Annual Workshop on A/B Testing and Platform-Enabled Learning Research. L@S 2022: 252-254 - [d2]Aaron Haim, Li Cheng, Neil T. Heffernan:
ahaim5357/10.17605-osf.io-zcbjx: ASSISTments: XPRIZE Digital Learning Challenge. Zenodo, 2022 - [d1]Renah Razzaq, Neil T. Heffernan, Manuel Gonsalves:
Does automated reassesment & relearning improve math performance in comparison to traditional computer adaptive practice alone? Zenodo, 2022 - [i9]Mengxue Zhang, Sami Baral, Neil T. Heffernan, Andrew S. Lan:
Automatic Short Math Answer Grading via In-context Meta-learning. CoRR abs/2205.15219 (2022) - 2021
- [c180]Ethan Prihar, Alexander Moore, Neil T. Heffernan:
Identifying Struggling Students by Comparing Online Tutor Clickstreams. AIED (2) 2021: 290-295 - [c179]Jia Tracy Shen, Michiharu Yamashita, Ethan Prihar, Neil T. Heffernan, Xintao Wu, Sean McGrew, Dongwon Lee:
Classifying Math Knowledge Components via Task-Adaptive Pre-Trained BERT. AIED (1) 2021: 408-419 - [c178]Wen Huang, Kevin Labille, Xintao Wu, Dongwon Lee, Neil T. Heffernan:
Fairness-aware Bandit-based Recommendation. IEEE BigData 2021: 1273-1278 - [c177]Sami Baral, Anthony F. Botelho, John A. Erickson, Priyanka Benachamardi, Neil T. Heffernan:
Improving Automated Scoring of Student Open Responses in Mathematics. EDM 2021 - [c176]John A. Erickson, Anthony F. Botelho, Zonglin Peng, Rui Huang, Meghana V. Kasal, Neil T. Heffernan:
Is It Fair? Automated Open Response Grading. EDM 2021 - [c175]Ethan Prihar, Neil T. Heffernan:
A Novel Algorithm for Aggregating Crowdsourced Opinions. EDM 2021 - [c174]Adam Sales, Ethan Prihar, Neil T. Heffernan, John Pane:
Estimating the Intelligent Tutor Effects on Specific Posttest Problems. EDM 2021 - [c173]Shamya Karumbaiah, Andrew S. Lan, Sachit Nagpal, Ryan S. Baker, Anthony Botelho, Neil T. Heffernan:
Using Past Data to Warm Start Active Machine Learning: Does Context Matter? LAK 2021: 151-160 - [c172]Ashish Gurung, Anthony F. Botelho, Neil T. Heffernan:
Examining Student Effort on Help through Response Time Decomposition. LAK 2021: 292-301 - [c171]Steven Ritter, Neil T. Heffernan, Joseph Jay Williams, Derek Lomas, Klinton Bicknell:
Second Workshop on Educational A/B Testing at Scale. L@S 2021: 1-3 - [c170]Ethan Prihar, Thanaporn Patikorn, Anthony Botelho, Adam Sales, Neil T. Heffernan:
Toward Personalizing Students' Education with Crowdsourced Tutoring. L@S 2021: 37-45 - [i8]Jia Tracy Shen, Michiharu Yamashita, Ethan Prihar, Neil T. Heffernan, Xintao Wu, Sean McGrew, Dongwon Lee:
Classifying Math KCs via Task-Adaptive Pre-Trained BERT. CoRR abs/2105.11343 (2021) - [i7]Jia Tracy Shen, Michiharu Yamashita, Ethan Prihar, Neil T. Heffernan, Xintao Wu, Dongwon Lee:
MathBERT: A Pre-trained Language Model for General NLP Tasks in Mathematics Education. CoRR abs/2106.07340 (2021) - [i6]Adish Singla, Anna N. Rafferty, Goran Radanovic, Neil T. Heffernan:
Reinforcement Learning for Education: Opportunities and Challenges. CoRR abs/2107.08828 (2021) - 2020
- [c169]Renah Razzaq, Korinn S. Ostrow, Neil T. Heffernan:
Effect of Immediate Feedback on Math Achievement at the High School Level. AIED (2) 2020: 263-267 - [c168]Ashvini Varatharaj, Anthony F. Botelho, Xiwen Lu, Neil T. Heffernan:
Supporting Teacher Assessment in Chinese Language Learning Using Textual and Tonal Features. AIED (1) 2020: 562-573 - [c167]Aritra Ghosh, Neil T. Heffernan, Andrew S. Lan:
Context-Aware Attentive Knowledge Tracing. KDD 2020: 2330-2339 - [c166]Zitao Liu, Songfan Yang, Jiliang Tang, Neil T. Heffernan, Rose Luckin:
Recent Advances in Multimodal Educational Data Mining in K-12 Education. KDD 2020: 3549-3550 - [c165]John A. Erickson, Anthony F. Botelho, Steven McAteer, Ashvini Varatharaj, Neil T. Heffernan:
The automated grading of student open responses in mathematics. LAK 2020: 615-624 - [c164]Thanaporn Patikorn, Neil T. Heffernan:
Effectiveness of Crowd-Sourcing On-Demand Assistance from Teachers in Online Learning Platforms. L@S 2020: 115-124 - [c163]Steven Ritter, Neil T. Heffernan, Joseph Jay Williams, Burr Settles, Phillip Grimaldi, Derek Lomas:
Workshop Proposal: Educational A/B Testing at Scale. L@S 2020: 219-220 - [i5]Aritra Ghosh, Neil T. Heffernan, Andrew S. Lan:
Context-Aware Attentive Knowledge Tracing. CoRR abs/2007.12324 (2020) - [i4]Wen Huang, Kevin Labille, Xintao Wu, Dongwon Lee, Neil T. Heffernan:
Achieving User-Side Fairness in Contextual Bandits. CoRR abs/2010.12102 (2020)
2010 – 2019
- 2019
- [c162]Thanaporn Patikorn, David Deisadze, Leo Grande, Ziyang Yu, Neil T. Heffernan:
Generalizability of Methods for Imputing Mathematical Skills Needed to Solve Problems from Texts. AIED (1) 2019: 396-405 - [c161]Xiwen Lu, Korinn S. Ostrow, Neil T. Heffernan:
Understanding the Complexities of Chinese Word Acquisition within an Online Learning Platform. CSEDU (1) 2019: 321-329 - [c160]Anthony F. Botelho, Ryan S. Baker, Neil T. Heffernan:
Machine-Learned or Expert-Engineered Features? Exploring Feature Engineering Methods in Detectors of Student Behavior and Affect. EDM 2019 - [c159]Ashvini Varatharaj, Anthony F. Botelho, Xiwen Lu, Neil T. Heffernan:
Hao Fa Yin: Developing Automated Audio Assessment Tools for a Chinese Language Course. EDM 2019 - [c158]Tsung-Yen Yang, Ryan S. Baker, Christoph Studer, Neil T. Heffernan, Andrew S. Lan:
Active Learning for Student Affect Detection. EDM 2019 - [c157]Anthony F. Botelho, Ashvini Varatharaj, Eric G. Van Inwegen, Neil T. Heffernan:
Refusing to Try: Characterizing Early Stopout on Student Assignments. LAK 2019: 391-400 - 2018
- [c156]Korinn S. Ostrow, Neil T. Heffernan:
Testing the Validity and Reliability of Intrinsic Motivation Inventory Subscales Within ASSISTments. AIED (1) 2018: 381-394 - [c155]Anthony F. Botelho, Ryan S. Baker, Jaclyn Ocumpaugh, Neil T. Heffernan:
Studying Affect Dynamics and Chronometry Using Sensor-Free Detectors. EDM 2018 - [c154]Adam Sales, Anthony Botelho, Thanaporn Patikorn, Neil T. Heffernan:
Using Big Data to Sharpen Design-Based Inference in A/B Tests. EDM 2018 - [c153]Paul Salvador Inventado, Sharris Gayle Francisco Inventado, Noboru Matsuda, Yeping Li, Peter Scupelli, Korinn Ostrow, Neil T. Heffernan, Shihfen Tu, Craig Mason, Mary Logue, Pat McGuire:
Using Design Patterns for Math Preservice Teacher Education. EuroPLoP 2018: 31:1-31:8 - [c152]Shayan Doroudi, Joseph Jay Williams, Juho Kim, Thanaporn Patikorn, Korinn Ostrow, Douglas Selent, Neil T. Heffernan, Thomas T. Hills, Carolyn P. Rosé:
Crowdsourcing and Education: Towards a Theory and Praxis of Learnersourcing. ICLS 2018 - 2017
- [j14]Korinn S. Ostrow, Yan Wang, Neil T. Heffernan:
How Flexible Is Your Data? A Comparative Analysis of Scoring Methodologies across Learning Platforms in the Context of Group Differentiation. J. Learn. Anal. 4(2) (2017) - [j13]Maria Ofelia Clarissa Z. San Pedro, Ryan S. Baker, Neil T. Heffernan:
An Integrated Look at Middle School Engagement and Learning in Digital Environments as Precursors to College Attendance. Technol. Knowl. Learn. 22(3): 243-270 (2017) - [c151]Stefan Slater, Jaclyn Ocumpaugh, Ryan S. Baker, Ma. Victoria Almeda, Laura K. Allen, Neil T. Heffernan:
Using natural language processing tools to develop complex models of student engagement. ACII 2017: 542-547 - [c150]Anthony F. Botelho, Ryan S. Baker, Neil T. Heffernan:
Improving Sensor-Free Affect Detection Using Deep Learning. AIED 2017: 40-51 - [c149]Seth Adjei, Korinn Ostrow, Erik Erickson, Neil T. Heffernan:
Clustering Students in ASSISTments: Exploring System- and School-Level Traits to Advance Personalization. EDM 2017 - [c148]Shimin Kai, Ma. Victoria Almeda, Ryan S. Baker, Nicole Shechtman, Cristina Heffernan, Neil T. Heffernan:
Modeling Wheel-spinning and Productive Persistence in Skill Builders. EDM 2017 - [c147]Thanaporn Patikorn, Neil T. Heffernan, Jian Zou:
An Offline Evaluation Method for Individual Treatment Rules and How to Find Heterogeneous Treatment Effect. EDM 2017 - [c146]Thanaporn Patikorn, Douglas Selent, Neil T. Heffernan, Joseph Beck, Jian Zou:
Using a Single Model Trained across Multiple Experiments to Improve the Detection of Treatment Effects. EDM 2017 - [c145]Biao Yin, Anthony F. Botelho, Thanaporn Patikorn, Neil T. Heffernan, Jian Zou:
Causal Forest vs. Naive Causal Forest in Detecting Personalization: An Empirical Study in ASSISTments. EDM 2017 - [c144]Siyuan Zhao, Neil T. Heffernan:
Estimating Individual Treatment Effect from Educational Studies with Residual Counterfactual Networks. EDM 2017 - [c143]Paul Salvador Inventado, Peter Scupelli, Cristina Heffernan, Neil T. Heffernan:
Feedback Design Patterns for Math Online Learning Systems. EuroPLoP 2017: 31:1-31:15 - [c142]Seth Akonor Adjei, Anthony F. Botelho, Neil T. Heffernan:
Sequencing content in an adaptive testing system: the role of choice. LAK 2017: 178-182 - [c141]Stefan Slater, Ryan S. Baker, Ma. Victoria Almeda, Alex J. Bowers, Neil T. Heffernan:
Using correlational topic modeling for automated topic identification in intelligent tutoring systems. LAK 2017: 393-397 - [c140]Jaclyn Ocumpaugh, Ryan S. Baker, Maria Ofelia Clarissa Z. San Pedro, M. Aaron Hawn, Cristina Heffernan, Neil T. Heffernan, Stefan A. Slater:
Guidance counselor reports of the ASSISTments college prediction model (ACPM). LAK 2017: 479-488 - [c139]Liang Zhang, Xiaolu Xiong, Siyuan Zhao, Anthony Botelho, Neil T. Heffernan:
Incorporating Rich Features into Deep Knowledge Tracing. L@S 2017: 169-172 - [c138]Siyuan Zhao, Yaqiong Zhang, Xiaolu Xiong, Anthony Botelho, Neil T. Heffernan:
A Memory-Augmented Neural Model for Automated Grading. L@S 2017: 189-192 - [c137]Biao Yin, Thanaporn Patikorn, Anthony F. Botelho, Neil T. Heffernan:
Observing Personalizations in Learning: Identifying Heterogeneous Treatment Effects Using Causal Trees. L@S 2017: 299-302 - [c136]Xiwen Lu, Xiaolu Xiong, Neil T. Heffernan:
Experimenting Choices of Video and Text Feedback in Authentic Foreign Language Assignments at Scale. L@S 2017: 335-338 - 2016
- [j12]Neil T. Heffernan, Korinn S. Ostrow, Kim M. Kelly, Douglas Selent, Eric Van Inwegen, Xiaolu Xiong, Joseph Jay Williams:
The Future of Adaptive Learning: Does the Crowd Hold the Key? Int. J. Artif. Intell. Educ. 26(2): 615-644 (2016) - [c135]Stefan Slater, Jaclyn Ocumpaugh, Ryan S. Baker, Peter Scupelli, Paul Salvador Inventado, Neil T. Heffernan:
Semantic Features of Math Problems: Relationships to Student Learning and Engagement. EDM 2016: 223-230 - [c134]Anthony F. Botelho, Seth Adjei, Neil T. Heffernan:
Modeling Interactions Across Skills: A Method to Construct and Compare Models Predicting the Existence of Skill Relationships. EDM 2016: 292-297 - [c133]Paul Salvador Inventado, Peter Scupelli, Eric Van Inwegen, Korinn Ostrow, Neil Thomas Heffernan III, Jaclyn Ocumpaugh, Ryan S. Baker, Stefan Slater, Mia Almeda:
Hint Availability Slows Completion Times in Summer Work. EDM 2016: 388-393 - [c132]Joseph Jay Williams, Anthony Botelho, Adam Sales, Neil T. Heffernan, Charles Lang:
Discovering 'Tough Love' Interventions Despite Dropout. EDM 2016: 650-651 - [c131]Korinn S. Ostrow, Douglas Selent, Yan Wang, Eric Van Inwegen, Neil T. Heffernan, Joseph Jay Williams:
The assessment of learning infrastructure (ALI): the theory, practice, and scalability of automated assessment. LAK 2016: 279-288 - [c130]Yan Wang, Korinn Ostrow, Joseph Beck, Neil T. Heffernan:
Enhancing the efficiency and reliability of group differentiation through partial credit. LAK 2016: 454-458 - [c129]Seth Akonor Adjei, Anthony F. Botelho, Neil T. Heffernan:
Predicting student performance on post-requisite skills using prerequisite skill data: an alternative method for refining prerequisite skill structures. LAK 2016: 469-473 - [c128]Yan Wang, Korinn Ostrow, Seth Adjei, Neil T. Heffernan:
The Opportunity Count Model: A Flexible Approach to Modeling Student Performance. L@S 2016: 113-116 - [c127]Kim M. Kelly, Neil T. Heffernan:
Optimizing the Amount of Practice in an On-Line Platform. L@S 2016: 145-148 - [c126]Douglas Selent, Thanaporn Patikorn, Neil T. Heffernan:
ASSISTments Dataset from Multiple Randomized Controlled Experiments. L@S 2016: 181-184 - [c125]Korinn S. Ostrow, Neil T. Heffernan:
Studying Learning at Scale with the ASSISTments TestBed. L@S 2016: 333-334 - [c124]Joseph Jay Williams, Juho Kim, Anna N. Rafferty, Samuel G. Maldonado, Krzysztof Z. Gajos, Walter S. Lasecki, Neil T. Heffernan:
AXIS: Generating Explanations at Scale with Learnersourcing and Machine Learning. L@S 2016: 379-388 - 2015
- [c123]Korinn Ostrow, Neil T. Heffernan, Cristina Heffernan, Zoe Peterson:
Blocking Vs. Interleaving: Examining Single-Session Effects Within Middle School Math Homework. AIED 2015: 338-347 - [c122]Seth Akonor Adjei, Neil T. Heffernan:
Improving Learning Maps Using an Adaptive Testing System: PLACEments. AIED 2015: 517-520 - [c121]Yang Jiang, Ryan Shaun Joazeiro de Baker, Luc Paquette, Maria Ofelia Clarissa Z. San Pedro, Neil T. Heffernan:
Learning, Moment-by-Moment and Over the Long Term. AIED 2015: 654-657 - [c120]Korinn S. Ostrow, Neil T. Heffernan:
The Role of Student Choice Within Adaptive Tutoring. AIED 2015: 752-755 - [c119]Douglas Selent, Neil T. Heffernan:
When More Intelligent Tutoring in the Form of Buggy Messages Does not Help. AIED 2015: 768-771 - [c118]Kim M. Kelly, Neil T. Heffernan:
Developing Self-regulated Learners Through an Intelligent Tutoring System. AIED 2015: 840-843 - [c117]Joseph Jay Williams, Markus Krause, Praveen K. Paritosh, Jacob Whitehill, Justin Reich, Juho Kim, Piotr Mitros, Neil T. Heffernan, Brian C. Keegan:
Connecting Collaborative & Crowd Work with Online Education. CSCW Companion 2015: 313-318 - [c116]Ryan S. Baker, Peter Brusilovsky, Dragan Gasevic, Neil T. Heffernan, Mykola Pechenizkiy, Alyssa Friend Wise:
Grand Challenges for EDM and Related Research Areas. EDM 2015: 15 - [c115]Maria Ofelia San Pedro, Erica L. Snow, Ryan S. Baker, Danielle S. McNamara, Neil T. Heffernan:
Exploring Dynamical Assessments of Affect, Behavior, and Cognition and Math State Test Achievement. EDM 2015: 85-92 - [c114]Charles Lang, Neil T. Heffernan, Korinn Ostrow, Yutao Wang:
The Impact of Incorporating Student Confidence Items into an Intelligent Tutor: A Randomized Controlled Trial. EDM 2015: 144-149 - [c113]Eric Van Inwegen, Seth Adjei, Yan Wang, Neil T. Heffernan:
Using Partial Credit and Response History to Model User Knowledge. EDM 2015: 313-319 - [c112]Korinn Ostrow, Christopher Donnelly, Neil T. Heffernan:
Optimizing Partial Credit Algorithms to Predict Student Performance. EDM 2015: 404-407 - [c111]Francisco Enrique Vicente Castro, Seth Adjei, Tyler Colombo, Neil T. Heffernan:
Building Models to Predict Hint-or-Attempt Actions of Students. EDM 2015: 476-479 - [c110]Eric Van Inwegen, Yan Wang, Seth Adjei, Neil T. Heffernan:
The Effect of the Distribution of Predictions of User Models. EDM 2015: 620-621 - [c109]Anthony F. Botelho, Seth Akonor Adjei, Hao Wan, Neil T. Heffernan:
Predicting Student Aptitude Using Performance History. EDM 2015: 622-623 - [c108]Kim M. Kelly, Yan Wang, Tamisha Thompson, Neil T. Heffernan:
Defining Mastery: Knowledge Tracing Versus N- Consecutive Correct Responses. EDM 2015: 630-631 - [c107]Yutao Wang, Neil T. Heffernan, Cristina Heffernan:
Towards better affect detectors: effect of missing skills, class features and common wrong answers. LAK 2015: 31-35 - [c106]Maria Ofelia Clarissa Z. San Pedro, Ryan Shaun Baker, Neil T. Heffernan, Jaclyn Ocumpaugh:
Exploring college major choice and middle school student behavior, affect and learning: what happens to students who game the system? LAK 2015: 36-40 - [c105]Eric Van Inwegen, Seth Adjei, Yan Wang, Neil T. Heffernan:
An analysis of the impact of action order on future performance: the fine-grain action model. LAK 2015: 320-324 - [c104]Korinn Ostrow, Christopher Donnelly, Seth Adjei, Neil T. Heffernan:
Improving Student Modeling Through Partial Credit and Problem Difficulty. L@S 2015: 11-20 - [c103]Anthony Botelho, Hao Wan, Neil T. Heffernan:
The Prediction of Student First Response Using Prerequisite Skills. L@S 2015: 39-45 - [c102]Joseph Jay Williams, Korinn Ostrow, Xiaolu Xiong, Elena L. Glassman, Juho Kim, Samuel G. Maldonado, Na Li, Justin Reich, Neil T. Heffernan:
Using and Designing Platforms for In Vivo Educational Experiments. L@S 2015: 409-412 - [c101]Joseph Jay Williams, Neil T. Heffernan:
A Methodology for Discovering how to Adaptively Personalize to Users using Experimental Comparisons. UMAP Workshops 2015 - [e1]Cristina Conati, Neil T. Heffernan, Antonija Mitrovic, M. Felisa Verdejo:
Artificial Intelligence in Education - 17th International Conference, AIED 2015, Madrid, Spain, June 22-26, 2015. Proceedings. Lecture Notes in Computer Science 9112, Springer 2015, ISBN 978-3-319-19772-2 [contents] - [i3]Joseph Jay Williams, Korinn Ostrow, Xiaolu Xiong, Elena L. Glassman, Juho Kim, Samuel G. Maldonado, Na Li, Justin Reich, Neil T. Heffernan:
Using and Designing Platforms for In Vivo Education Experiments. CoRR abs/1502.04245 (2015) - [i2]Joseph Jay Williams, Neil T. Heffernan:
A Methodology for Discovering how to Adaptively Personalize to Users using Experimental Comparisons. CoRR abs/1509.04360 (2015) - [i1]Shubhendu Trivedi, Zachary A. Pardos, Neil T. Heffernan:
The Utility of Clustering in Prediction Tasks. CoRR abs/1509.06163 (2015) - 2014
- [j11]Neil T. Heffernan, Cristina Linquist-Heffernan:
The ASSISTments Ecosystem: Building a Platform that Brings Scientists and Teachers Together for Minimally Invasive Research on Human Learning and Teaching. Int. J. Artif. Intell. Educ. 24(4): 470-497 (2014) - [j10]Jaclyn Ocumpaugh, Ryan Shaun Baker, Sujith M. Gowda, Neil T. Heffernan, Cristina Heffernan:
Population validity for educational data mining models: A case study in affect detection. Br. J. Educ. Technol. 45(3): 487-501 (2014) - [c100]Seth Adjei, Douglas Selent, Neil T. Heffernan, Zachary A. Pardos, Angela Broaddus, Neal Kingston:
Refining Learning Maps with Data Fitting Techniques: Searching for Better Fitting Learning Maps. EDM 2014: 413-414 - [c99]William J. Hawkins, Neil T. Heffernan:
Using Similarity to the Previous Problem to Improve Bayesian Knowledge Tracing. EDM (Workshops) 2014 - [c98]Maria Ofelia San Pedro, Jaclyn Ocumpaugh, Ryan S. Baker, Neil T. Heffernan:
Predicting STEM and Non-STEM College Major Enrollment from Middle School Interaction with Mathematics Educational Software. EDM 2014: 276-279 - [c97]Korinn Ostrow, Neil T. Heffernan:
Testing the Multimedia Principle in the Real World: A Comparison of Video vs. Text Feedback in Authentic Middle School Math Assignments. EDM 2014: 296-299 - [c96]Xiaolu Xiong, Seth Adjei, Neil T. Heffernan:
Improving Retention Performance Prediction with Prerequisite Skill Features. EDM 2014: 375-376 - [c95]Linglong Zhu, Yutao Wang, Neil T. Heffernan:
The Sequence of Action Model: Leveraging the Sequence of Attempts and Hints. EDM (Workshops) 2014 - [c94]Mingyu Feng, Jeremy Roschelle, Robert F. Murphy, Neil T. Heffernan:
Using Analytics for Improving Implementation Fidelity in an Large Scale Efficacy Trial. ICLS 2014 - [c93]William J. Hawkins, Neil T. Heffernan, Ryan Shaun Joazeiro de Baker:
Learning Bayesian Knowledge Tracing Parameters with a Knowledge Heuristic and Empirical Probabilities. Intelligent Tutoring Systems 2014: 150-155 - [c92]Yutao Wang, Neil T. Heffernan:
The Effect of Automatic Reassessment and Relearning on Assessing Student Long-Term Knowledge in Mathematics. Intelligent Tutoring Systems 2014: 490-495 - [c91]Mingyu Feng, Jeremy Roschelle, Neil T. Heffernan, Janet Fairman, Robert F. Murphy:
Implementation of an Intelligent Tutoring System for Online Homework Support in an Efficacy Trial. Intelligent Tutoring Systems 2014: 561-566 - [c90]Junjie Gu, Yutao Wang, Neil T. Heffernan:
Personalizing Knowledge Tracing: Should We Individualize Slip, Guess, Prior or Learn Rate? Intelligent Tutoring Systems 2014: 647-648 - [c89]Douglas Selent, Neil T. Heffernan:
Reducing Student Hint Use by Creating Buggy Messages from Machine Learned Incorrect Processes. Intelligent Tutoring Systems 2014: 674-675 - 2013
- [c88]William J. Hawkins, Neil T. Heffernan, Ryan Shaun Joazeiro de Baker:
Which Is More Responsible for Boredom in Intelligent Tutoring Systems: Students (Trait) or Problems (State)? ACII 2013: 618-623 - [c87]Kim M. Kelly, Neil T. Heffernan, Cristina Heffernan, Susan R. Goldman, James Pellegrino, Deena Soffer Goldstein:
Estimating the Effect of Web-Based Homework. AIED Workshops 2013 - [c86]Maria Ofelia Clarissa Z. San Pedro, Ryan Shaun Joazeiro de Baker, Sujith M. Gowda, Neil T. Heffernan:
Towards an Understanding of Affect and Knowledge from Student Interaction with an Intelligent Tutoring System. AIED 2013: 41-50 - [c85]Yutao Wang, Neil T. Heffernan:
Extending Knowledge Tracing to Allow Partial Credit: Using Continuous versus Binary Nodes. AIED 2013: 181-188 - [c84]Kim M. Kelly, Neil T. Heffernan, Cristina Heffernan, Susan R. Goldman, James Pellegrino, Deena Soffer Goldstein:
Estimating the Effect of Web-Based Homework. AIED 2013: 824-827 - [c83]Yutao Wang, Neil T. Heffernan:
A Comparison of Two Different Methods to Individualize Students and Skills. AIED 2013: 836-839 - [c82]William J. Hawkins, Neil T. Heffernan, Yutao Wang, Ryan Shaun Baker:
Extending the Assistance Model: Analyzing the Use of Assistance over Time. EDM 2013: 59-66 - [c81]Maria Ofelia Clarissa Z. San Pedro, Ryan Shaun Baker, Alex J. Bowers, Neil T. Heffernan:
Predicting College Enrollment from Student Interaction with an Intelligent Tutoring System in Middle School. EDM 2013: 177-184 - [c80]Seth Adjei, Seye Salehizadeh, Yutao Wang, Neil T. Heffernan:
Do students really learn an equal amount independent of whether they get an item correct or wrong? EDM 2013: 304-305 - [c79]Hien Duong, Linglong Zhu, Yutao Wang, Neil T. Heffernan:
A prediction model that uses the sequence of attempts and hints to better predict knowledge: "Better to attempt the problem first, rather than ask for a hint". EDM 2013: 316-317 - [c78]Kim M. Kelly, Ivon Arroyo, Neil T. Heffernan:
Using ITS Generated Data to Predict Standardized Test Scores. EDM 2013: 322-323 - [c77]Paul Kehrer, Kim M. Kelly, Neil T. Heffernan:
Does Immediate Feedback While Doing Homework Improve Learning? FLAIRS 2013 - [c76]Kim M. Kelly, Neil T. Heffernan, Sidney K. D'Mello, Jeffrey Namais, Amber Chauncey Strain:
Added Teacher-Created Motiational Video to an ITS. FLAIRS 2013 - [c75]Fei Song, Shubhendu Trivedi, Yutao Wang, Gábor N. Sárközy, Neil T. Heffernan:
Applying Clustering to the Problem of Predicting Retention within an ITS: Comparing Regularity Clustering with Traditional Methods. FLAIRS 2013 - 2012
- [c74]Shubhendu Trivedi, Zachary A. Pardos, Gábor N. Sárközy, Neil T. Heffernan:
Co-Clustering by Bipartite Spectral Graph Partitioning for Out-of-Tutor Prediction. EDM 2012: 33-40 - [c73]Yutao Wang, Neil T. Heffernan:
Leveraging First Response Time into the Knowledge Tracing Model. EDM 2012: 176-179 - [c72]Zachary A. Pardos, Neil T. Heffernan:
Tutor Modeling Versus Student Modeling. FLAIRS 2012 - [c71]Yumeng Qiu, Zachary A. Pardos, Neil T. Heffernan:
Towards Data Driven Model Improvement. FLAIRS 2012 - [c70]Yue Gong, Joseph E. Beck, Neil T. Heffernan:
WEBsistments: Enabling an Intelligent Tutoring System to Excel at Explaining Rather Than Coaching. ITS 2012: 268-273 - [c69]Yutao Wang, Neil T. Heffernan:
The Student Skill Model. ITS 2012: 399-404 - [c68]Zachary A. Pardos, Shubhendu Trivedi, Neil T. Heffernan, Gábor N. Sárközy:
Clustered Knowledge Tracing. ITS 2012: 405-410 - 2011
- [j9]Ryan Shaun Joazeiro de Baker, Adam B. Goldstein, Neil T. Heffernan:
Detecting Learning Moment-by-Moment. Int. J. Artif. Intell. Educ. 21(1-2): 5-25 (2011) - [j8]Yue Gong, Joseph E. Beck, Neil T. Heffernan:
How to Construct More Accurate Student Models: Comparing and Optimizing Knowledge Tracing and Performance Factor Analysis. Int. J. Artif. Intell. Educ. 21(1-2): 27-46 (2011) - [j7]Zachary A. Pardos, Matthew D. Dailey, Neil T. Heffernan:
Learning What Works in its from Non-Traditional Randomized Controlled Trial Data. Int. J. Artif. Intell. Educ. 21(1-2): 47-63 (2011) - [j6]Zachary A. Pardos, Sujith M. Gowda, Ryan Shaun Joazeiro de Baker, Neil T. Heffernan:
The sum is greater than the parts: ensembling models of student knowledge in educational software. SIGKDD Explor. 13(2): 37-44 (2011) - [c67]Jozsef Patvarczki, Neil T. Heffernan:
Automatic Physical Database Tuning Middleware for Web-Based Applications. ADBIS 2011: 361-374 - [c66]Ravi Singh, Muhammad Saleem, Prabodha Pradhan, Cristina Heffernan, Neil T. Heffernan, Leena M. Razzaq, Matthew D. Dailey, Cristine O'Connor, Courtney Mulcahy:
Feedback during Web-Based Homework: The Role of Hints. AIED 2011: 328-336 - [c65]Shubhendu Trivedi, Zachary A. Pardos, Neil T. Heffernan:
Clustering Students to Generate an Ensemble to Improve Standard Test Score Predictions. AIED 2011: 377-384 - [c64]Bahador B. Nooraei, Zachary A. Pardos, Neil T. Heffernan, Ryan Shaun Joazeiro de Baker:
Less is More: Improving the Speed and Prediction Power of Knowledge Tracing by Using Less Data. EDM 2011: 101-110 - [c63]Shubhendu Trivedi, Zachary A. Pardos, Gábor N. Sárközy, Neil T. Heffernan:
Spectral Clustering in Educational Data Mining. EDM 2011: 129-138 - [c62]Yumeng Qiu, Yingmei Qi, Hanyuan Lu, Zachary A. Pardos, Neil T. Heffernan:
Does Time Matter? Modeling the Effect of Time with Bayesian Knowledge Tracing. EDM 2011: 139-148 - [c61]Zachary A. Pardos, Sujith M. Gowda, Ryan Shaun Joazeiro de Baker, Neil T. Heffernan:
Ensembling Predictions of Student Post-Test Scores for an Intelligent Tutoring System. EDM 2011: 189-198 - [c60]Mingyu Feng, Neil T. Heffernan, Zachary A. Pardos, Cristina Heffernan:
Comparing of Traditional Assessment with Dynamic Testing in a Tutoring System. EDM 2011: 295-300 - [c59]Yutao Wang, Neil T. Heffernan:
Towards Modeling Forgetting and Relearning in ITS: Preliminary Analysis of ARRS Data. EDM 2011: 352 - [c58]Yutao Wang, Neil T. Heffernan:
The "Assistance" Model: Leveraging How Many Hints and Attempts a Student Needs. FLAIRS 2011 - [c57]Ryan Shaun Joazeiro de Baker, Zachary A. Pardos, Sujith M. Gowda, Bahador B. Nooraei, Neil T. Heffernan:
Ensembling Predictions of Student Knowledge within Intelligent Tutoring Systems. UMAP 2011: 13-24 - [c56]Zachary A. Pardos, Neil T. Heffernan:
KT-IDEM: Introducing Item Difficulty to the Knowledge Tracing Model. UMAP 2011: 243-254 - 2010
- [j5]Shudong Wang, Neil T. Heffernan:
Ethical issues in Computer-Assisted Language Learning: Perceptions of teachers and learners. Br. J. Educ. Technol. 41(5): 796-813 (2010) - [c55]Mingyu Feng, Neil T. Heffernan:
Can We Get Better Assessment From A Tutoring System Compared to Traditional Paper Testing? Can We Have Our Cake (Better Assessment) and Eat It too (Student Learning During the Test)? EDM 2010: 41-50 - [c54]Yue Gong, Joseph E. Beck, Neil T. Heffernan:
Using multiple Dirichlet distributions to improve parameter plausibility. EDM 2010: 61-70 - [c53]Zachary A. Pardos, Neil T. Heffernan:
Navigating the parameter space of Bayesian Knowledge Tracing models: Visualizations of the convergence of the Expectation Maximization algorithm. EDM 2010: 161-170 - [c52]Adam B. Goldstein, Ryan Shaun Joazeiro de Baker, Neil T. Heffernan:
Pinpointing Learning Moments; A finer grain P(J) model. EDM 2010: 289-290 - [c51]Yutao Wang, Neil T. Heffernan, Joseph E. Beck:
Representing Student Performance with Partial Credit. EDM 2010: 335-336 - [c50]Ryan Shaun Joazeiro de Baker, Adam B. Goldstein, Neil T. Heffernan:
Detecting the Moment of Learning. Intelligent Tutoring Systems (1) 2010: 25-34 - [c49]Yue Gong, Joseph E. Beck, Neil T. Heffernan:
Comparing Knowledge Tracing and Performance Factor Analysis by Using Multiple Model Fitting Procedures. Intelligent Tutoring Systems (1) 2010: 35-44 - [c48]Zachary A. Pardos, Matthew D. Dailey, Neil T. Heffernan:
Learning What Works in ITS from Non-traditional Randomized Controlled Trial Data. Intelligent Tutoring Systems (2) 2010: 41-50 - [c47]Yue Gong, Joseph E. Beck, Neil T. Heffernan, Elijah Forbes-Summers:
The Fine-Grained Impact of Gaming (?) on Learning. Intelligent Tutoring Systems (1) 2010: 194-203 - [c46]Dovan Rai, Joseph E. Beck, Neil T. Heffernan:
Coordinate Geometry Learning Environment with Game-Like Properties. Intelligent Tutoring Systems (2) 2010: 254-256 - [c45]Mingyu Feng, Neil T. Heffernan:
Can We Get Better Assessment from a Tutoring System Compared to Traditional Paper Testing? Can We Have Our Cake (Better Assessment) and Eat It too (Student Learning during the Test)? Intelligent Tutoring Systems (2) 2010: 309-311 - [c44]Mingyu Feng, Neil T. Heffernan, Kenneth R. Koedinger:
Using Data Mining Findings to Aid Searching for Better Cognitive Models. Intelligent Tutoring Systems (2) 2010: 312-314 - [c43]Leena M. Razzaq, Neil T. Heffernan:
Hints: Is It Better to Give or Wait to Be Asked? Intelligent Tutoring Systems (1) 2010: 349-358 - [c42]Dovan Rai, Joseph E. Beck, Neil T. Heffernan:
Mily's World: A Coordinate Geometry Learning Environment with Game-Like Properties. Intelligent Tutoring Systems (2) 2010: 399-401 - [c41]Dovan Rai, Joseph E. Beck, Neil T. Heffernan:
A Coordinate Geometry Learning Environment with Game-Like Properties. Intelligent Tutoring Systems (2) 2010: 439 - [c40]Zachary A. Pardos, Neil T. Heffernan:
Modeling Individualization in a Bayesian Networks Implementation of Knowledge Tracing. UMAP 2010: 255-266 - [p2]Leena M. Razzaq, Neil T. Heffernan:
Open Content Authoring Tools. Advances in Intelligent Tutoring Systems 2010: 407-420
2000 – 2009
- 2009
- [j4]Mingyu Feng, Neil T. Heffernan, Cristina Linquist-Heffernan, Murali Mani:
Using Mixed-Effects Modeling to Analyze Different Grain-Sized Skill Models in an Intelligent Tutoring System. IEEE Trans. Learn. Technol. 2(2): 79-92 (2009) - [j3]Leena M. Razzaq, Jozsef Patvarczki, Shane F. Almeida, Manasi Vartak, Mingyu Feng, Neil T. Heffernan, Kenneth R. Koedinger:
The ASSISTment Builder: Supporting the Life Cycle of Tutoring System Content Creation. IEEE Trans. Learn. Technol. 2(2): 157-166 (2009) - [j2]Mingyu Feng, Neil T. Heffernan, Kenneth R. Koedinger:
Addressing the assessment challenge with an online system that tutors as it assesses. User Model. User Adapt. Interact. 19(3): 243-266 (2009) - [c39]Jozsef Patvarczki, Murali Mani, Neil T. Heffernan:
Performance Driven Database Design for Scalable Web Applications. ADBIS 2009: 43-58 - [c38]Leena M. Razzaq, Neil T. Heffernan:
To Tutor or Not to Tutor: That is the Question. AIED 2009: 457-464 - [c37]Zachary A. Pardos, Neil T. Heffernan:
Detecting the Learning Value of Items In a Randomized Problem Set. AIED 2009: 499-506 - [c36]Mingyu Feng, Neil T. Heffernan, Joseph E. Beck:
Using Learning Decomposition to Analyze Instructional Effectiveness in the ASSISTment System. AIED 2009: 523-530 - [c35]Mingyu Feng, Joseph Beck, Neil T. Heffernan:
Using Learning Decomposition and Bootstrapping with Randomization to Compare the Impact of Different Educational Interventions on Learning. EDM 2009: 51-60 - [c34]Yue Gong, Dovan Rai, Joseph Beck, Neil T. Heffernan:
Does Self-Discipline impact students' knowledge and learning?. EDM 2009: 61-70 - [c33]Zachary A. Pardos, Neil T. Heffernan:
Determining the Significance of Item Order In Randomized Problem Sets. EDM 2009: 111-120 - 2008
- [j1]Neil T. Heffernan, Kenneth R. Koedinger, Leena M. Razzaq:
Expanding the Model-Tracing Architecture: A 3rd Generation Intelligent Tutor for Algebra Symbolization. Int. J. Artif. Intell. Educ. 18(2): 153-178 (2008) - [c32]Leena M. Razzaq, Neil T. Heffernan:
Towards designing a user-adaptive web-based e-learning system. CHI Extended Abstracts 2008: 3525-3530 - [c31]Mingyu Feng, Joseph E. Beck, Neil T. Heffernan, Kenneth R. Koedinger:
Can an Intelligent Tutoring System Predict Math Proficiency as Well as a Standarized Test?. EDM 2008: 107-116 - [c30]Zachary A. Pardos, Neil T. Heffernan, Carolina Ruiz, Joseph E. Beck:
The Composition Effect: Conjuntive or Compensatory? An Analysis of Multi-Skill Math Questions in ITS. EDM 2008: 147-156 - [c29]Mingyu Feng, Neil T. Heffernan, Joseph E. Beck, Kenneth R. Koedinger:
Can we predict which groups of questions students will learn from?. EDM 2008: 218-225 - [c28]Leena M. Razzaq, Michael Mendicino, Neil T. Heffernan:
Comparing Classroom Problem-Solving with No Feedback to Web-Based Homework Assistance. Intelligent Tutoring Systems 2008: 426-437 - [c27]Jozsef Patvarczki, Shane F. Almeida, Joseph E. Beck, Neil T. Heffernan:
Lessons Learned from Scaling Up a Web-Based Intelligent Tutoring System. Intelligent Tutoring Systems 2008: 766-770 - [c26]Yu Guo, Joseph E. Beck, Neil T. Heffernan:
Trying to Reduce Bottom-Out Hinting: Will Telling Student How Many Hints They Have Left Help?. Intelligent Tutoring Systems 2008: 774-778 - 2007
- [c25]Leena M. Razzaq, Neil T. Heffernan, Robert W. Lindeman:
What Level of Tutor Interaction is Best? AIED 2007: 222-229 - [c24]Zachary A. Pardos, Mingyu Feng, Neil T. Heffernan, Cristina Linquist-Heffernan:
Analyzing Fine-Grained Skill Models Using Bayesian and Mixed Effects Methods. AIED 2007: 626-628 - [c23]Rob R. Weitz, Neil T. Heffernan, Viswanathan Kodaganallur, David Rosenthal:
The Distribution of Student Errors Across Schools: An Initial Study. AIED 2007: 671-673 - [c22]Cecily Heiner, Neil T. Heffernan, Tiffany Barnes:
Educational Data Mining Workshop. AIED 2007: 716 - [c21]Shudong Wang, Neil T. Heffernan:
FM and Web Broadcasting Systems for Mobile Language Listening. ICALT 2007: 457-458 - [c20]Zachary A. Pardos, Neil T. Heffernan, Brigham S. Anderson, Cristina Linquist-Heffernan:
The Effect of Model Granularity on Student Performance Prediction Using Bayesian Networks. User Modeling 2007: 435-439 - [p1]Leena M. Razzaq, Mingyu Feng, Neil T. Heffernan, Kenneth R. Koedinger, Brian Junker, Goss Nuzzo-Jones, Michael A. Macasek, Kai P. Rasmussen, Terrence E. Turner, Jason A. Walonoski:
A Web-based Authoring Tool for Intelligent Tutors: Blending Assessment and Instructional Assistance. Intelligent Educational Machines 2007: 23-49 - 2006
- [c19]Neil T. Heffernan, Terrence E. Turner, Abraao L. N. Lourenco, Michael A. Macasek, Goss Nuzzo-Jones, Kenneth R. Koedinger:
The ASSISTment Builder: Towards an Analysis of Cost Effectiveness of ITS Creation. FLAIRS 2006: 515-520 - [c18]Mingyu Feng, Neil T. Heffernan, Kenneth R. Koedinger:
Predicting State Test Scores Better with Intelligent Tutoring Systems: Developing Metrics to Measure Assistance Required. Intelligent Tutoring Systems 2006: 31-40 - [c17]Jason A. Walonoski, Neil T. Heffernan:
Detection and Analysis of Off-Task Gaming Behavior in Intelligent Tutoring Systems. Intelligent Tutoring Systems 2006: 382-391 - [c16]Leena M. Razzaq, Neil T. Heffernan:
Scaffolding vs. Hints in the Assistment System. Intelligent Tutoring Systems 2006: 635-644 - [c15]Jason A. Walonoski, Neil T. Heffernan:
Prevention of Off-Task Gaming Behavior in Intelligent Tutoring Systems. Intelligent Tutoring Systems 2006: 722-724 - [c14]Kevin Kardian, Neil T. Heffernan:
Knowledge Engineering for Intelligent Tutoring Systems: Assessing Semi-automatic Skill Encoding Methods. Intelligent Tutoring Systems 2006: 735-737 - [c13]Mingyu Feng, Neil T. Heffernan, Kenneth R. Koedinger:
Addressing the testing challenge with a web-based e-assessment system that tutors as it assesses. WWW 2006: 307-316 - 2005
- [c12]Leena M. Razzaq, Mingyu Feng, Goss Nuzzo-Jones, Neil T. Heffernan, Kenneth R. Koedinger, Brian Junker, Steven Ritter, Andrea Knight, Edwin Mercado, Terrence E. Turner, Ruta Upalekar, Jason A. Walonoski, Michael A. Macasek, Christopher Aniszczyk, Sanket Choksey, Tom Livak, Kai P. Rasmussen:
Blending Assessment and Instructional Assisting. AIED 2005: 555-562 - [c11]Carolyn Penstein Rosé, Pinar Donmez, Gahgene Gweon, Andrea Knight, Brian Junker, William W. Cohen, Kenneth R. Koedinger, Neil T. Heffernan:
Automatic and Semi-Automatic Skill Coding With a View Towards Supporting On-Line Assessment. AIED 2005: 571-578 - [c10]Goss Nuzzo-Jones, Jason A. Walonoski, Neil T. Heffernan, Tom Livak:
The eXtensible Tutor Architecture: A New Foundation for ITS. AIED 2005: 902-904 - [c9]Terrence E. Turner, Michael A. Macasek, Goss Nuzzo-Jones, Neil T. Heffernan, Kenneth R. Koedinger:
The Assistment Builder: A Rapid Development Tool for ITS. AIED 2005: 929-931 - 2004
- [c8]Kenneth R. Koedinger, Vincent Aleven, Neil T. Heffernan, Bruce M. McLaren, Matthew Hockenberry:
Opening the Door to Non-programmers: Authoring Intelligent Tutor Behavior by Demonstration. Intelligent Tutoring Systems 2004: 162-174 - [c7]Ethan A. Croteau, Neil T. Heffernan, Kenneth R. Koedinger:
Why Are Algebra Word Problems Difficult? Using Tutorial Log Files and the Power Law of Learning to Select the Best Fitting Cognitive Model. Intelligent Tutoring Systems 2004: 240-250 - [c6]Neil T. Heffernan, Ethan A. Croteau:
Web-Based Evaluations Showing Differential Learning for Tutorial Strategies Employed by the Ms. Lindquist Tutor. Intelligent Tutoring Systems 2004: 491-500 - [c5]Matthew P. Jarvis, Goss Nuzzo-Jones, Neil T. Heffernan:
Applying Machine Learning Techniques to Rule Generation in Intelligent Tutoring Systems. Intelligent Tutoring Systems 2004: 541-553 - [c4]Leena M. Razzaq, Neil T. Heffernan:
Tutorial Dialog in an Equation Solving Intelligent Tutoring System. Intelligent Tutoring Systems 2004: 851-853 - [c3]Neil T. Heffernan, Peter M. Wiemer-Hastings, Gregory Aist, Vincent Aleven, Ivon Arroyo, Paul Brna, Mark G. Core, Martha W. Evens, Reva Freedman, Michael Glass, Arthur C. Graesser, Kenneth R. Koedinger, Pamela W. Jordan, Diane J. Litman, Evelyn Lulis, Helen Pain, Carolyn P. Rosé, Beverly Park Woolf, Claus Zinn:
Workshop on Dialog-Based Intelligent Tutoring Systems: State of the Art and New Research Directions. Intelligent Tutoring Systems 2004: 914 - 2002
- [c2]Neil T. Heffernan, Kenneth R. Koedinger:
An Intelligent Tutoring System Incorporating a Model of an Experienced Human Tutor. Intelligent Tutoring Systems 2002: 596-608
1990 – 1999
- 1998
- [c1]Neil T. Heffernan:
Intelligent tutoring systems have forgotten the tutor: adding a cognitive model of human tutors. CHI Conference Summary 1998: 50-51
Coauthor Index
aka: Seth Akonor Adjei
aka: Joseph Beck
aka: Anthony F. Botelho
aka: Cristina Linquist-Heffernan
aka: Korinn Ostrow
aka: Maria Ofelia San Pedro
aka: Adam C. Sales
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-31 21:12 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint