


Остановите войну!
for scientists:


default search action
Negar Kiyavash
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [c100]Ehsan Mokhtarian, Mohammadsadegh Khorasani, Jalal Etesami, Negar Kiyavash:
Novel Ordering-Based Approaches for Causal Structure Learning in the Presence of Unobserved Variables. AAAI 2023: 12260-12268 - [c99]Yaroslav Kivva, Jalal Etesami, Negar Kiyavash:
On Identifiability of Conditional Causal Effects. UAI 2023: 1078-1086 - [i75]Mikhail Konobeev, Jalal Etesami, Negar Kiyavash:
Causal Bandits without Graph Learning. CoRR abs/2301.11401 (2023) - [i74]Sina Akbari, Luca Ganassali, Negar Kiyavash:
Learning Causal Graphs via Monotone Triangular Transport Maps. CoRR abs/2305.18210 (2023) - [i73]Fateme Jamshidi, Sina Akbari, Negar Kiyavash:
Causal Imitability Under Context-Specific Independence Relations. CoRR abs/2306.00585 (2023) - [i72]Yaroslav Kivva, Saber Salehkaleybar, Negar Kiyavash:
A Cross-Moment Approach for Causal Effect Estimation. CoRR abs/2306.06263 (2023) - [i71]Yaroslav Kivva, Jalal Etesami, Negar Kiyavash:
On Identifiability of Conditional Causal Effects. CoRR abs/2306.11755 (2023) - [i70]Osman Emre Dai, Daniel Cullina
, Negar Kiyavash:
Gaussian Database Alignment and Gaussian Planted Matching. CoRR abs/2307.02459 (2023) - [i69]Amir Mohammad Abouei, Ehsan Mokhtarian, Negar Kiyavash:
s-ID: Causal Effect Identification in a Sub-Population. CoRR abs/2309.02281 (2023) - [i68]Fateme Jamshidi, Luca Ganassali, Negar Kiyavash:
On sample complexity of conditional independence testing with Von Mises estimator with application to causal discovery. CoRR abs/2310.13553 (2023) - [i67]Ishan Kumar, Zhijing Jin, Ehsan Mokhtarian, Siyuan Guo, Yuen Chen, Negar Kiyavash, Mrinmaya Sachan, Bernhard Schölkopf:
CausalCite: A Causal Formulation of Paper Citations. CoRR abs/2311.02790 (2023) - [i66]Sadegh Khorasani, Saber Salehkaleybar, Negar Kiyavash, Niao He, Matthias Grossglauser:
Efficiently Escaping Saddle Points for Non-Convex Policy Optimization. CoRR abs/2311.08914 (2023) - 2022
- [c98]Ehsan Mokhtarian, Sina Akbari, Fateme Jamshidi, Jalal Etesami, Negar Kiyavash:
Learning Bayesian Networks in the Presence of Structural Side Information. AAAI 2022: 7814-7822 - [c97]Ehsan Mokhtarian, Fateme Jamshidi, Jalal Etesami, Negar Kiyavash:
Causal Effect Identification with Context-specific Independence Relations of Control Variables. AISTATS 2022: 11237-11246 - [c96]Yuqin Yang, Mohamed S. Nafea, AmirEmad Ghassami, Negar Kiyavash:
Causal Discovery in Linear Structural Causal Models with Deterministic Relations. CLeaR 2022: 944-993 - [c95]Sina Akbari, Jalal Etesami, Negar Kiyavash:
Minimum Cost Intervention Design for Causal Effect Identification. ICML 2022: 258-289 - [c94]Ilyas Fatkhullin, Jalal Etesami, Niao He, Negar Kiyavash:
Sharp Analysis of Stochastic Optimization under Global Kurdyka-Lojasiewicz Inequality. NeurIPS 2022 - [c93]Saeed Masiha, Saber Salehkaleybar, Niao He, Negar Kiyavash, Patrick Thiran:
Stochastic Second-Order Methods Improve Best-Known Sample Complexity of SGD for Gradient-Dominated Functions. NeurIPS 2022 - [c92]Yuqin Yang, AmirEmad Ghassami, Mohamed S. Nafea, Negar Kiyavash, Kun Zhang, Ilya Shpitser:
Causal Discovery in Linear Latent Variable Models Subject to Measurement Error. NeurIPS 2022 - [c91]Yaroslav Kivva, Ehsan Mokhtarian, Jalal Etesami, Negar Kiyavash:
Revisiting the general identifiability problem. UAI 2022: 1022-1030 - [i65]Sina Akbari, Jalal Etesami, Negar Kiyavash:
Minimum Cost Intervention Design for Causal Effect Identification. CoRR abs/2205.02232 (2022) - [i64]Saber Salehkaleybar
, Sadegh Khorasani, Negar Kiyavash, Niao He, Patrick Thiran:
Adaptive Momentum-Based Policy Gradient with Second-Order Information. CoRR abs/2205.08253 (2022) - [i63]Ehsan Mokhtarian, Saber Salehkaleybar
, AmirEmad Ghassami, Negar Kiyavash:
A Unified Experiment Design Approach for Cyclic and Acyclic Causal Models. CoRR abs/2205.10083 (2022) - [i62]Saeed Masiha, Saber Salehkaleybar
, Niao He, Negar Kiyavash, Patrick Thiran:
Stochastic Second-Order Methods Provably Beat SGD For Gradient-Dominated Functions. CoRR abs/2205.12856 (2022) - [i61]Yaroslav Kivva, Ehsan Mokhtarian, Jalal Etesami, Negar Kiyavash:
Revisiting the General Identifiability Problem. CoRR abs/2206.01081 (2022) - [i60]Sina Akbari, Fateme Jamshidi, Ehsan Mokhtarian, Matthew J. Vowels, Jalal Etesami, Negar Kiyavash:
Causal Discovery in Probabilistic Networks with an Identifiable Causal Effect. CoRR abs/2208.04627 (2022) - [i59]Ehsan Mokhtarian, Mohammadsadegh Khorasani, Jalal Etesami, Negar Kiyavash:
Novel Ordering-based Approaches for Causal Structure Learning in the Presence of Unobserved Variables. CoRR abs/2208.06935 (2022) - [i58]Yuqin Yang, AmirEmad Ghassami, Mohamed S. Nafea, Negar Kiyavash, Kun Zhang, Ilya Shpitser:
Causal Discovery in Linear Latent Variable Models Subject to Measurement Error. CoRR abs/2211.03984 (2022) - 2021
- [j37]Anshul Gandhi, Negar Kiyavash, Jia Wang:
Editorial. Proc. ACM Meas. Anal. Comput. Syst. 5(2): 13:1 (2021) - [j36]S. Rasoul Etesami, Negar Kiyavash, Vincent Léon, H. Vincent Poor
:
Optimal Adversarial Policies in the Multiplicative Learning System With a Malicious Expert. IEEE Trans. Inf. Forensics Secur. 16: 2276-2287 (2021) - [c90]Jalal Etesami, William Trouleau, Negar Kiyavash, Matthias Grossglauser, Patrick Thiran:
A Variational Inference Approach to Learning Multivariate Wold Processes. AISTATS 2021: 2044-2052 - [c89]Anh Truong, S. Rasoul Etesami, Negar Kiyavash:
Selective Labeling in Learning with Expert Advice. ACC 2021: 2537-2542 - [c88]William Trouleau, Jalal Etesami, Matthias Grossglauser, Negar Kiyavash, Patrick Thiran:
Cumulants of Hawkes Processes are Robust to Observation Noise. ICML 2021: 10444-10454 - [c87]Sajad Khodadadian, AmirEmad Ghassami, Negar Kiyavash:
Impact of Data Processing on Fairness in Supervised Learning. ISIT 2021: 2643-2648 - [c86]Thuc Duy Le, Jiuyong Li, Gregory Cooper, Sofia Triantafyllou, Elias Bareinboim, Huan Liu, Negar Kiyavash:
Preface: The 2021 ACM SIGKDD Workshop on Causal Discovery. CD@KDD 2021: 1-2 - [c85]Ehsan Mokhtarian, Sina Akbari, AmirEmad Ghassami, Negar Kiyavash:
A Recursive Markov Boundary-Based Approach to Causal Structure Learning. CD@KDD 2021: 26-54 - [c84]Thuc Duy Le
, Jiuyong Li
, Gregory Cooper, Sofia Triantafillou, Elias Bareinboim, Huan Liu, Negar Kiyavash:
The KDD 2021 Workshop on Causal Discovery (CD2021). KDD 2021: 4141-4142 - [c83]Sina Akbari, Ehsan Mokhtarian, AmirEmad Ghassami, Negar Kiyavash:
Recursive Causal Structure Learning in the Presence of Latent Variables and Selection Bias. NeurIPS 2021: 10119-10130 - [c82]Siqi Zhang, Junchi Yang, Cristóbal Guzmán, Negar Kiyavash, Niao He:
The complexity of nonconvex-strongly-concave minimax optimization. UAI 2021: 482-492 - [e2]Thuc Duy Le, Jiuyong Li, Gregory Cooper, Sofia Triantafyllou, Elias Bareinboim, Huan Liu, Negar Kiyavash:
The KDD 2021 Workshop on Causal Discovery, CD@KDD 2021, Singapore, August 15, 2021. Proceedings of Machine Learning Research 150, PMLR 2021 [contents] - [e1]Longbo Huang, Anshul Gandhi, Negar Kiyavash, Jia Wang:
SIGMETRICS '21: ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems, Virtual Event, China, June 14-18, 2021. ACM 2021, ISBN 978-1-4503-8072-0 [contents] - [i57]Sajad Khodadadian, AmirEmad Ghassami, Negar Kiyavash:
Impact of Data Processing on Fairness in Supervised Learning. CoRR abs/2102.01867 (2021) - [i56]Siqi Zhang, Junchi Yang, Cristóbal Guzmán, Negar Kiyavash, Niao He:
The Complexity of Nonconvex-Strongly-Concave Minimax Optimization. CoRR abs/2103.15888 (2021) - [i55]Sajad Khodadadian, Mohamed S. Nafea, AmirEmad Ghassami, Negar Kiyavash:
Information Theoretic Measures for Fairness-aware Feature Selection. CoRR abs/2106.00772 (2021) - [i54]Sina Akbari, Ehsan Mokhtarian, AmirEmad Ghassami, Negar Kiyavash:
Recursive Causal Structure Learning in the Presence of Latent Variables and Selection Bias. CoRR abs/2110.12036 (2021) - [i53]Ehsan Mokhtarian, Fateme Jamshidi, Jalal Etesami, Negar Kiyavash:
Causal Effect Identification with Context-specific Independence Relations of Control Variables. CoRR abs/2110.12064 (2021) - [i52]Yuqin Yang, Mohamed S. Nafea, AmirEmad Ghassami, Negar Kiyavash:
Causal Discovery in Linear Structural Causal Models with Deterministic Relations. CoRR abs/2111.00341 (2021) - [i51]Ehsan Mokhtarian, Sina Akbari, Fateme Jamshidi, Jalal Etesami, Negar Kiyavash:
Learning Bayesian Networks in the Presence of Structural Side Information. CoRR abs/2112.10884 (2021) - 2020
- [j35]Saber Salehkaleybar, AmirEmad Ghassami, Negar Kiyavash, Kun Zhang:
Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables. J. Mach. Learn. Res. 21: 39:1-39:24 (2020) - [j34]Richard G. Baraniuk, Alex Dimakis
, Negar Kiyavash, Sewoong Oh, Rebecca Willett:
Guest Editorial. IEEE J. Sel. Areas Inf. Theory 1(1): 4 (2020) - [j33]Antonio G. Marques
, Negar Kiyavash, José M. F. Moura
, Dimitri Van De Ville
, Rebecca Willett
:
Graph Signal Processing: Foundations and Emerging Directions [From the Guest Editors]. IEEE Signal Process. Mag. 37(6): 11-13 (2020) - [c81]Ali AhmadiTeshnizi, Saber Salehkaleybar, Negar Kiyavash:
LazyIter: A Fast Algorithm for Counting Markov Equivalent DAGs and Designing Experiments. ICML 2020: 125-133 - [c80]AmirEmad Ghassami, Alan Yang, Negar Kiyavash, Kun Zhang:
Characterizing Distribution Equivalence and Structure Learning for Cyclic and Acyclic Directed Graphs. ICML 2020: 3494-3504 - [c79]Osman Emre Dai, Daniel Cullina
, Negar Kiyavash:
Achievability of nearly-exact alignment for correlated Gaussian databases. ISIT 2020: 1230-1235 - [c78]Junchi Yang, Negar Kiyavash, Niao He:
Global Convergence and Variance Reduction for a Class of Nonconvex-Nonconcave Minimax Problems. NeurIPS 2020 - [c77]Yingxiang Yang, Negar Kiyavash, Le Song, Niao He:
The Devil is in the Detail: A Framework for Macroscopic Prediction via Microscopic Models. NeurIPS 2020 - [c76]Junchi Yang, Siqi Zhang, Negar Kiyavash, Niao He:
A Catalyst Framework for Minimax Optimization. NeurIPS 2020 - [c75]Daniel Cullina
, Negar Kiyavash, Prateek Mittal, H. Vincent Poor:
Partial Recovery of Erdős-Rényi Graph Alignment via k-Core Alignment. SIGMETRICS (Abstracts) 2020: 99-100 - [c74]Alan Yang, AmirEmad Ghassami, Maxim Raginsky, Negar Kiyavash, Elyse Rosenbaum:
Model-Augmented Conditional Mutual Information Estimation for Feature Selection. UAI 2020: 1139-1148 - [i50]S. Rasoul Etesami, Negar Kiyavash, H. Vincent Poor:
Adversarial Policies in Learning Systems with Malicious Experts. CoRR abs/2001.00543 (2020) - [i49]Junchi Yang, Negar Kiyavash, Niao He:
Global Convergence and Variance-Reduced Optimization for a Class of Nonconvex-Nonconcave Minimax Problems. CoRR abs/2002.09621 (2020) - [i48]Ali AhmadiTeshnizi, Saber Salehkaleybar, Negar Kiyavash:
LazyIter: A Fast Algorithm for Counting Markov Equivalent DAGs and Designing Experiments. CoRR abs/2006.09670 (2020) - [i47]Ehsan Mokhtarian, Sina Akbari, AmirEmad Ghassami, Negar Kiyavash:
A Recursive Markov Blanket-Based Approach to Causal Structure Learning. CoRR abs/2010.04992 (2020)
2010 – 2019
- 2019
- [j32]Ge Yu, Sheldon H. Jacobson, Negar Kiyavash:
A bi-criteria multiple-choice secretary problem. IISE Trans. 51(6): 577-588 (2019) - [j31]Osman Emre Dai, Daniel Cullina
, Negar Kiyavash, Matthias Grossglauser:
Analysis of a Canonical Labeling Algorithm for the Alignment of Correlated Erdos-Rényi Graphs. Proc. ACM Meas. Anal. Comput. Syst. 3(2): 36:1-36:25 (2019) - [j30]Daniel Cullina
, Negar Kiyavash, Prateek Mittal, H. Vincent Poor:
Partial Recovery of Erdðs-Rényi Graph Alignment via k-Core Alignment. Proc. ACM Meas. Anal. Comput. Syst. 3(3): 54:1-54:21 (2019) - [c73]AmirEmad Ghassami, Saber Salehkaleybar, Negar Kiyavash, Kun Zhang:
Counting and Sampling from Markov Equivalent DAGs Using Clique Trees. AAAI 2019: 3664-3671 - [c72]Osman Emre Dai, Daniel Cullina, Negar Kiyavash:
Database Alignment with Gaussian Features. AISTATS 2019: 3225-3233 - [c71]William Trouleau, Jalal Etesami, Matthias Grossglauser, Negar Kiyavash, Patrick Thiran:
Learning Hawkes Processes Under Synchronization Noise. ICML 2019: 6325-6334 - [c70]Yingxiang Yang, Haoxiang Wang, Negar Kiyavash, Niao He:
Learning Positive Functions with Pseudo Mirror Descent. NeurIPS 2019: 14144-14154 - [c69]Chien-Ying Chen, Sibin Mohan, Rodolfo Pellizzoni, Rakesh B. Bobba
, Negar Kiyavash:
A Novel Side-Channel in Real-Time Schedulers. RTAS 2019: 90-102 - [c68]Osman Emre Dai, Daniel Cullina
, Negar Kiyavash, Matthias Grossglauser:
Analysis of a Canonical Labeling Algorithm for the Alignment of Correlated Erdős-Rényi Graphs. SIGMETRICS (Abstracts) 2019: 97-98 - [i46]Osman Emre Dai, Daniel Cullina, Negar Kiyavash:
Database Alignment with Gaussian Features. CoRR abs/1903.01422 (2019) - [i45]Saber Salehkaleybar, AmirEmad Ghassami, Negar Kiyavash, Kun Zhang:
Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables. CoRR abs/1908.03932 (2019) - [i44]AmirEmad Ghassami, Saber Salehkaleybar, Negar Kiyavash:
Interventional Experiment Design for Causal Structure Learning. CoRR abs/1910.05651 (2019) - [i43]AmirEmad Ghassami, Kun Zhang, Negar Kiyavash:
Characterizing Distribution Equivalence for Cyclic and Acyclic Directed Graphs. CoRR abs/1910.12993 (2019) - [i42]Alan Yang, AmirEmad Ghassami, Maxim Raginsky, Negar Kiyavash, Elyse Rosenbaum:
Model-Augmented Nearest-Neighbor Estimation of Conditional Mutual Information for Feature Selection. CoRR abs/1911.04628 (2019) - 2018
- [j29]Lin Liu
, Jiuyong Li
, Kun Zhang, Emre Kiciman, Negar Kiyavash:
Guest Editorial: Special Issue on Causal Discovery 2017. Int. J. Data Sci. Anal. 6(1): 1-2 (2018) - [j28]Anh Truong
, S. Rasoul Etesami, Jalal Etesami
, Negar Kiyavash:
Optimal Attack Strategies Against Predictors - Learning From Expert Advice. IEEE Trans. Inf. Forensics Secur. 13(1): 6-19 (2018) - [j27]AmirEmad Ghassami
, Negar Kiyavash:
A Covert Queueing Channel in FCFS Schedulers. IEEE Trans. Inf. Forensics Secur. 13(6): 1551-1563 (2018) - [j26]Anh Truong, S. Rasoul Etesami, Negar Kiyavash:
Learning From Sleeping Experts: Rewarding Informative, Available, and Accurate Experts. ACM Trans. Design Autom. Electr. Syst. 23(6): 77:1-77:18 (2018) - [c67]Saber Salehkaleybar, Jalal Etesami, Negar Kiyavash, Kun Zhang:
Learning Vector Autoregressive Models With Latent Processes. AAAI 2018: 4000-4007 - [c66]AmirEmad Ghassami, Saber Salehkaleybar, Negar Kiyavash, Elias Bareinboim:
Budgeted Experiment Design for Causal Structure Learning. ICML 2018: 1719-1728 - [c65]AmirEmad Ghassami, Sajad Khodadadian, Negar Kiyavash:
Fairness in Supervised Learning: An Information Theoretic Approach. ISIT 2018: 176-180 - [c64]Daniel Cullina
, Prateek Mittal, Negar Kiyavash:
Fundamental Limits of Database Alignment. ISIT 2018: 651-655 - [c63]AmirEmad Ghassami, Negar Kiyavash, Biwei Huang, Kun Zhang:
Multi-domain Causal Structure Learning in Linear Systems. NeurIPS 2018: 6269-6279 - [c62]Yingxiang Yang, Bo Dai, Negar Kiyavash, Niao He:
Predictive Approximate Bayesian Computation via Saddle Points. NeurIPS 2018: 10282-10291 - [c61]Anh Truong, Negar Kiyavash, Seyed Rasoul Etesami:
Adversarial Machine Learning: The Case of Recommendation Systems. SPAWC 2018: 1-5 - [i41]AmirEmad Ghassami, Sajad Khodadadian, Negar Kiyavash:
Fairness in Supervised Learning: An Information Theoretic Approach. CoRR abs/1801.04378 (2018) - [i40]AmirEmad Ghassami, Saber Salehkaleybar, Negar Kiyavash:
Counting and Uniform Sampling from Markov Equivalent DAGs. CoRR abs/1802.01239 (2018) - [i39]Osman Emre Dai, Daniel Cullina, Negar Kiyavash, Matthias Grossglauser:
On the Performance of a Canonical Labeling for Matching Correlated Erdős-Rényi Graphs. CoRR abs/1804.09758 (2018) - [i38]Daniel Cullina, Prateek Mittal, Negar Kiyavash:
Fundamental Limits of Database Alignment. CoRR abs/1805.03829 (2018) - [i37]Chien-Ying Chen, Monowar Hasan, AmirEmad Ghassami, Sibin Mohan, Negar Kiyavash:
REORDER: Securing Dynamic-Priority Real-Time Systems Using Schedule Obfuscation. CoRR abs/1806.01393 (2018) - [i36]Chien-Ying Chen, Sibin Mohan, Rakesh B. Bobba, Rodolfo Pellizzoni, Negar Kiyavash:
ScheduLeak: A Novel Scheduler Side-Channel Attack Against Real-Time Autonomous Control Systems. CoRR abs/1806.01814 (2018) - [i35]Daniel Cullina, Negar Kiyavash, Prateek Mittal, H. Vincent Poor:
Partial Recovery of Erdős-Rényi Graph Alignment via k-Core Alignment. CoRR abs/1809.03553 (2018) - 2017
- [j25]Stephan Heuser, Bradley Reaves, Praveen Kumar Pendyala, Henry Carter
, Alexandra Dmitrienko, William Enck, Negar Kiyavash, Ahmad-Reza Sadeghi, Patrick Traynor:
Phonion: Practical Protection of Metadata in Telephony Networks. Proc. Priv. Enhancing Technol. 2017(1): 170-187 (2017) - [j24]Christopher J. Quinn
, Ali Pinar, Negar Kiyavash:
Bounded-Degree Connected Approximations of Stochastic Networks. IEEE Trans. Mol. Biol. Multi Scale Commun. 3(2): 79-88 (2017) - [j23]Jalal Etesami
, Negar Kiyavash:
Measuring Causal Relationships in Dynamical Systems through Recovery of Functional Dependencies. IEEE Trans. Signal Inf. Process. over Networks 3(4): 650-659 (2017) - [c60]Yingxang Yang, Jalal Etesami, Negar Kiyavash:
Efficient neighborhood selection for walk summable Gaussian graphical models. ACSSC 2017: 263-267 - [c59]AmirEmad Ghassami, Negar Kiyavash:
Interaction information for causal inference: The case of directed triangle. ISIT 2017: 1326-1330 - [c58]Saber Salehkaleybar
, Jalal Etesami, Negar Kiyavash:
Identifying nonlinear 1-step causal influences in presence of latent variables. ISIT 2017: 1341-1345 - [c57]AmirEmad Ghassami, Saber Salehkaleybar, Negar Kiyavash, Kun Zhang:
Learning Causal Structures Using Regression Invariance. NIPS 2017: 3011-3021 - [c56]Yingxiang Yang, Jalal Etesami, Niao He, Negar Kiyavash:
Online Learning for Multivariate Hawkes Processes. NIPS 2017: 4937-4946 - [i34]Saber Salehkaleybar, Jalal Etesami, Negar Kiyavash:
Identifying Nonlinear 1-Step Causal Influences in Presence of Latent Variables. CoRR abs/1701.06605 (2017) - [i33]AmirEmad Ghassami, Negar Kiyavash:
Interaction Information for Causal Inference: The Case of Directed Triangle. CoRR abs/1701.08868 (2017) - [i32]AmirEmad Ghassami, Ali Yekkehkhany, Negar Kiyavash, Yi Lu:
A Covert Queueing Channel in Round Robin Schedulers. CoRR abs/1701.08883 (2017) - [i31]AmirEmad Ghassami, Saber Salehkaleybar, Negar Kiyavash:
Optimal Experiment Design for Causal Discovery from Fixed Number of Experiments. CoRR abs/1702.08567 (2017) - [i30]Saber Salehkaleybar, Jalal Etesami, Negar Kiyavash:
Learning Latent Networks in Vector Auto Regressive Models. CoRR abs/1702.08575 (2017) - [i29]Jalal Etesami, Kun Zhang, Negar Kiyavash:
A New Measure of Conditional Dependence for Causal Structural Learning. CoRR abs/1704.00607 (2017) - [i28]Chien-Ying Chen, AmirEmad Ghassami, Sibin Mohan, Negar Kiyavash, Rakesh B. Bobba, Rodolfo Pellizzoni, Man-Ki Yoon:
A Reconnaissance Attack Mechanism for Fixed-Priority Real-Time Systems. CoRR abs/1705.02561 (2017) - [i27]AmirEmad Ghassami, Saber Salehkaleybar, Negar Kiyavash, Kun Zhang:
Learning Causal Structures Using Regression Invariance. CoRR abs/1705.09644 (2017) - [i26]Kushagra Singhal, Daniel Cullina, Negar Kiyavash:
Significance of Side Information in the Graph Matching Problem. CoRR abs/1706.06936 (2017) - [i25]AmirEmad Ghassami, Negar Kiyavash:
A Covert Queueing Channel in FCFS Schedulers. CoRR abs/1707.07234 (2017) - [i24]AmirEmad Ghassami, Saber Salehkaleybar, Negar Kiyavash, Elias Bareinboim:
Budgeted Experiment Design for Causal Structure Learning. CoRR abs/1709.03625 (2017) - [i23]Daniel Cullina, Negar Kiyavash:
Exact alignment recovery for correlated Erdos Renyi graphs. CoRR abs/1711.06783 (2017) - 2016
- [j22]Jalal Etesami, Negar Kiyavash, Todd P. Coleman
:
Learning Minimal Latent Directed Information Polytrees. Neural Comput. 28(9): 1723-1768 (2016) - [j21]Daniel Cullina
, Negar Kiyavash:
Generalized Sphere-Packing Bounds on the Size of Codes for Combinatorial Channels. IEEE Trans. Inf. Theory 62(8): 4454-4465 (2016) - [j20]Daniel Cullina