


default search action
Masoud Daneshtalab
Person information
- affiliation: University of Turku, Finland
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j60]Najafi Mohammadreza
, Masoud Daneshtalab
, Jeong-A Lee
, Ghazal Saadloonia, Seokjoo Shin
:
Enhancing Global Model Performance in Federated Learning With Non-IID Data Using a Data-Free Generative Diffusion Model. IEEE Access 12: 148230-148239 (2024) - [j59]Mohammad Hasan Ahmadilivani
, Mahdi Taheri
, Jaan Raik
, Masoud Daneshtalab
, Maksim Jenihhin
:
A Systematic Literature Review on Hardware Reliability Assessment Methods for Deep Neural Networks. ACM Comput. Surv. 56(6): 141:1-141:39 (2024) - [j58]Ali Zoljodi
, Sadegh Abadijou, Mina Alibeigi, Masoud Daneshtalab:
Contrastive Learning for Lane Detection via cross-similarity. Pattern Recognit. Lett. 185: 175-183 (2024) - [j57]Ali Asghar Sharifi
, Ali Zoljodi
, Masoud Daneshtalab
:
TrajectoryNAS: A Neural Architecture Search for Trajectory Prediction. Sensors 24(17): 5696 (2024) - [c168]Joakim Lindén, Andreas Ermedahl, Hans Salomonsson, Masoud Daneshtalab, Björn Forsberg, Paris Carbone:
Autonomous Realization of Safety- and Time-Critical Embedded Artificial Intelligence. DATE 2024: 1-4 - [c167]Mahdi Taheri, Masoud Daneshtalab, Jaan Raik, Maksim Jenihhin, Salvatore Pappalardo, Paul Jiménez, Bastien Deveautour, Alberto Bosio:
SAFFIRA: a Framework for Assessing the Reliability of Systolic-Array-Based DNN Accelerators. DDECS 2024: 19-24 - [c166]Bahram Parchekani, Samira Nazari, Mohammad Hasan Ahmadilivani, Ali Azarpeyvand, Jaan Raik, Tara Ghasempouri, Masoud Daneshtalab:
Zero-Memory-Overhead Clipping-Based Fault Tolerance for LSTM Deep Neural Networks. DFT 2024: 1-4 - [c165]Mahdi Taheri, Natalia Cherezova, Samira Nazari, Ahsan Rafiq, Ali Azarpeyvand, Tara Ghasempouri, Masoud Daneshtalab, Jaan Raik, Maksim Jenihhin:
AdAM: Adaptive Fault-Tolerant Approximate Multiplier for Edge DNN Accelerators. ETS 2024: 1-4 - [c164]Bahar Houtan, Mohammad Ashjaei, Masoud Daneshtalab, Mikael Sjödin, Saad Mubeen:
Bandwidth Reservation Analysis for Schedulability of AVB Traffic in TSN. ICIT 2024: 1-8 - [c163]Mohammad Hasan Ahmadilivani, Seyedhamidreza Mousavi, Jaan Raik, Masoud Daneshtalab, Maksim Jenihhin:
Cost-Effective Fault Tolerance for CNNs Using Parameter Vulnerability Based Hardening and Pruning. IOLTS 2024: 1-7 - [c162]Mahdi Taheri, Natalia Cherezova, Mohammad Saeed Ansari, Maksim Jenihhin, Ali Mahani, Masoud Daneshtalab, Jaan Raik:
Exploration of Activation Fault Reliability in Quantized Systolic Array-Based DNN Accelerators. ISQED 2024: 1-8 - [c161]Maksim Jenihhin, Mahdi Taheri, Natalia Cherezova, Mohammad Hasan Ahmadilivani, Hardi Selg, Artur Jutman, Konstantin Shibin, Anton Tsertov, Sergei Devadze, Rama Mounika Kodamanchili, Ahsan Rafiq, Jaan Raik, Masoud Daneshtalab:
Keynote: Cost-Efficient Reliability for Edge-AI Chips. LATS 2024: 1-2 - [i21]Mahdi Taheri, Natalia Cherezova, Mohammad Saeed Ansari, Maksim Jenihhin, Ali Mahani, Masoud Daneshtalab, Jaan Raik:
Exploration of Activation Fault Reliability in Quantized Systolic Array-Based DNN Accelerators. CoRR abs/2401.09509 (2024) - [i20]Mahdi Taheri, Natalia Cherezova, Samira Nazari, Ahsan Rafiq, Ali Azarpeyvand, Tara Ghasempouri, Masoud Daneshtalab, Jaan Raik, Maksim Jenihhin:
AdAM: Adaptive Fault-Tolerant Approximate Multiplier for Edge DNN Accelerators. CoRR abs/2403.02936 (2024) - [i19]Mahdi Taheri, Masoud Daneshtalab, Jaan Raik, Maksim Jenihhin, Salvatore Pappalardo, Paul Jiménez, Bastien Deveautour, Alberto Bosio:
SAFFIRA: a Framework for Assessing the Reliability of Systolic-Array-Based DNN Accelerators. CoRR abs/2403.02946 (2024) - [i18]Ali Asghar Sharifi
, Ali Zoljodi, Masoud Daneshtalab:
TrajectoryNAS: A Neural Architecture Search for Trajectory Prediction. CoRR abs/2403.11695 (2024) - [i17]Mohammad Hasan Ahmadilivani, Seyedhamidreza Mousavi, Jaan Raik, Masoud Daneshtalab, Maksim Jenihhin:
Cost-Effective Fault Tolerance for CNNs Using Parameter Vulnerability Based Hardening and Pruning. CoRR abs/2405.10658 (2024) - [i16]Seyedhamidreza Mousavi, Mohammad Hasan Ahmadilivani, Jaan Raik, Maksim Jenihhin, Masoud Daneshtalab:
ProAct: Progressive Training for Hybrid Clipped Activation Function to Enhance Resilience of DNNs. CoRR abs/2406.06313 (2024) - [i15]Mohammad Hasan Ahmadilivani, Jaan Raik, Masoud Daneshtalab, Maksim Jenihhin:
DeepVigor+: Scalable and Accurate Semi-Analytical Fault Resilience Analysis for Deep Neural Network. CoRR abs/2410.15742 (2024) - 2023
- [j56]Mohammad K. Fallah, Mahmood Fazlali
, Masoud Daneshtalab
:
A symbiosis between population based incremental learning and LP-relaxation based parallel genetic algorithm for solving integer linear programming models. Computing 105(5): 1121-1139 (2023) - [j55]Zenepe Satka
, Mohammad Ashjaei, Hossein Fotouhi
, Masoud Daneshtalab, Mikael Sjödin, Saad Mubeen:
A comprehensive systematic review of integration of time sensitive networking and 5G communication. J. Syst. Archit. 138: 102852 (2023) - [j54]Bahar Houtan
, Mohammad Ashjaei, Masoud Daneshtalab, Mikael Sjödin, Saad Mubeen:
Supporting end-to-end data propagation delay analysis for TSN-based distributed vehicular embedded systems. J. Syst. Archit. 141: 102911 (2023) - [j53]Hamid Mousavi
, Mohammad Loni
, Mina Alibeigi
, Masoud Daneshtalab
:
DASS: Differentiable Architecture Search for Sparse Neural Networks. ACM Trans. Embed. Comput. Syst. 22(5s): 105:1-105:21 (2023) - [c160]Seyed Ali Mousavi
, Hamid Mousavi, Masoud Daneshtalab
:
FARMUR: Fair Adversarial Retraining to Mitigate Unfairness in Robustness. ADBIS 2023: 133-145 - [c159]Hamid Mousavi, Ali Zoljodi
, Masoud Daneshtalab
:
Analysing Robustness of Tiny Deep Neural Networks. ADBIS (Short Papers) 2023: 150-159 - [c158]Joakim Lindén
, Håkan Forsberg
, Masoud Daneshtalab
, Ingemar Söderquist
:
Evaluating the Robustness of ML Models to Out-of-Distribution Data Through Similarity Analysis. ADBIS (Short Papers) 2023: 348-359 - [c157]Mohammad Hasan Ahmadilivani, Mahdi Taheri, Jaan Raik, Masoud Daneshtalab, Maksim Jenihhin:
Enhancing Fault Resilience of QNNs by Selective Neuron Splitting. AICAS 2023: 1-5 - [c156]Ali Monavari Bidgoli, Sepideh Fattahi, Seyyed Hossein Seyyedaghaei Rezaei, Mehdi Modarressi, Masoud Daneshtalab:
NeuroPIM: Felxible Neural Accelerator for Processing-in-Memory Architectures. DDECS 2023: 51-56 - [c155]Mahdi Taheri, Mohammad Hasan Ahmadilivani, Maksim Jenihhin, Masoud Daneshtalab, Jaan Raik:
APPRAISER: DNN Fault Resilience Analysis Employing Approximation Errors. DDECS 2023: 124-127 - [c154]Mohammad Hasan Ahmadilivani, Jaan Raik, Masoud Daneshtalab, Alar Kuusik:
Analysis and Improvement of Resilience for Long Short-Term Memory Neural Networks. DFT 2023: 1-4 - [c153]Aldin Berisa, Adis Panjevic, Imran Kovac, Hans Lyngbäck, Mohammad Ashjaei, Masoud Daneshtalab, Mikael Sjödin, Saad Mubeen:
Comparative Evaluation of Various Generations of Controller Area Network Based on Timing Analysis. ETFA 2023: 1-8 - [c152]Mohammad Hasan Ahmadilivani, Mahdi Taheri, Jaan Raik, Masoud Daneshtalab, Maksim Jenihhin:
DeepVigor: VulnerabIlity Value RanGes and FactORs for DNNs' Reliability Assessment. ETS 2023: 1-6 - [c151]Amin Yoosefi, Hamid Mousavi, Masoud Daneshtalab, Mehdi Kargahi:
Efficient On-device Transfer Learning using Activation Memory Reduction. FMEC 2023: 210-215 - [c150]Bahar Houtan, Mehmet Onur Aybek, Mohammad Ashjaei, Masoud Daneshtalab, Mikael Sjödin, John Lundbäck, Saad Mubeen:
End-to-end Timing Modeling and Analysis of TSN in Component-Based Vehicular Software. ISORC 2023: 126-135 - [c149]Aldin Berisa, Mohammad Ashjaei, Masoud Daneshtalab, Mikael Sjödin, Saad Mubeen:
Investigating and Analyzing CAN-to-TSN Gateway Forwarding Techniques. ISORC 2023: 136-145 - [c148]Mahdi Taheri, Mohammad Riazati, Mohammad Hasan Ahmadilivani, Maksim Jenihhin, Masoud Daneshtalab, Jaan Raik, Mikael Sjödin, Björn Lisper:
DeepAxe: A Framework for Exploration of Approximation and Reliability Trade-offs in DNN Accelerators. ISQED 2023: 1-8 - [c147]Mohammad Hasan Ahmadilivani, Mario Barbareschi, Salvatore Barone
, Alberto Bosio, Masoud Daneshtalab, Salvatore Della Torca, Gabriele Gavarini, Maksim Jenihhin, Jaan Raik, Annachiara Ruospo, Ernesto Sánchez, Mahdi Taheri:
Special Session: Approximation and Fault Resiliency of DNN Accelerators. VTS 2023: 1-10 - [i14]Mehdi Asadi, Fatemeh Poursalim, Mohammad Loni, Masoud Daneshtalab, Mikael Sjödin, Arash Gharehbaghi:
Accurate Detection of Paroxysmal Atrial Fibrillation with Certified-GAN and Neural Architecture Search. CoRR abs/2301.10173 (2023) - [i13]Mina Ashoury, Mohammad Loni, Farshad Khunjush, Masoud Daneshtalab:
Auto-SpMV: Automated Optimizing SpMV Kernels on GPU. CoRR abs/2302.05662 (2023) - [i12]Mohammad Hasan Ahmadilivani, Mahdi Taheri, Jaan Raik, Masoud Daneshtalab, Maksim Jenihhin:
DeepVigor: Vulnerability Value Ranges and Factors for DNNs' Reliability Assessment. CoRR abs/2303.06931 (2023) - [i11]Mahdi Taheri, Mohammad Riazati, Mohammad Hasan Ahmadilivani, Maksim Jenihhin, Masoud Daneshtalab, Jaan Raik, Mikael Sjödin, Björn Lisper:
DeepAxe: A Framework for Exploration of Approximation and Reliability Trade-offs in DNN Accelerators. CoRR abs/2303.08226 (2023) - [i10]Mohammad Hasan Ahmadilivani, Mahdi Taheri, Jaan Raik, Masoud Daneshtalab, Maksim Jenihhin:
A Systematic Literature Review on Hardware Reliability Assessment Methods for Deep Neural Networks. CoRR abs/2305.05750 (2023) - [i9]Mahdi Taheri, Mohammad Hasan Ahmadilivani, Maksim Jenihhin, Masoud Daneshtalab, Jaan Raik:
APPRAISER: DNN Fault Resilience Analysis Employing Approximation Errors. CoRR abs/2305.19733 (2023) - [i8]Mohammad Hasan Ahmadilivani, Mario Barbareschi, Salvatore Barone, Alberto Bosio, Masoud Daneshtalab, Salvatore Della Torca, Gabriele Gavarini, Maksim Jenihhin, Jaan Raik, Annachiara Ruospo, Ernesto Sánchez, Mahdi Taheri:
Special Session: Approximation and Fault Resiliency of DNN Accelerators. CoRR abs/2306.04645 (2023) - [i7]Mohammad Hasan Ahmadilivani, Mahdi Taheri, Jaan Raik, Masoud Daneshtalab, Maksim Jenihhin:
Enhancing Fault Resilience of QNNs by Selective Neuron Splitting. CoRR abs/2306.09973 (2023) - [i6]Ali Zoljodi, Sadegh Abadijou, Mina Alibeigi, Masoud Daneshtalab:
Contrastive Learning for Lane Detection via Cross-Similarity. CoRR abs/2308.08242 (2023) - 2022
- [j52]Rajendra Singh, Manoj Kumar Bohra, Prashant Hemrajani, Anshuman Kalla
, Devershi Pallavi Bhatt, Nitin Purohit
, Masoud Daneshtalab:
Review, Analysis, and Implementation of Path Selection Strategies for 2D NoCs. IEEE Access 10: 129245-129268 (2022) - [j51]Seyed Ahmad Mirsalari
, Najmeh Nazari
, Sima Sinaei
, Mostafa E. Salehi
, Masoud Daneshtalab
:
FaCT-LSTM: Fast and Compact Ternary Architecture for LSTM Recurrent Neural Networks. IEEE Des. Test 39(3): 45-53 (2022) - [j50]Mohammad Loni
, Ali Zoljodi
, Amin Majd, Byung Hoon Ahn
, Masoud Daneshtalab
, Mikael Sjödin
, Hadi Esmaeilzadeh
:
FastStereoNet: A Fast Neural Architecture Search for Improving the Inference of Disparity Estimation on Resource-Limited Platforms. IEEE Trans. Syst. Man Cybern. Syst. 52(8): 5222-5234 (2022) - [c146]Mohammad Riazati, Masoud Daneshtalab, Mikael Sjödin, Björn Lisper:
AutoDeepHLS: Deep Neural Network High-level Synthesis using fixed-point precision. AICAS 2022: 122-125 - [c145]Mohammad Loni, Hamid Mousavi, Mohammad Riazati, Masoud Daneshtalab, Mikael Sjödin:
TAS: Ternarized Neural Architecture Search for Resource-Constrained Edge Devices. DATE 2022: 1115-1118 - [c144]Bahar Houtan, Mehmet Onur Aybek, Mohammad Ashjaei, Masoud Daneshtalab, Mikael Sjödin, Saad Mubeen:
End-to-end Timing Model Extraction from TSN-Aware Distributed Vehicle Software. SEAA 2022: 366-369 - [c143]Ali Zoljodi
, Mohammad Loni
, Sadegh Abadijou
, Mina Alibeigi
, Masoud Daneshtalab
:
3DLaneNAS: Neural Architecture Search for Accurate and Light-Weight 3D Lane Detection. ICANN (1) 2022: 404-415 - [c142]Mohammad Riazati, Masoud Daneshtalab, Mikael Sjödin, Björn Lisper:
DeepFlexiHLS: Deep Neural Network Flexible High-Level Synthesis Directive Generator. NorCAS 2022: 1-6 - [c141]Zenepe Satka
, Mohammad Ashjaei, Hossein Fotouhi
, Masoud Daneshtalab, Mikael Sjödin, Saad Mubeen:
QoS-MAN: A Novel QoS Mapping Algorithm for TSN-5G Flows. RTCSA 2022: 220-227 - [c140]Aldin Berisa, Luxi Zhao, Silviu S. Craciunas, Mohammad Ashjaei, Saad Mubeen, Masoud Daneshtalab, Mikael Sjödin:
AVB-aware Routing and Scheduling for Critical Traffic in Time-sensitive Networks with Preemption. RTNS 2022: 207-218 - [c139]Zenepe Satka
, David Pantzar, Alexander Magnusson, Mohammad Ashjaei, Hossein Fotouhi
, Mikael Sjödin, Masoud Daneshtalab, Saad Mubeen:
Developing a Translation Technique for Converged TSN-5G Communication. WFCS 2022: 1-8 - [i5]Hamid Mousavi, Mohammad Loni, Mina Alibeigi, Masoud Daneshtalab:
PR-DARTS: Pruning-Based Differentiable Architecture Search. CoRR abs/2207.06968 (2022) - [i4]Hamidreza Mahini, Hamid Mousavi, Masoud Daneshtalab:
GTFLAT: Game Theory Based Add-On For Empowering Federated Learning Aggregation Techniques. CoRR abs/2212.04103 (2022) - 2021
- [j49]Mohammad Ashjaei, Lucia Lo Bello
, Masoud Daneshtalab
, Gaetano Patti
, Sergio Saponara
, Saad Mubeen
:
Time-Sensitive Networking in automotive embedded systems: State of the art and research opportunities. J. Syst. Archit. 117: 102137 (2021) - [j48]Saad Mubeen, Lucia Lo Bello
, Masoud Daneshtalab
, Sergio Saponara
:
Guest Editorial: Special issue on parallel, distributed, and network-based processing in next-generation embedded systems. J. Syst. Archit. 117: 102159 (2021) - [c138]Bita Dabiri, Mehdi Modarressi, Masoud Daneshtalab:
Network-on-ReRAM for Scalable Processing-in-Memory Architecture Design. DSD 2021: 143-149 - [c137]Bahar Houtan, Mohammad Ashjaei, Masoud Daneshtalab
, Mikael Sjödin, Sara Afshar, Saad Mubeen:
Schedulability Analysis of Best-Effort Traffic in TSN Networks. ETFA 2021: 1-8 - [c136]Bahar Houtan, Albert Bergström, Mohammad Ashjaei, Masoud Daneshtalab, Mikael Sjödin, Saad Mubeen:
An Automated Configuration Framework for TSN Networks. ICIT 2021: 771-778 - [c135]Vahid Geraeinejad, Sima Sinaei, Mehdi Modarressi, Masoud Daneshtalab:
RoCo-NAS: Robust and Compact Neural Architecture Search. IJCNN 2021: 1-8 - [c134]Seyed Ahmad Mirsalari
, Najmeh Nazari, Seyed Ali Ansarmohammadi, Sima Sinaei, Mostafa E. Salehi, Masoud Daneshtalab
:
ELC-ECG: Efficient LSTM Cell for ECG Classification Based on Quantized Architecture. ISCAS 2021: 1-5 - [c133]Bahar Houtan, Mohammad Ashjaei, Masoud Daneshtalab, Mikael Sjödin, Saad Mubeen:
Synthesising Schedules to Improve QoS of Best-effort Traffic in TSN Networks. RTNS 2021: 68-77 - [c132]Najda Vidimlic, Alexandra Levin, Mohammad Loni, Masoud Daneshtalab:
Image Synthesisation and Data Augmentation for Safe Object Detection in Aircraft Auto-landing System. VISIGRAPP (5: VISAPP) 2021: 123-135 - 2020
- [j47]Seyyed Hossein Seyyedaghaei Rezaei
, Mehdi Modarressi
, Rachata Ausavarungnirun
, Mohammad Sadrosadati, Onur Mutlu, Masoud Daneshtalab
:
NoM: Network-on-Memory for Inter-Bank Data Transfer in Highly-Banked Memories. IEEE Comput. Archit. Lett. 19(1): 80-83 (2020) - [j46]Zahra Ebrahimi, Mohammad Loni, Masoud Daneshtalab
, Arash Gharehbaghi
:
A review on deep learning methods for ECG arrhythmia classification. Expert Syst. Appl. X 7: 100033 (2020) - [j45]Mohammad Loni, Sima Sinaei, Ali Zoljodi, Masoud Daneshtalab
, Mikael Sjödin:
DeepMaker: A multi-objective optimization framework for deep neural networks in embedded systems. Microprocess. Microsystems 73: 102989 (2020) - [j44]Seyyed Amir Asghari
, Mohammadreza Binesh Marvasti, Masoud Daneshtalab
:
A software implemented comprehensive soft error detection method for embedded systems. Microprocess. Microsystems 77: 103161 (2020) - [j43]Hoda Mahdiani, Alireza Khadem, Azam Ghanbari, Mehdi Modarressi, Farima Fattahi-Bayat, Masoud Daneshtalab
:
ΔNN: Power-Efficient Neural Network Acceleration Using Differential Weights. IEEE Micro 40(1): 67-74 (2020) - [c131]Mohammad Loni, Ali Zoljodi, Daniel Maier, Amin Majd, Masoud Daneshtalab, Mikael Sjödin, Ben H. H. Juurlink, Reza Akbari
:
DenseDisp: Resource-Aware Disparity Map Estimation by Compressing Siamese Neural Architecture. CEC 2020: 1-8 - [c130]Mohammad Riazati, Masoud Daneshtalab, Mikael Sjödin, Björn Lisper:
SHiLA: Synthesizing High-Level Assertions for High-Speed Validation of High-Level Designs. DDECS 2020: 1-4 - [c129]Mohammad Riazati, Tara Ghasempouri
, Masoud Daneshtalab, Jaan Raik, Mikael Sjödin, Björn Lisper:
Adjustable self-healing methodology for accelerated functions in heterogeneous systems. DSD 2020: 638-645 - [c128]Mohammad Riazati, Masoud Daneshtalab, Mikael Sjödin, Björn Lisper:
DeepHLS: A complete toolchain for automatic synthesis of deep neural networks to FPGA. ICECS 2020: 1-4 - [c127]Seyed Ahmad Mirsalari
, Sima Sinaei, Mostafa E. Salehi, Masoud Daneshtalab:
MuBiNN: Multi-Level Binarized Recurrent Neural Network for EEG Signal Classification. ISCAS 2020: 1-5 - [c126]Najmeh Nazari, Seyed Ahmad Mirsalari
, Sima Sinaei, Mostafa E. Salehi, Masoud Daneshtalab:
Multi-level Binarized LSTM in EEG Classification for Wearable Devices. PDP 2020: 175-181 - [c125]Mohammad K. Fallah, Mina Mirhosseini, Mahmood Fazlali
, Masoud Daneshtalab:
Scalable Parallel Genetic Algorithm For Solving Large Integer Linear Programming Models Derived From Behavioral Synthesis. PDP 2020: 390-394 - [c124]Masoud Daneshtalab, Mats Brorsson:
Message from Program Co-Chairs: PDP 2020. PDP 2020: i - [c123]Masoud Daneshtalab, Francesco Leporati, Mikael Sjödin:
Preface from General Co-Chairs: PDP 2020. PDP 2020: i - [i3]Seyed Ahmad Mirsalari, Sima Sinaei, Mostafa E. Salehi, Masoud Daneshtalab:
MuBiNN: Multi-Level Binarized Recurrent Neural Network for EEG signal Classification. CoRR abs/2004.08914 (2020) - [i2]Seyyed Hossein Seyyedaghaei Rezaei, Mehdi Modarressi, Rachata Ausavarungnirun, Mohammad Sadrosadati, Onur Mutlu, Masoud Daneshtalab:
NOM: Network-On-Memory for Inter-Bank Data Transfer in Highly-Banked Memories. CoRR abs/2004.09923 (2020) - [i1]Najmeh Nazari, Seyed Ahmad Mirsalari, Sima Sinaei, Mostafa E. Salehi, Masoud Daneshtalab:
Multi-level Binarized LSTM in EEG Classification for Wearable Devices. CoRR abs/2004.11206 (2020)
2010 – 2019
- 2019
- [j42]Naveed Khan Baloch
, Muhammad Iram Baig, Masoud Daneshtalab
:
Defender: A Low Overhead and Efficient Fault-Tolerant Mechanism for Reliable on-Chip Router. IEEE Access 7: 142843-142854 (2019) - [j41]Fahimeh Yazdanpanah, Raheel Afsharmazayejani, Mohammad Alaei, Amin Rezaei, Masoud Daneshtalab
:
An energy-efficient partition-based XYZ-planar routing algorithm for a wireless network-on-chip. J. Supercomput. 75(2): 837-861 (2019) - [c122]Adnan Ghaderi, Masoud Daneshtalab, Mohammad Ashjaei, Mohammad Loni, Saad Mubeen, Mikael Sjödin:
Design Challenges in Hardware Development of Time-Sensitive Networking: A Research Plan. CPS Summer School, PhD Workshop 2019: 29-38 - [c121]Najmeh Nazari, Mohammad Loni, Mostafa E. Salehi, Masoud Daneshtalab, Mikael Sjödin:
TOT-Net: An Endeavor Toward Optimizing Ternary Neural Networks. DSD 2019: 305-312 - [c120]Maghsood Salimi, Amin Majd, Mohammad Loni, Tiberiu Seceleanu
, Cristina Seceleanu
, Marjan Sirjani, Masoud Daneshtalab, Elena Troubitsyna:
Multi-objective Optimization of Real-Time Task Scheduling Problem for Distributed Environments. ECBS 2019: 13:1-13:9 - [c119]Syed Rameez Ullah Kakakhel
, Tomi Westerlund
, Masoud Daneshtalab, Zhuo Zou, Juha Plosila, Hannu Tenhunen
:
A Qualitative Comparison Model for Application Layer IoT Protocols. FMEC 2019: 210-215 - [c118]Mohammad Loni, Ali Zoljodi, Sima Sinaei, Masoud Daneshtalab
, Mikael Sjödin:
NeuroPower: Designing Energy Efficient Convolutional Neural Network Architecture for Embedded Systems. ICANN (1) 2019: 208-222 - [c117]Neda Maleki, Mohammad Loni, Masoud Daneshtalab, Mauro Conti
, Hossein Fotouhi:
SoFA: A Spark-oriented Fog Architecture. IECON 2019: 2792-2799 - [c116]Amin Majd, Mohammad Loni, Golnaz Sahebi, Masoud Daneshtalab, Elena Troubitsyna:
A Cloud Based Super-Optimization Method to Parallelize the Sequential Code's Nested Loops. MCSoC 2019: 281-287 - [c115]Bahar Houtan, Mohammad Ashjaei, Masoud Daneshtalab
, Mikael Sjödin, Saad Mubeen:
Work in Progress: Investigating the Effects of High Priority Traffic on the Best Effort Traffic in TSN Networks. RTSS 2019: 556-559 - 2018
- [j40]Amin Rezaei, Masoud Daneshtalab
, Hai Zhou:
Chapter Three - Multiobjectivism in Dark Silicon Age. Adv. Comput. 110: 83-126 (2018) - [j39]Amin Majd
, Golnaz Sahebi, Masoud Daneshtalab
, Juha Plosila, Shahriar Lotfi
, Hannu Tenhunen
:
Parallel imperialist competitive algorithms. Concurr. Comput. Pract. Exp. 30(7) (2018) - [j38]Masoumeh Ebrahimi, Masoud Daneshtalab
:
A General Methodology on Designing Acyclic Channel Dependency Graphs in Interconnection Networks. IEEE Micro 38(3): 79-85 (2018) - [c114]Raheel Afsharmazayejani, Fahimeh Yazdanpanah, Amin Rezaei, Mohammad Alaei, Masoud Daneshtalab
:
HoneyWiN: Novel Honeycomb-Based Wireless NoC Architecture in Many-Core Era. ARC 2018: 304-316 - [c113]Nasrin Akbari, Mehdi Modarressi, Masoud Daneshtalab
, Mohammad Loni:
A Customized Processing-in-Memory Architecture for Biological Sequence Alignment. ASAP 2018: 1-8 - [c112]Amin Majd, Adnan Ashraf
, Elena Troubitsyna, Masoud Daneshtalab:
Using Optimization, Learning, and Drone Reflexes to Maximize Safety of Swarms of Drones. CEC 2018: 1-8 - [c111]Mohammad Loni, Masoud Daneshtalab, Mikael Sjödin:
ADONN: Adaptive Design of Optimized Deep Neural Networks for Embedded Systems. DSD 2018: 397-404 - [c110]Mohammad Loni, Amin Majd, Abdolah Loni, Masoud Daneshtalab, Mikael Sjödin, Elena Troubitsyna:
Designing Compact Convolutional Neural Network for Embedded Stereo Vision Systems. MCSoC 2018: 244-251 - [c109]Alireza Namazi, Meisam Abdollahi, Saeed Safari, Siamak Mohammadi, Masoud Daneshtalab:
LRTM: Life-time and Reliability-aware Task Mapping Approach for Heterogeneous Multi-core Systems. NoCArc@MICRO 2018: 1-6 - [c108]Arash Firuzan, Mehdi Modarressi, Masoud Daneshtalab, Midia Reshadi:
Reconfigurable Network-on-Chip for 3D Neural Network Accelerators. NOCS 2018: 18:1-18:8 - [c107]Amin Majd, Adnan Ashraf
, Elena Troubitsyna, Masoud Daneshtalab:
Integrating Learning, Optimization, and Prediction for Efficient Navigation of Swarms of Drones. PDP 2018: 101-108 - 2017
- [j37]Amin Rezaei, Masoud Daneshtalab
, Dan Zhao:
CAP-W: Congestion-aware platform for wireless-based network-on-chip in many-core era. Microprocess. Microsystems 52: 23-33 (2017) - [j36]Reza Hojabr, Mehdi Modarressi, Masoud Daneshtalab
, Ali Yasoubi, Ahmad Khonsari:
Customizing Clos Network-on-Chip for Neural Networks. IEEE Trans. Computers 66(11): 1865-1877 (2017) - [c106]Elham Momenzadeh, Mehdi Modarressi, Abbas Mazloumi, Masoud Daneshtalab
:
Parallel Forwarding for Efficient Bandwidth Utilization in Networks-on-Chip. ARCS 2017: 152-163 - [c105]Amin Majd, Masoud Daneshtalab, Elena Troubitsyna, Golnaz Sahebi:
Optimal smart mobile access point placement for maximal coverage and minimal communication. ECBS 2017: 21:1-21:2 - [c104]Masoumeh Ebrahimi, Masoud Daneshtalab:
EbDa: A New Theory on Design and Verification of Deadlock-free Interconnection Networks. ISCA 2017: 703-715 - [c103]Amin Majd,