


default search action
41st UAI 2025: Rio de Janeiro, Brazil
- Silvia Chiappa, Sara Magliacane:

Conference on Uncertainty in Artificial Intelligence, Rio Othon Palace, Rio de Janeiro, Brazil, 21-25 July 2025. Proceedings of Machine Learning Research 286, PMLR 2025 - Sushant Agarwal, Yukti Makhija, Rishi Saket, Aravindan Raghuveer:

Aggregating Data for Optimal Learning. 1-30 - Johan de Aguas, Leonard Henckel, Johan Pensar, Guido Biele:

Causal Inference amid Missingness-Specific Independences and Mechanism Shifts. 31-44 - Ömer Faruk Akgül, Rajgopal Kannan, Viktor K. Prasanna:

Conformal Prediction for Federated Graph Neural Networks with Missing Neighbor Information. 45-63 - Ahmed Aloui, Juncheng Dong, Cat Phuoc Le, Vahid Tarokh:

CATE Estimation With Potential Outcome Imputation From Local Regression. 64-90 - Ahmed Aloui, Juncheng Dong, Ali Hasan, Vahid Tarokh:

Conditional Average Treatment Effect Estimation Under Hidden Confounders. 91-110 - Sangho An, Jinwoo Kim, Keonho Lee, Jingang Huh, Chanwoong Kwak, Yujin Lee, Moonsub Jin, Jangho Kim:

Sparse Structure Exploration and Re-optimization for Vision Transformer. 111-131 - Roman Andriushchenko, Milan Ceska, Debraj Chakraborty, Sebastian Junges, Jan Kretínský, Filip Macák:

Symbiotic Local Search for Small Decision Tree Policies in MDPs. 132-148 - Gayathri Anil, Prashant Doshi, Daniel Redder, Adam Eck, Leen-Kiat Soh:

MOHITO: Multi-Agent Reinforcement Learning using Hypergraphs for Task-Open Systems. 149-171 - Ankur Ankan, Johannes Textor:

Expert-In-The-Loop Causal Discovery: Iterative Model Refinement Using Expert Knowledge. 172-183 - Pablo G. Arce, Roi Naveiro, David Ríos Insua:

Evasion Attacks Against Bayesian Predictive Models. 184-202 - Marcel Arpogaus, Thomas Kneib, Thomas Nagler, David Rügamer:

Hybrid Bernstein Normalizing Flows for Flexible Multivariate Density Regression with Interpretable Marginals. 203-222 - Ali Asadi, Krishnendu Chatterjee, Jakob de Raaij:

Lower Bound on Howard Policy Iteration for Deterministic Markov Decision Processes. 223-237 - Ali Asadi, Krishnendu Chatterjee, Raimundo Saona, Ali Shafiee:

Limit-sure Reachability for Small Memory Policies in POMDPs is NP-complete. 238-256 - Yoshua Bengio, Michael K. Cohen, Nikolay Malkin, Matt MacDermott, Damiano Fornasiere, Pietro Greiner, Younesse Kaddar:

Can a Bayesian Oracle Prevent Harm from an Agent? 257-270 - Sourbh Bhadane, Joris M. Mooij, Philip A. Boeken, Onno Zoeter:

Revisiting the Berkeley Admissions data: Statistical Tests for Causal Hypotheses. 271-295 - Jie Bian, Vincent Y. F. Tan:

Asymptotically Optimal Linear Best Feasible Arm Identification with Fixed Budget. 296-331 - Revoti Prasad Bora, Philipp Terhörst, Raymond N. J. Veldhuis, Raghavendra Ramachandra, Kiran Bylappa Raja:

BELIEF - Bayesian Sign Entropy Regularization for LIME Framework. 332-354 - Alexander Bork, Joost-Pieter Katoen, Tim Quatmann, Svenja Stein:

Multi-Cost-Bounded Reachability Analysis of POMDPs. 355-387 - Louenas Bounia:

Using Submodular Optimization to Approximate Minimum-Size Abductive Path Explanations for Tree-Based Models. 388-397 - Cornelius V. Braun, Robert Tjarko Lange, Marc Toussaint:

Stein Variational Evolution Strategies. 398-420 - Gecia Bravo Hermsdorff, Kayvan Sadeghi, Lee M. Gunderson:

Causal Models for Growing Networks. 421-442 - Luben M. C. Cabezas, Vagner S. Santos, Thiago Ramos, Rafael Izbicki:

Epistemic Uncertainty in Conformal Scores: A Unified Approach. 443-470 - Penglin Cai, Chi Zhang, Yuhui Fu, Haoqi Yuan, Zongqing Lu:

Creative Agents: Empowering Agents with Imagination for Creative Tasks. 471-496 - Jian-Feng Cai, Tong Wu, Ruizhe Xia:

Fast Non-convex Matrix Sensing with Optimal Sample Complexity. 497-520 - Zhongze Cai, Hansheng Jiang, Xiaocheng Li:

Out-of-distribution Robust Optimization. 521-539 - Emma Ceccherini, Ian Gallagher, Andrew Jones, Daniel John Lawson:

Unsupervised Attributed Dynamic Network Embedding with Stability Guarantees. 540-567 - Xiang Chen, Kun Yue, Liang Duan, Lixing Yu:

Improving Graph Contrastive Learning with Community Structure. 568-585 - Jacob M. Chen, Michael Oberst:

Just Trial Once: Ongoing Causal Validation of Machine Learning Models. 586-611 - Wenjing Chen, Shuo Xing, Victoria G. Crawford:

Adaptive Threshold Sampling for Pure Exploration in Submodular Bandits. 612-646 - Naitong Chen, Jonathan H. Huggins, Trevor Campbell:

Tuning-Free Coreset Markov Chain Monte Carlo via Hot DoG. 647-672 - Bo Chen, Chengyue Gong, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, Mingda Wan, Xugang Ye:

NRFlow: Towards Noise-Robust Generative Modeling via High-Order Mechanism. 673-704 - Yuen Chen, Haozhe Si, Guojun Zhang, Han Zhao:

Moment Alignment: Unifying Gradient and Hessian Matching for Domain Generalization. 705-736 - Yoonhyuk Choi, Taewook Ko, Jiho Choi, Chong-Kwon Kim:

Selective Blocking for Message-Passing Neural Networks on Heterophilic Graphs. 737-751 - Tristan Cinquin, Robert Bamler:

Well-Defined Function-Space Variational Inference in Bayesian Neural Networks via Regularized KL-Divergence. 752-776 - Adrian Ciotinga, YooJung Choi:

Optimal Transport for Probabilistic Circuits. 777-797 - Lucas Clarté, Lenka Zdeborová:

Building Conformal Prediction Intervals with Approximate Message Passing. 798-820 - Michael K. Cohen, Marcus Hutter, Yoshua Bengio, Stuart Russell:

RL, but don't do anything I wouldn't do. 821-836 - Hugo Sales Correa, Suryanarayana Sankagiri, Daniel R. Figueiredo, Matthias Grossglauser:

Measuring IIA Violations in Similarity Choices with Bayesian Models. 837-862 - Gabriele D'Acunto, Claudio Battiloro:

The Relativity of Causal Knowledge. 863-881 - Puranjay Datta, Sharayu Moharir, Jaya Prakash Champati:

Online Learning with Stochastically Partitioning Experts. 882-896 - Sina Däubener, Simon Damm, Asja Fischer:

ELBO, regularized maximum likelihood, and their common one-sample approximation for training stochastic neural networks. 897-914 - Zhou Derun, Mahito Sugiyama:

Optimal Submanifold Structure in Log-linear Models. 915-932 - Shachi Deshpande, Charles Marx, Volodymyr Kuleshov:

Calibrated Regression Against An Adversary Without Regret. 933-958 - Francesco Diana, André Nusser, Chuan Xu, Giovanni Neglia:

Cutting Through Privacy: A Hyperplane-Based Data Reconstruction Attack in Federated Learning. 959-980 - Emerald Dilworth, Ed Davis, Daniel John Lawson:

Valid Bootstraps for Network Embeddings with Applications to Network Visualisation. 981-1002 - Meng Ding, Mingxi Lei, Shaowei Wang, Tianhang Zheng, Di Wang, Jinhui Xu:

Nearly Optimal Differentially Private ReLU Regression. 1003-1038 - Simon Dirmeier, Carlo Albert, Fernando Pérez-Cruz:

Simulation-based Inference for High-dimensional Data using Surjective Sequential Neural Likelihood Estimation. 1039-1063 - Mathias Drton, Marina Garrote-López, Niko Nikov, Elina Robeva, Y. Samuel Wang:

Causal Discovery for Linear Non-Gaussian Models with Disjoint Cycles. 1064-1083 - Ally Yalei Du, Eric Huang, Dravyansh Sharma:

Tuning Algorithmic and Architectural Hyperparameters in Graph-Based Semi-Supervised Learning with Provable Guarantees. 1084-1111 - Jane Du, Arindam Banerjee:

Computationally Efficient Methods for Invariant Feature Selection with Sparsity. 1112-1120 - Liang Duan, Xinran Wu, Xinhui Li, Lixing Yu, Kun Yue:

Probabilistic Semantics Guided Discovery of Approximate Functional Dependencies. 1121-1134 - Homer Durand, Gherardo Varando, Gustau Camps-Valls:

Learning Causal Response Representations through Direct Effect Analysis. 1135-1166 - Aram Ebtekar, Yuhao Wang, Dominik Janzing:

Toward Universal Laws of Outlier Propagation. 1167-1183 - Yousef El-Laham, Niccolò Dalmasso, Svitlana Vyetrenko, Vamsi K. Potluru, Manuela Veloso:

Mixup Regularization: A Probabilistic Perspective. 1184-1219 - Paula Cordero-Encinar, Francesca R. Crucinio, Ömer Deniz Akyildiz:

Proximal Interacting Particle Langevin Algorithms. 1220-1265 - Yassir Fathullah, Mark J. F. Gales:

Generalised Probabilistic Modelling and Improved Uncertainty Estimation in Comparative LLM-as-a-judge. 1266-1288 - Pablo Flores, Olga Graf, Pavlos Protopapas, Karim Pichara:

Improved Uncertainty Quantification in Physics-Informed Neural Networks Using Error Bounds and Solution Bundles. 1289-1336 - Tobias Fuchs, Florian Kalinke:

Partial-Label Learning with Conformal Candidate Cleaning. 1337-1357 - Swetha Ganesh, Jiayu Chen, Washim Uddin Mondal, Vaneet Aggarwal:

Order-Optimal Global Convergence for Actor-Critic with General Policy and Neural Critic Parametrization. 1358-1380 - Yeqi Gao, Zhao Song, Weixin Wang, Junze Yin:

A Fast Optimization View: Reformulating Single Layer Attention in LLM Based on Tensor and SVM Trick, and Solving It in Matrix Multiplication Time. 1381-1452 - Konstantin Göbler, Tobias Windisch, Mathias Drton:

Nonlinear Causal Discovery for Grouped Data. 1453-1475 - Jeremy Goldwasser, Giles Hooker:

Statistical Significance of Feature Importance Rankings. 1476-1496 - Eduardo Dadalto Câmara Gomes, Marco Romanelli:

Optimal Zero-shot Regret Minimization for Selective Classification with Out-of-Distribution Detection. 1497-1520 - Lluis Gomez:

Over the Top-1: Uncertainty-Aware Cross-Modal Retrieval with CLIP. 1521-1532 - Tanmay Goyal, Gaurav Sinha:

Efficient Algorithms for Logistic Contextual Slate Bandits with Bandit Feedback. 1533-1568 - Ander Gray, Vignesh Gopakumar, Sylvain Rousseau, Sébastien Destercke:

Guaranteed Prediction Sets for Functional Surrogate Models. 1569-1585 - Junyi Guan, Abhijith Sharma, Chong Tian, Salem Lahlou:

On the Privacy Risks of Spiking Neural Networks: A Membership Inference Analysis. 1586-1599 - Aaryan Gupta, Rishi Saket:

Learning Algorithms for Multiple Instance Regression. 1600-1615 - Sungmin Han, Jeonghyun Lee, Sangkyun Lee:

Contrast-CAT: Contrasting Activations for Enhanced Interpretability in Transformer-based Text Classifiers. 1616-1625 - Jonas Hanselle, Alireza Javanmardi, Tobias Florin Oberkofler, Yusuf Sale, Eyke Hüllermeier:

Conformal Prediction without Nonconformity Scores. 1626-1639 - Juha Harviainen, Kseniya Rychkova, Mikko Koivisto:

Quantum Speedups for Bayesian Network Structure Learning. 1640-1647 - Atif Hassan, Swanand R. Khare, Jiaul H. Paik:

RCAP: Robust, Class-Aware, Probabilistic Dynamic Dataset Pruning. 1648-1662 - Atif Hassan, Jiaul H. Paik, Swanand R. Khare:

SPvR: Structured Pruning via Ranking. 1663-1676 - Sujai Hiremath, Promit Ghosal, Kyra Gan:

LoSAM: Local Search in Additive Noise Models with Mixed Mechanisms and General Noise for Global Causal Discovery. 1677-1709 - Thi Kieu Khanh Ho, Narges Armanfard:

Contaminated Multivariate Time-Series Anomaly Detection with Spatio-Temporal Graph Conditional Diffusion Models. 1710-1729 - Mengjian Hua, Eric Vanden-Eijnden, Ricky T. Q. Chen:

Simulation-Free Differential Dynamics Through Neural Conservation Laws. 1730-1744 - Ruiquan Huang, Donghao Li, Chengshuai Shi, Cong Shen, Jing Yang:

Augmenting Online RL with Offline Data is All You Need: A Unified Hybrid RL Algorithm Design and Analysis. 1745-1767 - Michael Ibrahim, Heraldo Rozas, Nagi Gebraeel, Weijun Xie:

FDR-SVM: A Federated Distributionally Robust Support Vector Machine via a Mixture of Wasserstein Balls Ambiguity Set. 1768-1793 - Azam Ikram, Kenneth Lee, Shubham Agarwal, Shiv Kumar Saini, Saurabh Bagchi, Murat Kocaoglu:

Root Cause Analysis of Failures from Partial Causal Structures. 1794-1818 - Erik Jahn, Frederick Eberhardt, Leonard J. Schulman:

Lower Bounds on the Size of Markov Equivalence Classes. 1819-1836 - Metod Jazbec, Eliot Wong-Toi, Guoxuan Xia, Dan Zhang, Eric T. Nalisnick, Stephan Mandt:

Generative Uncertainty in Diffusion Models. 1837-1858 - Zhongli Jiang, Min Zhang, Dabao Zhang:

Fast Calculation of Feature Contributions in Boosting Trees. 1859-1875 - Zhengxuan Jiang, Guowen Ding, Wen Jiang:

Coevolutionary Emergent Systems Optimization with Applications to Ultra-High-Dimensional Metasurface Design : OAM Wave Manipulation. 1876-1894 - Jiechuan Jiang, Zongqing Lu:

Best Possible Q-Learning. 1895-1908 - Sami Jullien, Romain Deffayet, Jean-Michel Renders, Paul Groth, Maarten de Rijke:

Distributional Reinforcement Learning with Dual Expectile-Quantile Regression. 1909-1923 - Avik Kar, Rahul Singh:

Provably Adaptive Average Reward Reinforcement Learning for Metric Spaces. 1924-1964 - Avetik G. Karagulyan, Peter Richtárik:

ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression. 1965-1989 - Kevin Kasa, Zhiyu Zhang, Heng Yang, Graham W. Taylor:

Adapting Prediction Sets to Distribution Shifts Without Labels. 1990-2010 - Yuta Kawakami, Jin Tian:

Moments of Causal Effects. 2011-2043 - Yuta Kawakami, Jin Tian:

Decomposition of Probabilities of Causation with Two Mediators. 2044-2068 - David A. Kelly, Hana Chockler, Nathan Blake:

Explaining Negative Classifications of AI Models in Tumor Diagnosis. 2069-2081 - Batya Kenig:

Enumerating Optimal Cost-Constrained Adjustment Sets. 2082-2100 - Mert Ketenci, Adler J. Perotte, Noémie Elhadad, Iñigo Urteaga:

Accurate and Scalable Stochastic Gaussian Process Regression via Learnable Coreset-based Variational Inference. 2101-2142 - Mohammadsadegh Khorasani, Saber Salehkaleybar, Negar Kiyavash, Niao He, Matthias Grossglauser:

Efficiently Escaping Saddle Points for Policy Optimization. 2143-2162 - Kyung Rok Kim, Yansong Wang, Xiaocheng Li, Guanting Chen:

Collaborative Prediction: To Join or To Disjoin Datasets. 2163-2201 - Hwanwoo Kim, Chong Liu, Yuxin Chen:

Bayesian Optimization with Inexact Acquisition: Is Random Grid Search Sufficient? 2202-2222 - Yaroslav Kivva, Sina Akbari, Saber Salehkaleybar, Negar Kiyavash:

Causal Effect Identification in Heterogeneous Environments from Higher-Order Moments. 2223-2254 - Prodromos Kolyvakis, Aristidis Likas:

A Multivariate Unimodality Test Harnessing the Dip Statistic of Mahalanobis Distances Over Random Projections. 2255-2268 - Lingkai Kong, Wenhao Mu, Jiaming Cui, Yuchen Zhuang, B. Aditya Prakash, Bo Dai, Chao Zhang:

DF2: Distribution-Free Decision-Focused Learning. 2269-2290 - Chun-Wei Kong, Luca Laurenti, Jay W. McMahon, Morteza Lahijanian:

Error Bounds for Physics-Informed Neural Networks in Fokker-Planck PDEs. 2291-2324 - Lingkai Kong, Haichuan Wang, Yuqi Pan, Cheol Woo Kim, Mingxiao Song, Alayna Nguyen, Tonghan Wang, Haifeng Xu, Milind Tambe:

Robust Optimization with Diffusion Models for Green Security. 2325-2344 - Frédéric Koriche, Jean-Marie Lagniez, Chi Tran:

Probabilistic Explanations for Regression Models. 2345-2362 - Dmitry Kovalev, Alexander V. Gasnikov, Grigory Malinovsky:

An Optimal Algorithm for Strongly Convex Min-Min Optimization. 2363-2379 - Adithya Kulkarni, Mohna Chakraborty, Sihong Xie, Qi Li:

Budget Allocation Exploiting Label Correlation between Instances. 2380-2395 - Syamantak Kumar, Shourya Pandey, Purnamrita Sarkar:

Beyond Sin-Squared Error: Linear Time Entrywise Uncertainty Quantification for Streaming PCA. 2396-2430 - Leander Kurscheidt, Paolo Morettin, Roberto Sebastiani, Andrea Passerini, Antonio Vergari:

A Probabilistic Neuro-symbolic Layer for Algebraic Constraint Satisfaction. 2431-2471 - Minjae Kwon, Ingy Elsayed-Aly, Lu Feng:

Adaptive Reward Design for Reinforcement Learning. 2472-2485 - Kenneth Lee, Bruno Ribeiro, Murat Kocaoglu:

Constraint-based Causal Discovery from a Collection of Conditioning Sets. 2486-2516 - Zhechen Li, Ao Liu, Lirong Xia, Yongzhi Cao, Hanpin Wang:

Trading Off Voting Axioms for Privacy. 2517-2536 - Zhaoye Li, Siyuan Shen, Wenjing Yang, Ruochun Jin, Huan Chen, Ligong Cao, Jing Ren:

Enhancing Uncertainty Quantification in Large Language Models through Semantic Graph Density. 2537-2551 - Jiehao Liang, Zhao Song, Zhaozhuo Xu, Junze Yin, Danyang Zhuo:

Dynamic Maintenance of Kernel Density Estimation Data Structure: From Practice to Theory. 2552-2581 - Sungjun Lim, Jeyoon Yeom, Sooyon Kim, Hoyoon Byun, Jinho Kang, Yohan Jung, Jiyoung Jung, Kyungwoo Song:

Flat Posterior Does Matter For Bayesian Model Averaging. 2582-2617 - I-Cheng Lin, Osman Yagan, Carlee Joe-Wong:

FedSPD: A Soft-clustering Approach for Personalized Decentralized Federated Learning. 2618-2641 - Putri A. van der Linden, Alexander Timans, Erik J. Bekkers:

CP2: Leveraging Geometry for Conformal Prediction via Canonicalization. 2642-2658 - Terrance Liu, Steven Wu:

Multi-group Uncertainty Quantification for Long-form Text Generation. 2659-2684 - Weixiong Liu, Junwei Cheng, Zhongyu Pan, Chaobo He, Quanlong Guan:

DyGMAE: A Novel Dynamic Graph Masked Autoencoder for Link Prediction. 2685-2700 - Wuyi Liu, Yue Gao, Yige Mao, Jing Zhao:

Letting Uncertainty Guide Your Multimodal Machine Translation. 2701-2710 - Zhuqing Liu, Chaosheng Dong, Michinari Momma, Simone Shao, Shaoyuan Xu, Yan Gao, Haibo Yang, Jia Liu:

STIMULUS: Achieving Fast Convergence and Low Sample Complexity in Stochastic Multi-Objective Learning. 2711-2747 - Yumou Liu, An Li, Chaojie Li, Fei Yu, Benyou Wang:

Periodical Moving Average Accelerates Gradient Accumulation for Post-Training. 2748-2768 - Tianci Liu, Tong Yang, Quan Zhang, Qi Lei:

Beyond Invisibility: Learning Robust Visible Watermarks for Stronger Copyright Protection. 2769-2785 - Song Liu, Leyang Wang, Yakun Wang:

Guiding Time-Varying Generative Models with Natural Gradients on Exponential Family Manifold. 2786-2803 - Zhiyong Ma, Yuanjie Shi, Yan Yan, Jian Chen:

Federated Rényi Fair Inference in Federated Heterogeneous System. 2804-2843 - Ilia Mahrooghi, Mahshad Moradi, Sina Akbari, Negar Kiyavash:

Multi-armed Bandits with Missing Outcomes. 2844-2875 - Yukti Makhija, Rishi Saket:

Weak to Strong Learning from Aggregate Labels. 2876-2891 - Owais Makroo, Atif Hassan, Swanand R. Khare:

SALSA: A Secure, Adaptive and Label-Agnostic Scalable Algorithm for Machine Unlearning. 2892-2905 - Daniel de Vassimon Manela, Linying Yang, Robin J. Evans:

Testing Generalizability in Causal Inference. 2906-2927 - Arto Maranjyan, Omar Shaikh Omar, Peter Richtárik:

MindFlayer SGD: Efficient Parallel SGD in the Presence of Heterogeneous and Random Worker Compute Times. 2928-2957 - Myrl G. Marmarelis, Ali Hasan, Kamyar Azizzadenesheli, R. Michael Alvarez, Anima Anandkumar:

Off-policy Predictive Control with Causal Sensitivity Analysis. 2958-2972 - María Martínez-García, Grace Villacrés, David G. M. Mitchell, Pablo M. Olmos:

Improved Variational Inference in Discrete VAEs using Error Correcting Codes. 2973-3012 - Pedro Zuidberg Dos Martires:

A Quantum Information Theoretic Approach to Tractable Probabilistic Models. 3013-3030 - Aayush Mishra, Anqi Liu:

ODD: Overlap-aware Estimation of Model Performance under Distribution Shift. 3031-3047 - Panagiotis Misiakos, Markus Püschel:

SpinSVAR: Estimating Structural Vector Autoregression Assuming Sparse Input. 3048-3092 - Gleb Molodtsov, Valery Parfenov, Egor Petrov, Grigoriy Evseev, Daniil Medyakov, Aleksandr Beznosikov:

When Extragradient Meets PAGE: Bridging Two Giants to Boost Variational Inequalities. 3093-3122 - Matteo Negro, Andrea Piras, Ragib Ahsan, David Arbour, Elena Zheleva:

Relational Causal Discovery with Latent Confounders. 3123-3154 - Kenyon Ng, Chris van der Heide, Liam Hodgkinson, Susan Wei:

Temperature Optimization for Bayesian Deep Learning. 3155-3181 - Dai Hai Nguyen, Hiroshi Mamitsuka, Atsuyoshi Nakamura:

Multiple Wasserstein Gradient Descent Algorithm for Multi-Objective Distributional Optimization. 3182-3199 - Anthony Nguyen, Emanuel Aldea, Sylvie Le Hégarat-Mascle, Renaud Lustrat:

Stochastic Embeddings : A Probabilistic and Geometric Analysis of Out-of-Distribution Behavior. 3200-3220 - Huy Hoang Nguyen, Han Zhou, Matthew B. Blaschko, Aleksei Tiulpin:

Bayesian Optimization over Bounded Domains with the Beta Product Kernel. 3221-3234 - Xuying Ning, Wujiang Xu, Tianxin Wei, Xiaolei Liu:

i2VAE: Interest Information Augmentation with Variational Regularizers for Cross-Domain Sequential Recommendation. 3235-3251 - Louis Ohl, Fredrik Lindsten:

Discriminative ordering through ensemble consensus. 3252-3271 - Azim Ospanov, Farzan Farnia:

Do Vendi Scores Converge with Finite Samples? Truncated Vendi Score for Finite-Sample Convergence Guarantees. 3272-3299 - Ryohei Oura, Yuji Ito:

Probability-Raising Causality for Uncertain Parametric Markov Decision Processes with PAC Guarantees. 3300-3321 - Yicheng Pan, Bingchen Fan, Pengyu Long, Feng Zheng:

An Information-theoretic Perspective of Hierarchical Clustering on Graphs. 3322-3345 - Subhodip Panda, Ananda Theertha Suresh, Atri Guha, Prathosh A. P.:

Concept Forgetting via Label Annealing. 3346-3360 - Andrei Panferov, Yury Demidovich, Ahmad Rammal, Peter Richtárik:

Correlated Quantization for Faster Nonconvex Distributed Optimization. 3361-3387 - Leonard Papenmeier, Nuojin Cheng, Stephen Becker, Luigi Nardi:

Exploring Exploration in Bayesian Optimization. 3388-3415 - Milan Papez, Martin Rektoris, Václav Smídl, Tomás Pevný:

Probabilistic Graph Circuits: Deep Generative Models for Tractable Probabilistic Inference over Graphs. 3416-3450 - Liam Pavlovic, David M. Rosen:

A Trust-Region Method for Graphical Stein Variational Inference. 3451-3464 - Anne Helby Petersen:

Are You Doing Better Than Random Guessing? A Call for Using Negative Controls When Evaluating Causal Discovery Algorithms. 3465-3479 - Yuanyuan Qi, Jueqing Lu, Xiaohao Yang, Joanne Enticott, Lan Du:

Multi-Label Bayesian Active Learning with Inter-Label Relationships. 3480-3491 - Chen Qiu, Haobo Fu, Kai Li, Jiajia Zhang, Xuan Wang:

Enhanced Equilibria-Solving via Private Information Pre-Branch Structure in Adversarial Team Games. 3492-3506 - Md. Musfiqur Rahman, Murat Kocaoglu:

FeDCM: Federated Learning of Deep Causal Generative Models. 3507-3524 - Yinuo Ren, Tesi Xiao, Michael Shavlovsky, Lexing Ying, Holakou Rahmanian:

COS-DPO: Conditioned One-Shot Multi-Objective Fine-Tuning Framework. 3525-3551 - Oliver E. Richardson:

Learning with Confidence. 3552-3569 - Paula Rodriguez Diaz, Lingkai Kong, Kai Wang, David Alvarez-Melis, Milind Tambe:

What is the Right Notion of Distance between Predict-then-Optimize Tasks? 3570-3586 - Colin Samplawski, Adam D. Cobb, Manoj Acharya, Ramneet Kaur, Susmit Jha:

Scalable Bayesian Low-Rank Adaptation of Large Language Models via Stochastic Variational Subspace Inference. 3587-3604 - Kajetan Schweighofer, Lukas Aichberger, Mykyta Ielanskyi, Sepp Hochreiter:

On Information-Theoretic Measures of Predictive Uncertainty. 3605-3640 - Aras Selvi, Eleonora Kreacic, Mohsen Ghassemi, Vamsi K. Potluru, Tucker Balch, Manuela Veloso:

Distributionally and Adversarially Robust Logistic Regression via Intersecting Wasserstein Balls. 3641-3674 - Marcin Sendera, Amin Sorkhei, Tomasz Kusmierczyk:

Revisiting the Equivalence of Bayesian Neural Networks and Gaussian Processes: On the Importance of Learning Activations. 3675-3700 - Jonas Seng, Florian Peter Busch, Pooja Prasad, Devendra Singh Dhami, Martin Mundt, Kristian Kersting:

Scaling Probabilistic Circuits via Data Partitioning. 3701-3717 - Hooman Shahrokhi, Devjeet Raj Roy, Yan Yan, Venera Arnaoudova, Jana Doppa:

Conformal Prediction Sets for Deep Generative Models via Reduction to Conformal Regression. 3718-3748 - Anup Shakya, Abisha Thapa Magar, Somdeb Sarkhel, Deepak Venugopal:

Reparameterizing Hybrid Markov Logic Networks to handle Covariate-Shift in Representations. 3749-3765 - Jin Shang, Simone Shao, Tian Tong, Fan Yang, Yetian Chen, Yang Jiao, Jia Liu, Yan Gao:

Divide and Orthogonalize: Efficient Continual Learning with Local Model Space Projection. 3766-3786 - Shiv Shankar, Ritwik Sinha, Madalina Fiterau:

Experimentation under Treatment Dependent Network Interference. 3787-3808 - Atri Vivek Sharma, Panagiotis Kouvaros, Alessio Lomuscio:

Learning Robust XGBoost Ensembles for Regression Tasks. 3809-3825 - Zhaoyang Shi, Krishna Balasubramanian, Wolfgang Polonik:

Minimax Optimal Nonsmooth Nonparametric Regression via Fractional Laplacian Eigenmaps. 3826-3845 - Sungbin Shin, Dongyeop Lee, Maksym Andriushchenko, Namhoon Lee:

Critical Influence of Overparameterization on Sharpness-aware Minimization. 3846-3877 - Francisco Nunes Ferreira Quialheiro Simoes, Mehdi Dastani, Thijs van Ommen:

The Causal Information Bottleneck and Optimal Causal Variable Abstractions. 3878-3897 - Anurag Singh, Siu Lun Chau, Krikamol Muandet:

Truthful Elicitation of Imprecise Forecasts. 3898-3919 - Sagalpreet Singh, Navodita Sharma, Shreyas Havaldar, Rishi Saket, Aravindan Raghuveer:

Learning from Label Proportions and Covariate-shifted Instances. 3920-3938 - Aleksanteri M. Sladek, Martin Trapp, Arno Solin:

Approximate Bayesian Inference via Bitstring Representations. 3939-3957 - Sabina J. Sloman, Julien Martinelli, Samuel Kaski:

Proxy-informed Bayesian transfer learning with unknown sources. 3958-3978 - Amir Sonee, Haripriya Harikumar, Alex Hämäläinen, Lukas Prediger, Samuel Kaski:

Privacy-Preserving Neural Processes for Probabilistic User Modeling. 3979-3998 - Jialei Song, Xingquan Zuo, Feiyang Wang, Hai Huang, Tianle Zhang:

RDI: An adversarial robustness evaluation metric for deep neural networks based on model statistical features. 3999-4012 - Jared Soundy, Mohammad T. Irfan, Hau Chan:

Pure and Strong Nash Equilibrium Computation in Compactly Representable Aggregate Games. 4013-4033 - Patrick Stinson, Nikolaus Kriegeskorte:

Nonparametric Bayesian inference of item-level features in classifier combination. 4034-4043 - Alexander Sturm, Sebastian Tschiatschek:

On Constant Regret for Low-Rank MDPs. 4044-4079 - Prasanth Sengadu Suresh, Prashant Doshi, Bikramjit Banerjee:

Adaptive Human-Robot Collaboration using Type-Based IRL. 4080-4091 - Hiwot Belay Tadesse, Alihan Hüyük, Yaniv Yacoby, Weiwei Pan, Finale Doshi-Velez:

Transparent Trade-offs between Properties of Explanations. 4092-4112 - Jialu Tang, Yali Gao, Xiaoyong Li, Jiawei Li, Shui Yu, Binxing Fang:

FALCON: Adaptive Cross-Domain APT Attack Investigation with Federated Causal Learning. 4113-4131 - Shiqin Tang, Shujian Yu:

InfoDPCCA: Information-Theoretic Dynamic Probabilistic Canonical Correlation Analysis. 4132-4144 - Gokcan Tatli, Yi Chen, Blake Mason, Robert D. Nowak, Ramya Korlakai Vinayak:

Metric Learning in an RKHS. 4145-4164 - Xunye Tian, Liuhua Peng, Zhijian Zhou, Mingming Gong, Arthur Gretton, Feng Liu:

A Unified Data Representation Learning for Non-parametric Two-sample Testing. 4165-4184 - Runzhi Tian, Yongyi Mao:

Adversarial Training May Induce Deteriorating Distributions. 4185-4203 - Alexander Timans, Rajeev Verma, Eric T. Nalisnick, Christian A. Naesseth:

On Continuous Monitoring of Risk Violations under Unknown Shift. 4204-4226 - Sana Tonekaboni, Tina Behrouzi, Addison Weatherhead, Emily B. Fox, David M. Blei, Anna Goldenberg:

HDP-Flow: Generalizable Bayesian Nonparametric Model for Time Series State Discovery. 4227-4250 - Nhu-Thuat Tran, Hady W. Lauw:

Optimal Transport Alignment of User Preferences from Ratings and Texts. 4251-4265 - Dat Phan-Trong, Hung The Tran, Sunil Gupta:

Black-box Optimization with Unknown Constraints via Overparameterized Deep Neural Networks. 4266-4289 - Florian Valade, Mohamed Hebiri, Paul Gay:

EERO: Early Exit with Reject Option for Efficient Classification with limited budget. 4290-4308 - Aishwarya Venkataramanan, Paul Bodesheim, Joachim Denzler:

Probabilistic Embeddings for Frozen Vision-Language Models: Uncertainty Quantification with Gaussian Process Latent Variable Models. 4309-4328 - Janneke Verbeek, Tom Heskes, Yuliya Shapovalova:

Offline Changepoint Detection With Gaussian Processes. 4329-4348 - Veniamin Veselovsky, Benedikt Stroebl, Gianluca M. Bencomo, Dilip Arumugam, Lisa Schut, Arvind Narayanan, Thomas L. Griffiths:

Hindsight Merging: Diverse Data Generation with Language Models. 4349-4369 - Wenyu Wang, Zheyi Fan, Szu Hui Ng:

A Trajectory-Based Bayesian Approach to Multi-Objective Hyperparameter Optimization with Epoch-Aware Trade-Offs. 4370-4394 - Xiaohan Wang, Yunzhe Zhou, Giles Hooker:

Targeted Learning for Variable Importance. 4395-4410 - Luwei Wang, Kieran Richards, Sohan Seth:

Nonparametric Bayesian Multi-Facet Clustering for Longitudinal Data. 4411-4442 - Shiyi Wang, Yang Nan, Xiaodan Xing, Yingying Fang, Simon L. F. Walsh, Guang Yang:

A Parallel Network for LRCT Segmentation and Uncertainty Mitigation with Fuzzy Sets. 4443-4457 - Jie Wang, Ning Xu, Xin Geng:

VADIS: Investigating Inter-View Representation Biases for Multi-View Partial Multi-Label Learning. 4458-4471 - Zifan Wang, Jingwei Li, Yitang Li, Yunze Liu:

MutualNeRF: Improve the Performance of NeRF under Limited Samples with Mutual Information Theory. 4472-4488 - Yancheng Wang, Rajeev Goel, Marko Jojic, Alvin C. Silva, Teresa Wu, Yingzhen Yang:

Informative Synthetic Data Generation for Thorax Disease Classification. 4489-4514 - Shuyang Wang, Diego Klabjan:

A Mirror Descent Perspective of Smoothed Sign Descent. 4515-4542 - Bernardo Williams, Hanlin Yu, Hoang Phuc Hau Luu, Georgios Arvanitidis, Arto Klami:

Geodesic Slice Sampler for Multimodal Distributions with Strong Curvature. 4543-4564 - Ruoyu Wu, Wei Bao, Ben Liang, Liming Ge:

Online Generalized Magician's Problem with Multiple Workers. 4565-4596 - Kaiyue Wu, Xiao-Jun Zeng, Tingting Mu:

Group-Agent Reinforcement Learning with Heterogeneous Agents. 4597-4617 - Lan Wu, Xuebin Wang, Ruijuan Chu, Guangyi Liu, Jing Zhang, Linyu Wang:

FlightPatchNet: Multi-Scale Patch Network with Differential Coding for Short-Term Flight Trajectory Prediction. 4618-4635 - Quan Xiao, Debarun Bhattacharjya, Balaji Ganesan, Radu Marinescu, Katsiaryna Mirylenka, Nhan H. Pham, Michael R. Glass, Junkyu Lee:

The Consistency Hypothesis in Uncertainty Quantification for Large Language Models. 4636-4651 - Chunjing Xiao, Ranhao Guo, Zhang Yongwang, Xiaoming Wu:

Learning Multi-interest Embedding with Dynamic Graph Cluster for Sequention Recommendation. 4652-4662 - Jian Xu, Shian Du, Junmei Yang, Qianli Ma, Delu Zeng, John Paisley:

Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling. 4663-4680 - Khurram Yamin, Edward Kennedy, Bryan Wilder:

Dependent Randomized Rounding for Budget Constrained Experimental Design. 4681-4700 - Wentao Yang, Xinyue Liu, Yunlong Gao, Wenxin Liang, Linlin Zong, Guanglu Wang, Xianchao Zhang:

Full Network Capacity Framework for Sample-Efficient Deep Reinforcement Learning. 4701-4714 - Le Yang, Vincent Y. F. Tan, Wang Chi Cheung:

Best Arm Identification with Possibly Biased Offline Data. 4715-4730 - Xian Yang, Zhenguo Zhang, Shihao Lu:

MSCGrapher: Learning Multi-Scale Dynamic Correlations for Multivariate Time Series Forecasting. 4731-4751 - Chao Yang, Wendi Ren, Shuang Li:

Flow-Based Delayed Hawkes Process. 4752-4774 - Binghua Yao, Joris M. Mooij:

σ-Maximal Ancestral Graphs. 4775-4805 - Ziqi Yu, Lirong Xia, Qishen Han, Chengkai Zhang:

How Likely Are Two Voting Rules Different? 4806-4825 - Qingyuan Yu, Euijin Baek, Xiang Li, Qiang Sun:

Corruption-Robust Variance-aware Algorithms for Generalized Linear Bandits under Heavy-tailed Rewards. 4826-4843 - Clément Yvernes, Emilie Devijver, Éric Gaussier:

Complete Characterization for Adjustment in Summary Causal Graphs of Time Series. 4844-4871 - Daokun Zhang, Russell Tsuchida, Dino Sejdinovic:

Label Distribution Learning using the Squared Neural Family on the Probability Simplex. 4872-4888 - Ziyi Zhang, Yorie Nakahira, Guannan Qu:

Learning to Stabilize Unknown LTI Systems on a Single Trajectory under Stochastic Noise. 4889-4919 - Yunrui Zhang, Gustavo Enrique Batista, Salil S. Kanhere:

Instance-Wise Monotonic Calibration by Constrained Transformation. 4920-4932 - Junzhe Zhang, Elias Bareinboim:

Causal Eligibility Traces for Confounding Robust Off-Policy Evaluation. 4933-4942 - Jiayu Zhang, Zhiyu Zhu, Zhibo Jin, Xinyi Wang, Huaming Chen, Kim-Kwang Raymond Choo:

Improving Adversarial Transferability via Decision Boundary Adaptation. 4943-4958 - Haoran Zhang, Xuchuang Wang, Hao-Xu Chen, Hao Qiu, Lin Yang, Yang Gao:

Near-Optimal Regret Bounds for Federated Multi-armed Bandits with Fully Distributed Communication. 4959-4981 - Zheng Zhang, Jie Bao, Zhixin Zhou, Nicolò Colombo, Lixin Cheng, Rui Luo:

Residual Reweighted Conformal Prediction for Graph Neural Networks. 4982-4999 - Fengxue Zhang, Yuxin Chen:

Finding Interior Optimum of Black-box Constrained Objective with Bayesian Optimization. 5000-5029 - Runze Zhao, Yue Yu, Adams Yiyue Zhu, Chen Yang, Dongruo Zhou:

Sample and Computationally Efficient Continuous-Time Reinforcement Learning with General Function Approximation. 5030-5057 - Canzhe Zhao, Shuze Chen, Weiming Liu, Haobo Fu, Qiang Fu, Shuai Li:

Towards Provably Efficient Learning of Imperfect Information Extensive-Form Games with Linear Function Approximation. 5058-5083 - Xue Zhou, Dapeng Man, Chen Xu, Fanyi Zeng, Tao Liu, Huan Wang, Shucheng He, Chaoyang Gao, Wu Yang:

Collapsing Sequence-Level Data-Policy Coverage via Poisoning Attack in Offline Reinforcement Learning. 5084-5098 - Sijia Zhou, Yunwen Lei, Ata Kabán:

Learning to Sample in Stochastic Optimization. 5099-5115 - Ruike Zhu, Matthew Charles Weston, Hanwen Zhang, Arindam Banerjee:

MSP-SR: Multi-Stage Probabilistic Generative Super Resolution with Scarce High-Resolution Data. 5116-5134

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














