
Kagan Tumer
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2020
- [j42]Jen Jen Chung
, Damjan Miklic
, Lorenzo Sabattini, Kagan Tumer, Roland Siegwart:
The impact of agent definitions and interactions on multiagent learning for coordination in traffic management domains. Auton. Agents Multi Agent Syst. 34(1): 21 (2020) - [c102]Gaurav Dixit, Stéphane Airiau, Kagan Tumer:
Gaussian Processes as Multiagent Reward Models. AAMAS 2020: 330-338 - [c101]Golden Rockefeller, Shauharda Khadka, Kagan Tumer:
Multi-level Fitness Critics for Cooperative Coevolution. AAMAS 2020: 1143-1151 - [c100]Nicholas Zerbel, Kagan Tumer:
The Power of Suggestion. AAMAS 2020: 1602-1610 - [c99]Connor Yates, Reid Christopher, Kagan Tumer:
Multi-fitness learning for behavior-driven cooperation. GECCO 2020: 453-461 - [c98]Somdeb Majumdar, Shauharda Khadka, Santiago Miret, Stephen McAleer, Kagan Tumer:
Evolutionary Reinforcement Learning for Sample-Efficient Multiagent Coordination. ICML 2020: 6651-6660
2010 – 2019
- 2019
- [j41]Daniel Hulse
, Kagan Tumer, Christopher Hoyle, Irem Y. Tumer:
Modeling multidisciplinary design with multiagent learning. Artif. Intell. Eng. Des. Anal. Manuf. 33(1): 85-99 (2019) - [j40]Jen Jen Chung, Carrie Rebhuhn, Connor Yates, Geoffrey A. Hollinger, Kagan Tumer:
A multiagent framework for learning dynamic traffic management strategies. Auton. Robots 43(6): 1375-1391 (2019) - [j39]Shauharda Khadka, Jen Jen Chung, Kagan Tumer:
Neuroevolution of a Modular Memory-Augmented Neural Network for Deep Memory Problems. Evol. Comput. 27(4): 639-664 (2019) - [c97]Jen Jen Chung, Damjan Miklic, Lorenzo Sabattini, Kagan Tumer, Roland Siegwart:
The Impact of Agent Definitions and Interactions on Multiagent Learning for Coordination. AAMAS 2019: 1752-1760 - [c96]Shauharda Khadka, Connor Yates, Kagan Tumer:
Memory based Multiagent One Shot Learning. AAMAS 2019: 2054-2056 - [c95]Golden Rockefeller, Patrick Mannion, Kagan Tumer:
Curriculum Learning for Tightly Coupled Multiagent Systems. AAMAS 2019: 2174-2176 - [c94]Shauharda Khadka, Somdeb Majumdar, Tarek Nassar, Zach Dwiel, Evren Tumer, Santiago Miret, Yinyin Liu, Kagan Tumer:
Collaborative Evolutionary Reinforcement Learning. ICML 2019: 3341-3350 - [c93]Shauharda Khadka, Connor Yates, Kagan Tumer:
Memory-Based Multiagent One-Shot Learning: Extended Abstract. MRS 2019: 145-147 - [c92]Gaurav Dixit, Nicholas Zerbel, Kagan Tumer:
Dirichlet-Multinomial Counterfactual Rewards for Heterogeneous Multiagent Systems. MRS 2019: 209-215 - [c91]Golden Rockefeller, Patrick Mannion, Kagan Tumer:
Fitness Critics for Multiagent Learning: Extended Abstract. MRS 2019: 222-224 - [i15]Shauharda Khadka, Somdeb Majumdar, Tarek Nassar, Zach Dwiel, Evren Tumer, Santiago Miret, Yinyin Liu, Kagan Tumer:
Collaborative Evolutionary Reinforcement Learning. CoRR abs/1905.00976 (2019) - [i14]Shauharda Khadka, Somdeb Majumdar, Kagan Tumer:
Evolutionary Reinforcement Learning for Sample-Efficient Multiagent Coordination. CoRR abs/1906.07315 (2019) - 2018
- [j38]Nicolás F. Soria Zurita, Mitchell K. Colby, Irem Y. Tumer, Christopher Hoyle, Kagan Tumer:
Design of Complex Engineered Systems Using Multi-Agent Coordination. J. Comput. Inf. Sci. Eng. 18(1) (2018) - [c90]Jen Jen Chung, Scott Chow, Kagan Tumer:
When Less is More: Reducing Agent Noise with Probabilistically Learning Agents. AAMAS 2018: 1900-1902 - [c89]Shauharda Khadka, Connor Yates, Kagan Tumer:
A Memory-based Multiagent Framework for Adaptive Decision Making. AAMAS 2018: 1977-1979 - [c88]Shauharda Khadka, Kagan Tumer:
Evolution-Guided Policy Gradient in Reinforcement Learning. NeurIPS 2018: 1196-1208 - [i13]Shauharda Khadka, Kagan Tumer:
Evolutionary Reinforcement Learning. CoRR abs/1805.07917 (2018) - 2017
- [j37]Mitchell K. Colby, Kagan Tumer:
Fitness function shaping in multiagent cooperative coevolutionary algorithms. Auton. Agents Multi Agent Syst. 31(2): 179-206 (2017) - [c87]Shauharda Khadka, Jen Jen Chung, Kagan Tumer:
Evolving memory-augmented neural architecture for deep memory problems. GECCO 2017: 441-448 - [c86]Shauharda Khadka, Jen Jen Chung, Kagan Tumer:
Memory-augmented multi-robot teams that learn to adapt. MRS 2017: 128-134 - [c85]Callie Branyan, Chloe Fleming, Jacquelin Remaley, Ammar Kothari, Kagan Tumer, Ross L. Hatton, Yigit Mengüç:
Soft snake robots: Mechanical design and geometric gait implementation. ROBIO 2017: 282-289 - 2016
- [j36]Mitchell K. Colby, Logan Michael Yliniemi, Kagan Tumer:
Autonomous Multiagent Space Exploration with High-Level Human Feedback. J. Aerosp. Inf. Syst. 13(8): 301-315 (2016) - [j35]Chris HolmesParker, Adrian K. Agogino, Kagan Tumer:
Combining reward shaping and hierarchies for scaling to large multiagent systems. Knowl. Eng. Rev. 31(1): 3-18 (2016) - [j34]Logan Michael Yliniemi, Kagan Tumer:
Multi-objective multiagent credit assignment in reinforcement learning and NSGA-II. Soft Comput. 20(10): 3869-3887 (2016) - [c84]Logan Michael Yliniemi, Kagan Tumer:
Using Awareness to Promote Richer, More Human-Like Behaviors in Artificial Agents. AAMAS Workshops (Visionary Papers) 2016: 122-133 - [c83]Mitchell K. Colby, Theodore Duchow-Pressley, Jen Jen Chung, Kagan Tumer:
Local Approximation of Difference Evaluation Functions. AAMAS 2016: 521-529 - [c82]Mitchell K. Colby, Logan Michael Yliniemi, Paolo Pezzini, David Tucker, Kenneth Mark Bryden, Kagan Tumer:
Multiobjective Neuroevolutionary Control for a Fuel Cell Turbine Hybrid Energy System. GECCO 2016: 877-884 - [c81]Shauharda Khadka, Kagan Tumer, Mitchell K. Colby, Dave Tucker, Paolo Pezzini, Kenneth Mark Bryden:
Neuroevolution of a Hybrid Power Plant Simulator. GECCO 2016: 917-924 - [c80]Aida Rahmattalabi, Jen Jen Chung, Mitchell K. Colby, Kagan Tumer:
D++: Structural credit assignment in tightly coupled multiagent domains. IROS 2016: 4424-4429 - 2015
- [j33]Atil Iscen, Ken Caluwaerts, Jonathan Bruce, Adrian K. Agogino, Vytas SunSpiral, Kagan Tumer:
Learning Tensegrity Locomotion Using Open-Loop Control Signals and Coevolutionary Algorithms. Artif. Life 21(2): 119-140 (2015) - [j32]Logan Michael Yliniemi, Adrian K. Agogino, Kagan Tumer:
Simulation of the introduction of new technologies in air traffic management. Connect. Sci. 27(3): 269-287 (2015) - [c79]Mitchell K. Colby, Sepideh Kharaghani, Chris HolmesParker, Kagan Tumer:
Counterfactual Exploration for Improving Multiagent Learning. AAMAS 2015: 171-179 - [c78]Logan Michael Yliniemi, Drew Wilson, Kagan Tumer:
Multi-Objective Multiagent Credit Assignment in NSGA-II Using Difference Evaluations. AAMAS 2015: 1635-1636 - [c77]Mitchell K. Colby, William J. Curran, Kagan Tumer:
Approximating Difference Evaluations with Local Information. AAMAS 2015: 1659-1660 - [c76]Mitchell K. Colby, Kagan Tumer:
A Replicator Dynamics Analysis of Difference Evaluation Functions. AAMAS 2015: 1661-1662 - [c75]Mitchell K. Colby, Kagan Tumer:
An Evolutionary Game Theoretic Analysis of Difference Evaluation Functions. GECCO 2015: 1391-1398 - [c74]Andrew Gabler, Mitchell K. Colby, Kagan Tumer:
Learning Based Control of a Fuel Cell Turbine Hybrid Power System. GECCO (Companion) 2015: 1393-1394 - [c73]Logan Michael Yliniemi, Kagan Tumer:
Complete Multi-Objective Coverage with PaCcET. GECCO (Companion) 2015: 1525-1526 - [c72]Carrie Rebhuhn, Ryan Skeele, Jen Jen Chung, Geoffrey A. Hollinger, Kagan Tumer:
Learning to trick cost-based planners into cooperative behavior. IROS 2015: 4627-4633 - [c71]Mitchell K. Colby, Jen Jen Chung, Kagan Tumer:
Implicit adaptive multi-robot coordination in dynamic environments. IROS 2015: 5168-5173 - 2014
- [j31]Logan Michael Yliniemi, Adrian K. Agogino, Kagan Tumer:
Multirobot Coordination for Space Exploration. AI Mag. 35(4): 61-74 (2014) - [c70]Mitchell K. Colby, Matt Knudson, Kagan Tumer:
Multiagent Flight Control in Dynamic Environments with Cooperative Coevolutionary Algorithms. AAAI Spring Symposia 2014 - [c69]Carrie Rebhuhn, Matt Knudson, Kagan Tumer:
Announced Strategy Types in Multiagent RL for Conflict-Avoidance in the National Airspace. AAAI Spring Symposia 2014 - [c68]Sam Devlin, Logan Michael Yliniemi, Daniel Kudenko, Kagan Tumer:
Potential-based difference rewards for multiagent reinforcement learning. AAMAS 2014: 165-172 - [c67]Chris HolmesParker, Matthew E. Taylor, Adrian K. Agogino, Kagan Tumer:
CLEANing the reward: counterfactual actions to remove exploratory action noise in multiagent learning (extended abstract). AAMAS 2014: 1353-1354 - [c66]William J. Curran, Adrian K. Agogino, Kagan Tumer:
Using reward/utility based impact scores in partitioning. AAMAS 2014: 1563-1564 - [c65]Mitchell K. Colby, William J. Curran, Carrie Rebhuhn, Kagan Tumer:
Approximating difference evaluations with local knowledge. AAMAS 2014: 1577-1578 - [c64]William J. Curran, Adrian K. Agogino, Kagan Tumer:
Hierarchical simulation for complex domains: air traffic flow management. GECCO 2014: 1087-1094 - [c63]Logan Michael Yliniemi, Adrian K. Agogino, Kagan Tumer:
Evolutionary agent-based simulation of the introduction of new technologies in air traffic management. GECCO 2014: 1215-1222 - [c62]Atil Iscen, Adrian K. Agogino, Vytas SunSpiral, Kagan Tumer:
Flop and roll: Learning robust goal-directed locomotion for a Tensegrity Robot. IROS 2014: 2236-2243 - [c61]Logan Michael Yliniemi, Kagan Tumer:
PaCcET: An Objective Space Transformation to Iteratively Convexify the Pareto Front. SEAL 2014: 204-215 - [c60]Logan Michael Yliniemi, Kagan Tumer:
Multi-objective Multiagent Credit Assignment Through Difference Rewards in Reinforcement Learning. SEAL 2014: 407-418 - [c59]Chris HolmesParker, Matthew E. Taylor
, Adrian K. Agogino, Kagan Tumer:
CLEAN Rewards to Improve Coordination by Removing Exploratory Action Noise. WI-IAT (3) 2014: 127-134 - 2013
- [j30]Kagan Tumer, Scott Proper:
Coordinating actions in congestion games: impact of top-down and bottom-up utilities. Auton. Agents Multi Agent Syst. 27(3): 419-443 (2013) - [j29]Matt Knudson, Kagan Tumer:
Dynamic Partnership Formation for Multi-Rover Coordination. Adv. Complex Syst. 16(1) (2013) - [j28]Jaime Junell, Kagan Tumer:
Robust predictive cruise control for commercial vehicles. Int. J. Gen. Syst. 42(7): 776-792 (2013) - [j27]Max Salichon, Kagan Tumer:
A neuro-evolutionary approach to control surface segmentation for micro aerial vehicles. Int. J. Gen. Syst. 42(7): 793-805 (2013) - [j26]MohammadJavad NoroozOliaee, Bechir Hamdaoui, Kagan Tumer:
Efficient Objective Functions for Coordinated Learning in Large-Scale Distributed OSA Systems. IEEE Trans. Mob. Comput. 12(5): 931-944 (2013) - [c58]Scott Proper, Kagan Tumer:
Multiagent Learning with a Noisy Global Reward Signal. AAAI 2013 - [c57]Logan Michael Yliniemi, Kagan Tumer:
Elo Ratings for Structural Credit Assignment in Multiagent Systems. AAAI (Late-Breaking Developments) 2013 - [c56]Mitchell K. Colby, Kagan Tumer:
Multiagent reinforcement learning in a distributed sensor network with indirect feedback. AAMAS 2013: 941-948 - [c55]Chris HolmesParker, Adrian K. Agogino, Kagan Tumer:
CLEAN rewards for improving multiagent coordination in the presence of exploration. AAMAS 2013: 1113-1114 - [c54]Chris HolmesParker, Adrian K. Agogino, Kagan Tumer:
Exploiting structure and utilizing agent-centric rewards to promote coordination in large multiagent systems. AAMAS 2013: 1181-1182 - [c53]Atil Iscen, Adrian K. Agogino, Vytas SunSpiral, Kagan Tumer:
Learning to control complex tensegrity robots. AAMAS 2013: 1193-1194 - [c52]Atil Iscen, Kagan Tumer:
Decentralized coordination via task decomposition and reward shaping. AAMAS 2013: 1269-1270 - [c51]Scott Proper, Kagan Tumer:
Graphical models in continuous domains for multiagent reinforcement learning. AAMAS 2013: 1277-1278 - [c50]William J. Curran, Adrian K. Agogino, Kagan Tumer:
Addressing hard constraints in the air traffic problem through partitioning and difference rewards. AAMAS 2013: 1281-1282 - [c49]William J. Curran, Adrian K. Agogino, Kagan Tumer:
Partitioning agents and shaping their evaluation functions in air traffic problems with hard constraints. GECCO (Companion) 2013: 183-184 - [c48]Atil Iscen, Adrian K. Agogino, Vytas SunSpiral, Kagan Tumer:
Controlling tensegrity robots through evolution. GECCO 2013: 1293-1300 - 2012
- [j25]Adrian K. Agogino, Kagan Tumer:
A multiagent approach to managing air traffic flow. Auton. Agents Multi Agent Syst. 24(1): 1-25 (2012) - [j24]Liz Sonenberg, Peter Stone, Kagan Tumer, Pinar Yolum:
Ten Years of AAMAS: Introduction to the Special Issue. AI Mag. 33(3): 11-13 (2012) - [j23]Ehsan M. Nasroullahi, Kagan Tumer:
Combining coordination mechanisms to improve performance in multi-robot teams. Artif. Intell. Res. 1(2): 1-10 (2012) - [j22]Bechir Hamdaoui, MohammadJavad NoroozOliaee, Kagan Tumer, Ammar Rayes:
Coordinating Secondary-User Behaviors for Inelastic Traffic Reward Maximization in Large-Scale \osa Networks. IEEE Trans. Netw. Serv. Manag. 9(4): 501-513 (2012) - [j21]Max Salichon, Kagan Tumer:
Evolving a Multiagent Controller for Micro Aerial Vehicles. IEEE Trans. Syst. Man Cybern. Part C 42(6): 1772-1783 (2012) - [c47]Mitchell K. Colby, Kagan Tumer:
Shaping fitness functions for coevolving cooperative multiagent systems. AAMAS 2012: 425-432 - [c46]Scott Proper, Kagan Tumer:
Modeling difference rewards for multiagent learning. AAMAS 2012: 1397-1398 - [c45]Adrian K. Agogino, Chris HolmesParker, Kagan Tumer:
Evolving distributed resource sharing for cubesat constellations. GECCO 2012: 1015-1022 - [c44]Adrian K. Agogino, Chris HolmesParker, Kagan Tumer:
Evolving large scale UAV communication system. GECCO 2012: 1023-1030 - [c43]Matt Knudson, Kagan Tumer:
Policy transfer in mobile robots using neuro-evolutionary navigation. GECCO (Companion) 2012: 1411-1412 - 2011
- [j20]Matt Knudson, Kagan Tumer:
Adaptive navigation for autonomous robots. Robotics Auton. Syst. 59(6): 410-420 (2011) - [c42]Christian Roth, Matt Knudson, Kagan Tumer:
Agent fitness functions for evolving coordinated sensor networks. GECCO 2011: 275-282 - [c41]Mitchell K. Colby, Ehsan M. Nasroullahi, Kagan Tumer:
Optimizing ballast design of wave energy converters using evolutionary algorithms. GECCO 2011: 1739-1746 - [c40]Bechir Hamdaoui, MohammadJavad NoroozOliaee, Kagan Tumer, Ammar Rayes:
Aligning Spectrum-User Objectives for Maximum Inelastic-Traffic Reward. ICCCN 2011: 1-6 - [c39]MohammadJavad NoroozOliaee, Bechir Hamdaoui, Kagan Tumer:
Achieving optimal elastic traffic rewards in dynamic multichannel access. HPCS 2011: 155-161 - [e1]Liz Sonenberg, Peter Stone, Kagan Tumer, Pinar Yolum:
10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011), Taipei, Taiwan, May 2-6, 2011, Volume 1-3. IFAAMAS 2011, ISBN 978-0-9826571-5-7 [contents] - [i12]Kagan Tumer, David H. Wolpert:
Collective Intelligence, Data Routing and Braess' Paradox. CoRR abs/1106.1821 (2011) - 2010
- [j19]Adrian K. Agogino, Kagan Tumer:
A Multiagent Coordination Approach to Robust Consensus Clustering. Adv. Complex Syst. 13(2): 165-197 (2010) - [c38]Matt Knudson, Kagan Tumer:
Robot coordination with ad-hoc team formation. AAMAS 2010: 1441-1442 - [c37]Matt Knudson, Kagan Tumer:
Coevolution of heterogeneous multi-robot teams. GECCO 2010: 127-134 - [c36]Max Salichon, Kagan Tumer:
A neuro-evolutionary approach to micro aerial vehicle control. GECCO 2010: 1123-1130 - [c35]Jack F. Shepherd III, Kagan Tumer:
Robust neuro-control for a micro quadrotor. GECCO 2010: 1131-1138
2000 – 2009
- 2009
- [j18]Kagan Tumer, Newsha Khani:
Learning from Actions not Taken in Multiagent Systems. Adv. Complex Syst. 12(4-5): 455-473 (2009) - [j17]Kagan Tumer, Adrian K. Agogino:
Multiagent Learning for Black Box System Reward Functions. Adv. Complex Syst. 12(4-5): 475-492 (2009) - [j16]Adrian K. Agogino, Kagan Tumer:
Learning Indirect Actions in Complex Domains: Action Suggestions for Air Traffic Control. Adv. Complex Syst. 12(4-5): 493-512 (2009) - [j15]Kagan Tumer, Adrian K. Agogino:
Improving Air Traffic Management with a Learning Multiagent System. IEEE Intell. Syst. 24(1): 18-21 (2009) - [c34]Kagan Tumer, John W. Lawson:
Coordinating Learning Agents for Multiple Resource Job Scheduling. ALA 2009: 123-140 - [c33]Adrian K. Agogino, Kagan Tumer:
Improving air traffic management through agent suggestions. AAMAS (2) 2009: 1271-1272 - [c32]Newsha Khani, Kagan Tumer:
Learning from actions not taken: a multiagent learning algorithm. AAMAS (2) 2009: 1277-1278 - [p2]Kagan Tumer, Zachary T. Welch, Adrian K. Agogino:
Traffic Congestion Management as a Learning Agent Coordination Problem. Multi-Agent Systems for Traffic and Transportation Engineering 2009: 261-279 - 2008
- [j14]Adrian K. Agogino, Kagan Tumer:
Analyzing and visualizing multiagent rewards in dynamic and stochastic domains. Auton. Agents Multi Agent Syst. 17(2): 320-338 (2008) - [j13]Adrian K. Agogino, Kagan Tumer:
Efficient Evaluation Functions for Evolving Coordination. Evol. Comput. 16(2): 257-288 (2008) - [j12]Nikunj C. Oza, Kagan Tumer:
Applications of ensemble methods. Inf. Fusion 9(1): 2-3 (2008) - [j11]Nikunj C. Oza, Kagan Tumer:
Classifier ensembles: Select real-world applications. Inf. Fusion 9(1): 4-20 (2008) - [j10]Kagan Tumer, Adrian K. Agogino:
Ensemble clustering with voting active clusters. Pattern Recognit. Lett. 29(14): 1947-1953 (2008) - [c31]Kagan Tumer, Adrian K. Agogino:
Adaptive Management of Air Traffic Flow: A Multiagent Coordination Approach. AAAI 2008: 1581-1584 - [c30]Adrian K. Agogino, Kagan Tumer:
Regulating air traffic flow with coupled agents. AAMAS (2) 2008: 535-542 - [c29]Kagan Tumer, Zachary T. Welch, Adrian K. Agogino:
Aligning social welfare and agent preferences to alleviate traffic congestion. AAMAS (2) 2008: 655-662 - 2007
- [c28]Kagan Tumer, Adrian K. Agogino:
Distributed agent-based air traffic flow management. AAMAS 2007: 255 - [c27]Adrian K. Agogino, Kagan Tumer:
Evolving distributed agents for managing air traffic. GECCO 2007: 1888-1895 - [p1]Kagan Tumer, Adrian K. Agogino:
Evolving Multi Rover Systems in Dynamic and Noisy Environments. Evolutionary Computation in Dynamic and Uncertain Environments 2007: 371-387 - 2006
- [j9]Adrian K. Agogino, Kagan Tumer:
Handling Communication Restrictions and Team Formation in Congestion Games. Auton. Agents Multi Agent Syst. 13(1): 97-115 (2006) - [c26]Adrian K. Agogino, Kagan Tumer:
QUICR-Learning for Multi-Agent Coordination. AAAI 2006: 1438-1443 - [c25]Nachi Gupta, Adrian K. Agogino, Kagan Tumer:
Efficient agent-based models for non-genomic evolution. AAMAS 2006: 58-64 - [c24]Adrian K. Agogino, Kagan Tumer:
Efficient agent-based cluster ensembles. AAMAS 2006: 1079-1086 - [c23]Kagan Tumer:
Coordinating simple and unreliable agents. AAMAS 2006: 1119-1121 - [c22]Adrian K. Agogino, Kagan Tumer:
Distributed evaluation functions for fault tolerant multi-rover systems. GECCO 2006: 1079-1086 - 2005
- [c21]Adrian K. Agogino, Kagan Tumer:
Multi-agent reward analysis for learning in noisy domains. AAMAS 2005: 81-88 - [c20]Kagan Tumer, Adrian K. Agogino:
Coordinating multi-rover systems: evaluation functions for dynamic and noisy environments. GECCO 2005: 591-598 - [c19]Adrian K. Agogino, Kagan Tumer, Risto Miikkulainen:
Efficient credit assignment through evaluation function decomposition. GECCO 2005: 1309-1316 - [c18]Kagan Tumer, Adrian K. Agogino:
Efficient Reward Functions for Adaptive Multi-rover Systems. LAMAS 2005: 177-191 - 2004
- [c17]Adrian K. Agogino, Kagan Tumer:
Unifying Temporal and Structural Credit Assignment Problems. AAMAS 2004: 980-987 - [c16]Kagan Tumer, Adrian K. Agogino:
Time-Extended Policies in Multi-Agent Reinforcement Learning. AAMAS 2004: 1338-1339 - [c15]Adrian K. Agogino, Kagan Tumer:
Efficient Evaluation Functions for Multi-rover Systems. GECCO (1) 2004: 1-11 - 2003
- [j8]