


default search action
22nd MICCAI 2019: Shenzhen, China
- Dinggang Shen, Tianming Liu, Terry M. Peters, Lawrence H. Staib, Caroline Essert, Sean Zhou, Pew-Thian Yap, Ali R. Khan:

Medical Image Computing and Computer Assisted Intervention - MICCAI 2019 - 22nd International Conference, Shenzhen, China, October 13-17, 2019, Proceedings, Part III. Lecture Notes in Computer Science 11766, Springer 2019, ISBN 978-3-030-32247-2
Neuroimage Reconstruction and Synthesis
- Yao Sui, Onur Afacan

, Ali Gholipour, Simon K. Warfield:
Isotropic MRI Super-Resolution Reconstruction with Multi-scale Gradient Field Prior. 3-11 - Zheng Li, Qingping Liu, Yiran Li

, Qiu Ge, Yuanqi Shang, Donghui Song
, Ze Wang, Jun Shi:
A Two-Stage Multi-loss Super-Resolution Network for Arterial Spin Labeling Magnetic Resonance Imaging. 12-20 - Jing Cheng, Haifeng Wang

, Leslie Ying
, Dong Liang:
Model Learning: Primal Dual Networks for Fast MR Imaging. 21-29 - Yanxia Chen, Taohui Xiao, Cheng Li, Qiegen Liu, Shanshan Wang

:
Model-Based Convolutional De-Aliasing Network Learning for Parallel MR Imaging. 30-38 - Viswanath P. Sudarshan

, Kratika Gupta, Gary F. Egan, Zhaolin Chen
, Suyash P. Awate
:
Joint Reconstruction of PET + Parallel-MRI in a Bayesian Coupled-Dictionary MRF Framework. 39-47 - Zhiyuan Liu, Huai Chen, Huafeng Liu:

Deep Learning Based Framework for Direct Reconstruction of PET Images. 48-56 - Jo Schlemper, Seyed Sadegh Mohseni Salehi, Prantik Kundu, Carole Lazarus, Hadrien Dyvorne, Daniel Rueckert, Michal Sofka:

Nonuniform Variational Network: Deep Learning for Accelerated Nonuniform MR Image Reconstruction. 57-64 - Kai Xuan, Dongming Wei

, Dijia Wu, Zhong Xue
, Yiqiang Zhan, Weiwu Yao, Qian Wang:
Reconstruction of Isotropic High-Resolution MR Image from Multiple Anisotropic Scans Using Sparse Fidelity Loss and Adversarial Regularization. 65-73 - Prabhjot Kaur, Anil Kumar Sao:

Single Image Based Reconstruction of High Field-Like MR Images. 74-82 - Juan Liu, Kevin M. Koch:

Deep Gated Convolutional Neural Network for QSM Background Field Removal. 83-91 - Elisabeth Hoppe, Florian Thamm, Gregor Körzdörfer, Christopher Syben, Franziska Schirrmacher, Mathias Nittka, Josef Pfeuffer, Heiko Meyer, Andreas Maier:

RinQ Fingerprinting: Recurrence-Informed Quantile Networks for Magnetic Resonance Fingerprinting. 92-100 - Zhenghan Fang, Yong Chen, Dong Nie, Weili Lin, Dinggang Shen:

RCA-U-Net: Residual Channel Attention U-Net for Fast Tissue Quantification in Magnetic Resonance Fingerprinting. 101-109 - Pan Liu

, Chao Li
, Carola-Bibiane Schönlieb
:
GANReDL: Medical Image Enhancement Using a Generative Adversarial Network with Real-Order Derivative Induced Loss Functions. 110-117 - Gihyun Kwon, Chihye Han, Daeshik Kim:

Generation of 3D Brain MRI Using Auto-Encoding Generative Adversarial Networks. 118-126 - Mahmoud Mostapha, Juan Prieto, Veronica Murphy, Jessica B. Girault

, Mark Foster, Ashley Rumple, Joseph Blocher, Weili Lin, Jed T. Elison, John H. Gilmore, Steven M. Pizer, Martin Styner
:
Semi-supervised VAE-GAN for Out-of-Sample Detection Applied to MRI Quality Control. 127-136 - Yongsheng Pan

, Mingxia Liu
, Chunfeng Lian, Yong Xia, Dinggang Shen:
Disease-Image Specific Generative Adversarial Network for Brain Disease Diagnosis with Incomplete Multi-modal Neuroimages. 137-145 - Muhammad Febrian Rachmadi

, Maria del C. Valdés Hernández
, Stephen D. Makin, Joanna M. Wardlaw
, Taku Komura:
Predicting the Evolution of White Matter Hyperintensities in Brain MRI Using Generative Adversarial Networks and Irregularity Map. 146-154 - Pu Huang, Dengwang Li, Zhicheng Jiao

, Dongming Wei
, Guoshi Li
, Qian Wang, Han Zhang, Dinggang Shen:
CoCa-GAN: Common-Feature-Learning-Based Context-Aware Generative Adversarial Network for Glioma Grading. 155-163 - Daniele Ravì

, Daniel C. Alexander
, Neil P. Oxtoby
:
Degenerative Adversarial NeuroImage Nets: Generating Images that Mimic Disease Progression. 164-172
Neuroimage Segmentation
- Zhanghexuan Ji, Yan Shen, Chunwei Ma

, Mingchen Gao:
Scribble-Based Hierarchical Weakly Supervised Learning for Brain Tumor Segmentation. 175-183 - Chen Chen, Xiaopeng Liu, Meng Ding, Junfeng Zheng, Jiangyun Li:

3D Dilated Multi-fiber Network for Real-Time Brain Tumor Segmentation in MRI. 184-192 - Yalong Liu, Jie Li, Ying Wang, Miaomiao Wang, Xianjun Li, Zhicheng Jiao

, Jian Yang, Xingbo Gao
:
Refined Segmentation R-CNN: A Two-Stage Convolutional Neural Network for Punctate White Matter Lesion Segmentation in Preterm Infants. 193-201 - Zhipeng Ding, Xu Han, Marc Niethammer:

VoteNet: A Deep Learning Label Fusion Method for Multi-atlas Segmentation. 202-210 - Kai Wu, Bowen Du, Man Luo, Hongkai Wen, Yiran Shen, Jianfeng Feng:

Weakly Supervised Brain Lesion Segmentation via Attentional Representation Learning. 211-219 - Sungwoong Kim, Ildoo Kim, Sungbin Lim

, Woonhyuk Baek, Chiheon Kim, Hyungjoo Cho
, Boogeon Yoon, Taesup Kim:
Scalable Neural Architecture Search for 3D Medical Image Segmentation. 220-228 - Wenguang Yuan, Jia Wei, Jiabing Wang, Qianli Ma, Tolga Tasdizen:

Unified Attentional Generative Adversarial Network for Brain Tumor Segmentation from Multimodal Unpaired Images. 229-237 - Haruki Imai, Samuel Matzek, Tung D. Le, Yasushi Negishi, Kiyokuni Kawachiya:

High Resolution Medical Image Segmentation Using Data-Swapping Method. 238-246 - Kehan Qi

, Hao Yang, Cheng Li, Zaiyi Liu, Meiyun Wang, Qiegen Liu, Shanshan Wang
:
X-Net: Brain Stroke Lesion Segmentation Based on Depthwise Separable Convolution and Long-Range Dependencies. 247-255 - Yuan-Xing Zhao, Yan-Ming Zhang, Ming Song, Cheng-Lin Liu:

Multi-view Semi-supervised 3D Whole Brain Segmentation with a Self-ensemble Network. 256-265 - Hao Yang, Weijian Huang, Kehan Qi

, Cheng Li, Xinfeng Liu, Meiyun Wang, Hairong Zheng, Shanshan Wang
:
CLCI-Net: Cross-Level Fusion and Context Inference Networks for Lesion Segmentation of Chronic Stroke. 266-274 - Qiaoying Huang, Xiao Chen, Dimitris N. Metaxas, Mariappan S. Nadar:

Brain Segmentation from k-Space with End-to-End Recurrent Attention Network. 275-283 - Nicola K. Dinsdale, Mark Jenkinson, Ana I. L. Namburete

:
Spatial Warping Network for 3D Segmentation of the Hippocampus in MR Images. 284-291 - Yuan Liang, Weinan Song, J. P. Dym, Kun Wang, Lei He:

CompareNet: Anatomical Segmentation Network with Deep Non-local Label Fusion. 292-300 - Jiong Wu

, Yue Zhang, Xiaoying Tang:
A Joint 3D+2D Fully Convolutional Framework for Subcortical Segmentation. 301-309 - Théo Estienne, Maria Vakalopoulou, Stergios Christodoulidis

, Enzo Battistella, Marvin Lerousseau, Alexandre Carre, Guillaume Klausner, Roger Sun
, Charlotte Robert
, Stavroula G. Mougiakakou, Nikos Paragios, Eric Deutsch:
U-ReSNet: Ultimate Coupling of Registration and Segmentation with Deep Nets. 310-319 - Nadieh Khalili, Elise Turk, Majd Zreik, Max A. Viergever, Manon J. N. L. Benders, Ivana Isgum:

Generative Adversarial Network for Segmentation of Motion Affected Neonatal Brain MRI. 320-328 - Bowei Zhou, Li Chen, Zhao Wang:

Interactive Deep Editing Framework for Medical Image Segmentation. 329-337 - Huahong Zhang, Alessandra M. Valcarcel, Rohit Bakshi, Renxin Chu, Francesca Bagnato, Russell T. Shinohara, Kilian Hett, Ipek Oguz

:
Multiple Sclerosis Lesion Segmentation with Tiramisu and 2.5D Stacked Slices. 338-346 - Long Xie, Jiancong Wang, Mengjin Dong, David A. Wolk, Paul A. Yushkevich:

Improving Multi-atlas Segmentation by Convolutional Neural Network Based Patch Error Estimation. 347-355 - Adrian V. Dalca, Evan M. Yu, Polina Golland, Bruce Fischl, Mert R. Sabuncu, Juan Eugenio Iglesias:

Unsupervised Deep Learning for Bayesian Brain MRI Segmentation. 356-365 - Antoine Legouhy, Olivier Commowick

, François Rousseau
, Christian Barillot:
Online Atlasing Using an Iterative Centroid. 366-374 - Chaoyue Liu, Guohao Dong, Muqing Lin, Yaoxian Zou, Tianzhu Liang, Xujin He, Zhijie Chen, Dong Ni, Yi Xiong, Lei Zhu:

ARS-Net: Adaptively Rectified Supervision Network for Automated 3D Ultrasound Image Segmentation. 375-383 - Robert Wright, Nicolas Toussaint, Alberto Gómez, Veronika A. M. Zimmer, Bishesh Khanal

, Jacqueline Matthew
, Emily Skelton
, Bernhard Kainz
, Daniel Rueckert, Joseph V. Hajnal
, Julia A. Schnabel
:
Complete Fetal Head Compounding from Multi-view 3D Ultrasound. 384-392 - Ken C. L. Wong, Mehdi Moradi:

SegNAS3D: Network Architecture Search with Derivative-Free Global Optimization for 3D Image Segmentation. 393-401 - Zeju Li, Konstantinos Kamnitsas

, Ben Glocker:
Overfitting of Neural Nets Under Class Imbalance: Analysis and Improvements for Segmentation. 402-410 - Hang Zhang

, Jinwei Zhang
, Qihao Zhang, Jeremy Kim, Shun Zhang, Susan A. Gauthier, Pascal Spincemaille, Thanh D. Nguyen, Mert R. Sabuncu, Yi Wang:
RSANet: Recurrent Slice-Wise Attention Network for Multiple Sclerosis Lesion Segmentation. 411-419 - Hai Xu, Hongtao Xie, Yizhi Liu, Chuandong Cheng, Chaoshi Niu, Yongdong Zhang:

Deep Cascaded Attention Network for Multi-task Brain Tumor Segmentation. 420-428 - Robin Brügger, Christian F. Baumgartner

, Ender Konukoglu:
A Partially Reversible U-Net for Memory-Efficient Volumetric Image Segmentation. 429-437 - Magdalini Paschali

, Stefano Gasperini
, Abhijit Guha Roy, Michael Y.-S. Fang, Nassir Navab:
3DQ: Compact Quantized Neural Networks for Volumetric Whole Brain Segmentation. 438-446 - Cheng Chen

, Qi Dou
, Yueming Jin, Hao Chen
, Jing Qin
, Pheng-Ann Heng:
Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement and Gated Fusion. 447-456 - Shuai Chen, Gerda Bortsova

, Antonio García-Uceda Juárez, Gijs van Tulder, Marleen de Bruijne
:
Multi-task Attention-Based Semi-supervised Learning for Medical Image Segmentation. 457-465 - Pierrick Coupé

, Boris Mansencal
, Michaël Clément, Rémi Giraud, Baudouin Denis de Senneville
, Vinh-Thong Ta, Vincent Lepetit, José V. Manjón:
AssemblyNet: A Novel Deep Decision-Making Process for Whole Brain MRI Segmentation. 466-474 - Hoyt Patrick Taylor IV, Zhengwang Wu

, Ye Wu
, Dinggang Shen, Han Zhang, Pew-Thian Yap:
Automated Parcellation of the Cortex Using Structural Connectome Harmonics. 475-483 - Shuo Han, Aaron Carass, Jerry L. Prince:

Hierarchical Parcellation of the Cerebellum. 484-491 - Zhengwang Wu

, Fenqiang Zhao, Jing Xia, Li Wang
, Weili Lin, John H. Gilmore, Gang Li, Dinggang Shen:
Intrinsic Patch-Based Cortical Anatomical Parcellation Using Graph Convolutional Neural Network on Surface Manifold. 492-500 - Prasanna Parvathaneni, Shunxing Bao

, Vishwesh Nath, Neil D. Woodward
, Daniel O. Claassen, Carissa J. Cascio, David H. Zald
, Yuankai Huo, Bennett A. Landman, Ilwoo Lyu
:
Cortical Surface Parcellation Using Spherical Convolutional Neural Networks. 501-509 - Eytan Kats, Jacob Goldberger, Hayit Greenspan:

A Soft STAPLE Algorithm Combined with Anatomical Knowledge. 510-517
Diffusion-Weighted Magnetic Resonance Imaging
- Siyuan Liu, Kim-Han Thung, Weili Lin, Pew-Thian Yap, Dinggang Shen:

Multi-stage Image Quality Assessment of Diffusion MRI via Semi-supervised Nonlocal Residual Networks. 521-528 - Yoonmi Hong

, Geng Chen
, Pew-Thian Yap, Dinggang Shen:
Reconstructing High-Quality Diffusion MRI Data from Orthogonal Slice-Undersampled Data Using Graph Convolutional Neural Networks. 529-537 - Jin-Kyu Gahm

, Yonggang Shi:
Surface-Based Tracking of U-Fibers in the Superficial White Matter. 538-546 - Khoi Minh Huynh, Tiantian Xu, Ye Wu

, Geng Chen
, Kim-Han Thung, Haiyong Wu, Weili Lin, Dinggang Shen, Pew-Thian Yap:
Probing Brain Micro-architecture by Orientation Distribution Invariant Identification of Diffusion Compartments. 547-555 - Khoi Minh Huynh, Tiantian Xu, Ye Wu

, Kim-Han Thung, Geng Chen
, Weili Lin, Dinggang Shen, Pew-Thian Yap:
Characterizing Non-Gaussian Diffusion in Heterogeneously Oriented Tissue Microenvironments. 556-563 - Xinyu Nie, Yonggang Shi:

Topographic Filtering of Tractograms as Vector Field Flows. 564-572 - Vishwesh Nath

, Ilwoo Lyu, Kurt G. Schilling
, Prasanna Parvathaneni, Colin B. Hansen, Yuankai Huo, Vaibhav A. Janve, Yurui Gao, Iwona Stepniewska, Adam W. Anderson, Bennett A. Landman:
Enabling Multi-shell b-Value Generalizability of Data-Driven Diffusion Models with Deep SHORE. 573-581 - Chuyang Ye, Yu Qin, Chenghao Liu, Yuxing Li

, Xiangzhu Zeng, Zhiwen Liu:
Super-Resolved q-Space Deep Learning. 582-589 - Defu Yang, Chenggang Yan, Feiping Nie, Xiaofeng Zhu

, Md Asadullah Turja, Leo Charles Peek Zsembik, Martin Styner
, Guorong Wu:
Joint Identification of Network Hub Nodes by Multivariate Graph Inference. 590-598 - Fan Zhang, Nico Hoffmann, Suheyla Cetin Karayumak, Yogesh Rathi, Alexandra J. Golby, Lauren J. O'Donnell

:
Deep White Matter Analysis: Fast, Consistent Tractography Segmentation Across Populations and dMRI Acquisitions. 599-608 - Dimitra Flouri, David Owen

, Rosalind Aughwane
, Nada Mufti, Magdalena J. Sokolska
, David Atkinson
, Giles S. Kendall, Alan Bainbridge, Tom Vercauteren
, Anna L. David
, Sébastien Ourselin
, Andrew Melbourne
:
Improved Placental Parameter Estimation Using Data-Driven Bayesian Modelling. 609-616 - Santiago Coelho, Jose M. Pozo, Sune Nørhøj Jespersen

, Alejandro F. Frangi
:
Optimal Experimental Design for Biophysical Modelling in Multidimensional Diffusion MRI. 617-625 - Itay Benou, Tammy Riklin Raviv:

DeepTract: A Probabilistic Deep Learning Framework for White Matter Fiber Tractography. 626-635 - Jean Feydy, Pierre Roussillon, Alain Trouvé, Pietro Gori:

Fast and Scalable Optimal Transport for Brain Tractograms. 636-644 - Bo Li, Wiro J. Niessen

, Stefan Klein
, Marius de Groot, Mohammad Arfan Ikram
, Meike W. Vernooij
, Esther E. Bron
:
A Hybrid Deep Learning Framework for Integrated Segmentation and Registration: Evaluation on Longitudinal White Matter Tract Changes. 645-653 - Md Asadullah Turja, Leo Charles Peek Zsembik, Guorong Wu, Martin Styner

:
Constructing Consistent Longitudinal Brain Networks by Group-Wise Graph Learning. 654-662
Functional Neuroimaging (fMRI)
- Zhen Zhou

, Han Zhang, Li-Ming Hsu, Weili Lin, Gang Pan, Dinggang Shen:
Multi-layer Temporal Network Analysis Reveals Increasing Temporal Reachability and Spreadability in the First Two Years of Life. 665-672 - Anand A. Joshi, Haleh Akrami, Jian Li, Richard M. Leahy:

A Matched Filter Decomposition of fMRI into Resting and Task Components. 673-681 - Guoshi Li

, Yujie Liu, Yanting Zheng, Ye Wu
, Pew-Thian Yap, Shijun Qiu
, Han Zhang, Dinggang Shen:
Identification of Abnormal Circuit Dynamics in Major Depressive Disorder via Multiscale Neural Modeling of Resting-State fMRI. 682-690 - Jiashuang Huang, Luping Zhou

, Lei Wang, Daoqiang Zhang:
Integrating Functional and Structural Connectivities via Diffusion-Convolution-Bilinear Neural Network. 691-699 - Juntang Zhuang

, Nicha C. Dvornek, Xiaoxiao Li, Pamela Ventola, James S. Duncan:
Invertible Network for Classification and Biomarker Selection for ASD. 700-708 - Niharika Shimona D'Souza, Mary Beth Nebel

, Nicholas F. Wymbs, Stewart Mostofsky, Archana Venkataraman:
Integrating Neural Networks and Dictionary Learning for Multidimensional Clinical Characterizations from Functional Connectomics Data. 709-717 - Minjeong Kim

, Amr Moussa, Peipeng Liang, Daniel Kaufer, Paul J. Laurienti, Guorong Wu:
Revealing Functional Connectivity by Learning Graph Laplacian. 718-726 - Minjeong Kim

, Xiaofeng Zhu
, Zi-Wen Peng, Peipeng Liang, Daniel Kaufer, Paul J. Laurienti, Guorong Wu:
Constructing Multi-scale Connectome Atlas by Learning Graph Laplacian of Common Network. 727-735 - Archit Rathore, Sourabh Palande

, Jeffrey S. Anderson, Brandon A. Zielinski, P. Thomas Fletcher, Bei Wang
:
Autism Classification Using Topological Features and Deep Learning: A Cautionary Tale. 736-744 - Wei Zhang, Lin Zhao

, Qing Li, Shijie Zhao, Qinglin Dong, Xi Jiang
, Tuo Zhang, Tianming Liu:
Identify Hierarchical Structures from Task-Based fMRI Data via Hybrid Spatiotemporal Neural Architecture Search Net. 745-753 - Tae-Eui Kam, Xuyun Wen, Bing Jin, Zhicheng Jiao

, Li-Ming Hsu, Zhen Zhou, Yujie Liu, Koji Yamashita
, Sheng-Che Hung
, Weili Lin, Han Zhang, Dinggang Shen:
A Deep Learning Framework for Noise Component Detection from Resting-State Functional MRI. 754-762 - Wenyan Xu, Qing Li, Zhiyuan Zhu, Xia Wu:

A Novel Graph Wavelet Model for Brain Multi-scale Activational-Connectional Feature Fusion. 763-771 - Siyuan Gao, Xilin Shen

, R. Todd Constable, Dustin Scheinost
:
Combining Multiple Behavioral Measures and Multiple Connectomes via Multipath Canonical Correlation Analysis. 772-780 - Sukrit Gupta

, Yi Hao Chan
, Jagath C. Rajapakse
:
Decoding Brain Functional Connectivity Implicated in AD and MCI. 781-789 - Jun Wang

, Ying Zhang, Tao Zhou, Zhaohong Deng, Huifang Huang, Shitong Wang, Jun Shi, Dinggang Shen:
Interpretable Feature Learning Using Multi-output Takagi-Sugeno-Kang Fuzzy System for Multi-center ASD Diagnosis. 790-798 - Huzheng Yang, Xiaoxiao Li, Yifan Wu, Siyi Li, Su Lu, James S. Duncan, James C. Gee, Shi Gu:

Interpretable Multimodality Embedding of Cerebral Cortex Using Attention Graph Network for Identifying Bipolar Disorder. 799-807
Miscellaneous Neuroimaging
- Khaled Saab

, Jared Dunnmon, Roger E. Goldman, Alexander Ratner, Hersh Sagreiya, Christopher Ré, Daniel L. Rubin:
Doubly Weak Supervision of Deep Learning Models for Head CT. 811-819 - Manvel Avetisian, Vladimir Kokh, Alexander Tuzhilin, Dmitry Umerenkov

:
Radiologist-Level Stroke Classification on Non-contrast CT Scans with Deep U-Net. 820-828 - Yunhe Gao, Rui Huang, Ming Chen

, Zhe Wang, Jincheng Deng, Yuanyuan Chen, Yiwei Yang, Jie Zhang, Chanjuan Tao, Hongsheng Li
:
FocusNet: Imbalanced Large and Small Organ Segmentation with an End-to-End Deep Neural Network for Head and Neck CT Images. 829-838 - Hao Wei, Xiangyu Tang, Minqing Zhang, Qingfeng Li, Xiaodan Xing, Xiang Sean Zhou, Zhong Xue

, Wenzhen Zhu, Zailiang Chen, Feng Shi
:
Regression-Based Line Detection Network for Delineation of Largely Deformed Brain Midline. 839-847 - Doyoung Kwon, Jaesin Ahn, Jaeil Kim, Inchul Choi, Sungmoon Jeong, Young-Sup Lee, Jaechan Park, Minho Lee:

Siamese U-Net with Healthy Template for Accurate Segmentation of Intracranial Hemorrhage. 848-855 - Hulin Kuang, Bijoy K. Menon, Wu Qiu:

Automated Infarct Segmentation from Follow-up Non-Contrast CT Scans in Patients with Acute Ischemic Stroke Using Dense Multi-Path Contextual Generative Adversarial Network. 856-863 - Vidya M. S.

, Yogish Mallya, Arun Shastry, J. Vijayananda:
Recurrent Sub-volume Analysis of Head CT Scans for the Detection of Intracranial Hemorrhage. 864-872 - Runnan Chen, Yuexin Ma, Nenglun Chen, Daniel Lee, Wenping Wang:

Cephalometric Landmark Detection by Attentive Feature Pyramid Fusion and Regression-Voting. 873-881

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














