default search action
Daniel E. Rivera
Person information
- affiliation: Arizona State University, Control Systems Engineering Laboratory, Tempe, AZ, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j25]Steven De La Torre, Mohamed El Mistiri, Eric B. Hekler, Predrag Klasnja, Benjamin M. Marlin, Misha Pavel, Donna Spruijt-Metz, Daniel E. Rivera:
Modeling engagement with a digital behavior change intervention (HeartSteps II): An exploratory system identification approach. J. Biomed. Informatics 158: 104721 (2024) - 2023
- [c52]Rachael T. Kha, Daniel E. Rivera, Predrag V. Klasnja, Eric B. Hekler:
Idiographic Dynamic Modeling for Behavioral Interventions with Mixed Data Partitioning and Discrete Simultaneous Perturbation Stochastic Approximation. ACC 2023: 283-288 - [c51]Mohamed El Mistiri, Owais Khan, Daniel E. Rivera, Eric B. Hekler:
System Identification and Hybrid Model Predictive Control in Personalized mHealth Interventions for Physical Activity. ACC 2023: 2240-2245 - 2022
- [j24]Penghong Guo, Daniel E. Rivera, Yuwen Dong, Sunil Deshpande, Jennifer S. Savage, Emily E. Hohman, Abigail M. Pauley, Krista S. Leonard, Danielle Symons Downs:
Optimizing behavioral interventions to regulate gestational weight gain with sequential decision policies using hybrid model predictive control. Comput. Chem. Eng. 160: 107721 (2022) - [c50]Mohamed El Mistiri, Daniel E. Rivera, Predrag V. Klasnja, Junghwan Park, Eric B. Hekler:
Enhanced Social Cognitive Theory Dynamic Modeling and Simulation Towards Improving the Estimation of "Just-In-Time" States. ACC 2022: 468-473 - [c49]Rachael T. Kha, Daniel E. Rivera, Predrag V. Klasnja, Eric B. Hekler:
Model Personalization in Behavioral Interventions using Model-on-Demand Estimation and Discrete Simultaneous Perturbation Stochastic Approximation. ACC 2022: 671-676 - [c48]Mohamed El Mistiri, Daniel E. Rivera, Predrag V. Klasnja, Junghwan Park, Eric B. Hekler:
Model Predictive Control Strategies for Optimized mHealth Interventions for Physical Activity. ACC 2022: 1392-1397 - [c47]Owais Khan, Mohamed El Mistiri, Daniel E. Rivera, Cesar A. Martin, Eric B. Hekler:
A Kalman filter-based Hybrid Model Predictive Control Algorithm for Mixed Logical Dynamical Systems: Application to Optimized Interventions for Physical Activity. CDC 2022: 2586-2593 - [c46]Karine Tung, Steven De La Torre, Mohamed El Mistiri, Rebecca Braga De Braganca, Eric B. Hekler, Misha Pavel, Daniel E. Rivera, Pedja Klasnja, Donna Spruijt-Metz, Benjamin M. Marlin:
BayesLDM: A Domain-specific Modeling Language for Probabilistic Modeling of Longitudinal Data. CHASE 2022: 78-90 - [i1]Karine Tung, Steven De La Torre, Mohamed El Mistiri, Rebecca Braga De Braganca, Eric B. Hekler, Misha Pavel, Daniel E. Rivera, Pedja Klasnja, Donna Spruijt-Metz, Benjamin M. Marlin:
BayesLDM: A Domain-Specific Language for Probabilistic Modeling of Longitudinal Data. CoRR abs/2209.05581 (2022) - 2020
- [j23]Guillaume Mercère, Alexander Medvedev, Daniel E. Rivera, Caterina M. Scoglio, Bayu Jayawardhana:
Foreword Identification and Control in Biomedical Applications. IEEE Trans. Control. Syst. Technol. 28(1): 1-2 (2020) - [j22]Penghong Guo, Daniel E. Rivera, Jennifer S. Savage, Emily E. Hohman, Abigail M. Pauley, Krista S. Leonard, Danielle S. Downs:
System Identification Approaches for Energy Intake Estimation: Enhancing Interventions for Managing Gestational Weight Gain. IEEE Trans. Control. Syst. Technol. 28(1): 63-78 (2020) - [j21]Paulo J. Lopes dos Santos, Mohammad T. Freigoun, César A. Martín, Daniel E. Rivera, Eric B. Hekler, Rodrigo Alvite Romano, Teresa Paula Azevedo Perdicoúlis:
System Identification of Just Walk: Using Matchable-Observable Linear Parametrizations. IEEE Trans. Control. Syst. Technol. 28(1): 264-275 (2020) - [j20]César A. Martín, Daniel E. Rivera, Eric B. Hekler, William T. Riley, Matthew P. Buman, Marc A. Adams, Alicia B. Magann:
Development of a Control-Oriented Model of Social Cognitive Theory for Optimized mHealth Behavioral Interventions. IEEE Trans. Control. Syst. Technol. 28(2): 331-346 (2020)
2010 – 2019
- 2018
- [j19]Sayali S. Phatak, Mohammad T. Freigoun, César A. Martín, Daniel E. Rivera, Elizabeth V. Korinek, Marc A. Adams, Matthew P. Buman, Predrag V. Klasnja, Eric B. Hekler:
Modeling individual differences: A case study of the application of system identification for personalizing a physical activity intervention. J. Biomed. Informatics 79: 82-97 (2018) - 2017
- [c45]Mohammad T. Freigoun, Cesar A. Martin, Alicia B. Magann, Daniel E. Rivera, Sayali S. Phatak, Elizabeth V. Korinek, Eric B. Hekler:
System identification of Just Walk: A behavioral mHealth intervention for promoting physical activity. ACC 2017: 116-121 - [c44]P. Lopes dos Santos, R. Romano, T.-P. Azevedo-Perdicoúlis, Daniel E. Rivera, José A. Ramos:
LPV system identification using the matchable observable linear identification approach. CDC 2017: 4626-4631 - [p2]Wendy Nilsen, Emre Ertin, Eric B. Hekler, Santosh Kumar, Insup Lee, Rahul Mangharam, Misha Pavel, James M. Rehg, William T. Riley, Daniel E. Rivera, Donna Spruijt-Metz:
Modeling Opportunities in mHealth Cyber-Physical Systems. Mobile Health - Sensors, Analytic Methods, and Applications 2017: 443-453 - [p1]Daniel E. Rivera, César A. Martín, Kevin P. Timms, Sunil Deshpande, Naresh N. Nandola, Eric B. Hekler:
Control Systems Engineering for Optimizing Behavioral mHealth Interventions. Mobile Health - Sensors, Analytic Methods, and Applications 2017: 455-493 - 2016
- [c43]Penghong Guo, Daniel E. Rivera, Danielle S. Downs, Jennifer S. Savage:
Semi-physical identification and state estimation of energy intake for interventions to manage gestational weight gain. ACC 2016: 1271-1276 - [c42]Cesar A. Martin, Daniel E. Rivera, Eric B. Hekler:
A decision framework for an adaptive behavioral intervention for physical activity using hybrid model predictive control. ACC 2016: 3576-3581 - [c41]Cesar A. Martin, Daniel E. Rivera, Eric B. Hekler:
An enhanced identification test monitoring procedure for MIMO systems relying on uncertainty estimates. CDC 2016: 2091-2096 - [c40]Tylar Murray, Eric B. Hekler, Donna Spruijt-Metz, Daniel E. Rivera, Andrew Raij:
Formalization of Computational Human Behavior Models for Contextual Persuasive Technology. PERSUASIVE 2016: 150-161 - 2015
- [c39]Cesar A. Martin, Sunil Deshpande, Eric B. Hekler, Daniel E. Rivera:
A system identification approach for improving behavioral interventions based on Social Cognitive Theory. ACC 2015: 5878-5883 - [c38]Cesar A. Martin, Daniel E. Rivera, Eric B. Hekler:
An identification test monitoring procedure for MIMO systems based on statistical uncertainty estimation. CDC 2015: 2719-2724 - 2014
- [j18]Jay D. Schwartz, Daniel E. Rivera:
A control-relevant approach to demand modeling for supply chain management. Comput. Chem. Eng. 70: 78-90 (2014) - [j17]Kevin P. Timms, Daniel E. Rivera, Linda M. Collins, Megan E. Piper:
Continuous-time system identification of a smoking cessation intervention. Int. J. Control 87(7): 1423-1437 (2014) - [j16]Diego Regruto, Fabrizio Dabbene, Daniel E. Rivera:
Guest Editorial: Special Issue on Relaxation Methods in Identification and Estimation Problems. IEEE Trans. Autom. Control. 59(11): 2869-2870 (2014) - [j15]Sunil Deshpande, Daniel E. Rivera:
Constrained Optimal Input Signal Design for Data-Centric Estimation Methods. IEEE Trans. Autom. Control. 59(11): 2990-2995 (2014) - [c37]Kevin P. Timms, Daniel E. Rivera, Megan E. Piper, Linda M. Collins:
A Hybrid Model Predictive Control strategy for optimizing a smoking cessation intervention. ACC 2014: 2389-2394 - [c36]Cesar A. Martin, Daniel E. Rivera, William T. Riley, Eric B. Hekler, Matthew P. Buman, Marc A. Adams, Abby C. King:
A dynamical systems model of Social Cognitive Theory. ACC 2014: 2407-2412 - [c35]Yuwen Dong, Sunil Deshpande, Daniel E. Rivera, Danielle S. Downs, Jennifer S. Savage:
Hybrid model predictive control for sequential decision policies in adaptive behavioral interventions. ACC 2014: 4198-4203 - [c34]Sunil Deshpande, Daniel E. Rivera:
Data-centric input signal design for highly interactive dynamical systems. CDC 2014: 1023-1028 - [c33]Sunil Deshpande, Daniel E. Rivera:
Towards data-centric input signal design using sparse polynomial optimization. CDC 2014: 1893-1898 - [c32]Paulo J. Lopes dos Santos, T.-P. Azevedo-Perdicoúlis, José A. Ramos, Sunil Deshpande, Daniel E. Rivera, Jorge Leite Martins de Carvalho:
LPV system identification using a separable least squares support vector machines approach. CDC 2014: 2548-2554 - [c31]William T. Riley, Cesar A. Martin, Daniel E. Rivera:
The importance of behavior theory in control system modeling of physical activity sensor data. EMBC 2014: 6880-6883 - [c30]Kevin P. Timms, Cesar A. Martin, Daniel E. Rivera, Eric B. Hekler, William T. Riley:
Leveraging intensive longitudinal data to better understand health behaviors. EMBC 2014: 6888-6891 - 2013
- [j14]Naresh N. Nandola, Daniel E. Rivera:
An Improved Formulation of Hybrid Model Predictive Control With Application to Production-Inventory Systems. IEEE Trans. Control. Syst. Technol. 21(1): 121-135 (2013) - [c29]Kevin P. Timms, Daniel E. Rivera, Linda M. Collins, Megan E. Piper:
Control systems engineering for understanding and optimizing smoking cessation interventions. ACC 2013: 1964-1969 - [c28]Yuwen Dong, Daniel E. Rivera, Danielle S. Downs, Jennifer S. Savage, Diana M. Thomas, Linda M. Collins:
Hybrid model predictive control for optimizing gestational weight gain behavioral interventions. ACC 2013: 1970-1975 - [c27]P. Lopes dos Santos, Sunil Deshpande, Daniel E. Rivera, T.-P. Azevedo-Perdicoúlis, José A. Ramos, Jarred Younger:
Identification of affine linear parameter varying models for adaptive interventions in fibromyalgia treatment. ACC 2013: 1976-1981 - [c26]Sunil Deshpande, Daniel E. Rivera:
Optimal input signal design for data-centric estimation methods. ACC 2013: 3924-3929 - [c25]Sunil Deshpande, Daniel E. Rivera:
A data-centric system identification approach to input signal design for Hammerstein systems. CDC 2013: 5192-5197 - 2012
- [j13]José Luis Guzmán, Daniel E. Rivera, Sebastián Dormido, Manuel Berenguel:
An interactive software tool for system identification. Adv. Eng. Softw. 45(1): 115-123 (2012) - [j12]Kevin T. Roche, Daniel E. Rivera, Jeffery K. Cochran:
A control engineering framework for managing whole hospital occupancy. Math. Comput. Model. 55(3-4): 1401-1417 (2012) - [c24]Yuwen Dong, Daniel E. Rivera, Diana M. Thomas, Jesús Emeterio Navarro-Barrientos, Danielle S. Downs, Jennifer S. Savage, Linda M. Collins:
A dynamical systems model for improving gestational weight gain behavioral interventions. ACC 2012: 4059-4064 - 2011
- [j11]Ascensión Zafra-Cabeza, Daniel E. Rivera, Linda M. Collins, Miguel A. Ridao, Eduardo F. Camacho:
A Risk-Based Model Predictive Control Approach to Adaptive Interventions in Behavioral Health. IEEE Trans. Control. Syst. Technol. 19(4): 891-901 (2011) - [j10]Richard Steenis, Daniel E. Rivera:
Plant-Friendly Signal Generation for System Identification Using a Modified Simultaneous Perturbation Stochastic Approximation (SPSA) Methodology. IEEE Trans. Control. Syst. Technol. 19(6): 1604-1612 (2011) - [c23]Sunil Deshpande, Naresh N. Nandola, Daniel E. Rivera, Jarred Younger:
A control engineering approach for designing an optimized treatment plan for fibromyalgia. ACC 2011: 4798-4803 - 2010
- [c22]Richard Steenis, Daniel E. Rivera:
Probabilistic uncertainty description for an ETFE estimated plant using a sequence of multi-sinusoidal signals. ACC 2010: 3722-3728 - [c21]Naresh N. Nandola, Daniel E. Rivera:
A novel model predictive control formulation for hybrid systems with application to adaptive behavioral interventions. ACC 2010: 6286-6292 - [c20]Naresh N. Nandola, Daniel E. Rivera:
Model-on-Demand predictive control for nonlinear hybrid systems with application to adaptive behavioral interventions. CDC 2010: 6113-6118 - [c19]Jesús Emeterio Navarro-Barrientos, Daniel E. Rivera, Linda M. Collins:
A Dynamical Systems Model for Understanding Behavioral Interventions for Weight Loss. SBP 2010: 170-179
2000 – 2009
- 2009
- [j9]Wenlin Wang, Daniel E. Rivera, Hans D. Mittelmann:
Inner and outer loop optimization in semiconductor manufacturing supply chain management. Comput. Manag. Sci. 6(4): 411 (2009) - [c18]Jay D. Schwartz, Daniel E. Rivera:
Control-relevant estimation of demand models for closed-loop control of a production-inventory system. CDC 2009: 416-421 - [c17]Richard Steenis, Daniel E. Rivera:
Plant-friendly signal generation for system identification using a modified SPSA methodology. CDC 2009: 470-475 - [c16]Cristina Stoica, Manuel R. Arahal, Daniel E. Rivera, Pedro Rodríguez-Ayerbe, Didier Dumur:
Application of robustified Model Predictive Control to a production-inventory system. CDC 2009: 3993-3998 - 2008
- [j8]Wenlin Wang, Daniel E. Rivera:
Model Predictive Control for Tactical Decision-Making in Semiconductor Manufacturing Supply Chain Management. IEEE Trans. Control. Syst. Technol. 16(5): 841-855 (2008) - [c15]Jay D. Schwartz, Manuel R. Arahal, Daniel E. Rivera:
Control-relevant demand forecasting for management of a production-inventory system. ACC 2008: 4053-4058 - 2007
- [j7]Hans D. Mittelmann, Gautam V. Pendse, Daniel E. Rivera, Hyunjin Lee:
Optimization-based design of plant-friendly multisine signals using geometric discrepancy criteria. Comput. Optim. Appl. 38(1): 173-190 (2007) - [c14]Hyunjin Lee, Daniel E. Rivera, Hans D. Mittelmann, Gautam V. Pendse:
Optimization-based Design of Plant-Friendly Input Signals for Model-on-Demand Estimation and Model Predictive Control. ACC 2007: 1560-1565 - [c13]Jay D. Schwartz, Daniel E. Rivera:
Multi-Objective Control-Relevant Demand Modeling for Production and Inventory Control. CASE 2007: 710-715 - 2006
- [j6]Jay D. Schwartz, Wenlin Wang, Daniel E. Rivera:
Simulation-based optimization of process control policies for inventory management in supply chains. Autom. 42(8): 1311-1320 (2006) - [c12]Hyunjin Lee, Daniel E. Rivera:
An integrated input signal design and control-relevant parameter estimation approach for highly interactive multivariate systems. ACC 2006: 1-6 - [c11]Jay D. Schwartz, Daniel E. Rivera:
Simulation-based optimal tuning of model predictive control policies for supply chain management using simultaneous perturbation stochastic approximation. ACC 2006 - [c10]Ascensión Zafra-Cabeza, Daniel E. Rivera, Linda M. Collins, Miguel A. Ridao, Eduardo F. Camacho:
A Risk-based Model Predictive Control Approach to Adaptive Interventions in Behavioral Health. CDC 2006: 673-678 - [c9]Dongping Huang, Hessam S. Sarjoughian, Gary W. Godding, Daniel E. Rivera, Karl G. Kempf:
Flexible experimentation and analysis for hybrid DEVS and MPC models. WSC 2006: 1863-1870 - 2005
- [c8]Jay D. Schwartz, Daniel E. Rivera, Karl G. Kempf:
Towards control-relevant forecasting in supply chain management. ACC 2005: 202-207 - [c7]Wenlin Wang, Daniel E. Rivera, Karl G. Kempf:
A novel model predictive control algorithm for supply chain management in semiconductor manufacturing. ACC 2005: 208-213vol.1 - [c6]Hyunjin Lee, Daniel E. Rivera:
Control-relevant curvefitting for plant-friendly multivariable system identification. ACC 2005: 1431-1436 - [c5]Daniel E. Rivera, Michael D. Pew:
Evaluating PID Control for Supply Chain Management: A Freshman Design Project. CDC/ECC 2005: 3415-3419 - [c4]Hessam S. Sarjoughian, Dongping Huang, Gary W. Godding, Karl G. Kempf, Wenlin Wang, Daniel E. Rivera, Hans D. Mittelmann:
Hybrid discrete event simulation with model predictive control for semiconductor supply-chain manufacturing. WSC 2005: 256-266 - 2004
- [c3]Wenlin Wang, Daniel E. Rivera, Karl G. Kempf, Kirk D. Smith:
A model predictive control strategy for supply chain management in semiconductor manufacturing under uncertainty. ACC 2004: 4577-4582 - 2003
- [j5]Martin W. Braun, Daniel E. Rivera, M. E. Flores, W. Matthew Carlyle, Karl G. Kempf:
A Model Predictive Control framework for robust management of multi-product, multi-echelon demand networks. Annu. Rev. Control. 27(2): 229-245 (2003) - [j4]Martin W. Braun, Daniel E. Rivera, W. Matthew Carlyle, Karl G. Kempf:
Application of Model Predictive Control to Robust Management of Multiechelon Demand Networks in Semiconductor Manufacturing. Simul. 79(3): 139-156 (2003) - [j3]Felipe D. Vargas-Villamil, Daniel E. Rivera, Karl G. Kempf:
A hierarchical approach to production control of reentrant semiconductor manufacturing lines. IEEE Trans. Control. Syst. Technol. 11(4): 578-587 (2003) - [c2]Wenlin Wang, Daniel E. Rivera, Karl G. Kempf:
Centralized model predictive control strategies for inventory management in semiconductor manufacturing supply chains. ACC 2003: 585-590 - 2001
- [j2]Felipe D. Vargas-Villamil, Daniel E. Rivera:
A model predictive control approach for real-time optimization of reentrant manufacturing lines. Comput. Ind. 45(1): 45-57 (2001) - [c1]Lei Yang, Daniel E. Rivera:
Integrated identification and model predictive control using iterative refinement. ACC 2001: 1190-1195
1990 – 1999
- 1990
- [j1]Daniel E. Rivera, Manfred Morari:
Low-order SISO controller tuning methods for the H2, H∞ and μ objective functions. Autom. 26(2): 361-369 (1990)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-22 21:16 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint