default search action
Peter Szolovits
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j44]Matthew McDermott, Anand Dighe, Peter Szolovits, Yuan Luo, Jason Baron:
Using machine learning to develop smart reflex testing protocols. J. Am. Medical Informatics Assoc. 31(2): 416-425 (2024) - 2023
- [j43]Sijia Liu, Andrew Wen, Liwei Wang, Huan He, Sunyang Fu, Robert T. Miller, Andrew E. Williams, Daniel R. Harris, Ramakanth Kavuluru, Mei Liu, Noor Abu-El-Rub, Dalton Schutte, Rui Zhang, Masoud Rouhizadeh, John D. Osborne, Yongqun He, Umit Topaloglu, Stephanie S. Hong, Joel H. Saltz, Thomas Schaffter, Emily R. Pfaff, Christopher G. Chute, Tim Duong, Melissa A. Haendel, Rafael Fuentes, Peter Szolovits, Hua Xu, Hongfang Liu:
An open natural language processing (NLP) framework for EHR-based clinical research: a case demonstration using the National COVID Cohort Collaborative (N3C). J. Am. Medical Informatics Assoc. 30(12): 2036-2040 (2023) - [j42]Matthew B. A. McDermott, Brendan Yap, Peter Szolovits, Marinka Zitnik:
Structure-inducing pre-training. Nat. Mac. Intell. 5(6): 612-621 (2023) - [c71]Eric Lehman, Evan Hernandez, Diwakar Mahajan, Jonas Wulff, Micah J. Smith, Zachary Ziegler, Daniel Nadler, Peter Szolovits, Alistair E. W. Johnson, Emily Alsentzer:
Do We Still Need Clinical Language Models? CHIL 2023: 578-597 - [i43]Matthew McDermott, Anand Dighe, Peter Szolovits, Yuan Luo, Jason Baron:
Using Machine Learning to Develop Smart Reflex Testing Protocols. CoRR abs/2302.00794 (2023) - [i42]Eric Lehman, Evan Hernandez, Diwakar Mahajan, Jonas Wulff, Micah J. Smith, Zachary Ziegler, Daniel Nadler, Peter Szolovits, Alistair E. W. Johnson, Emily Alsentzer:
Do We Still Need Clinical Language Models? CoRR abs/2302.08091 (2023) - [i41]Elena Sergeeva, Anastasia Sergeeva, Huiyun Tang, Kerstin Bongard-Blanchy, Peter Szolovits:
Right, No Matter Why: AI Fact-checking and AI Authority in Health-related Inquiry Settings. CoRR abs/2310.14358 (2023) - 2022
- [c70]Jennifer J. Liang, Eric Lehman, Ananya Iyengar, Diwakar Mahajan, Preethi Raghavan, Cindy Y. Chang, Peter Szolovits:
Towards Generalizable Methods for Automating Risk Score Calculation. BioNLP@ACL 2022: 426-431 - [c69]William Boag, Mercy Oladipo, Peter Szolovits:
EHR Safari: Data is Contextual. MLHC 2022: 391-408 - [i40]Eric Lehman, Vladislav Lialin, Katelyn Y. Legaspi, Anne Janelle R. Sy, Patricia Therese S. Pile, Nicole Rose I. Alberto, Richard Raymund R. Ragasa, Corinna Victoria M. Puyat, Isabelle Rose I. Alberto, Pia Gabrielle I. Alfonso, Marianne Taliño, Dana Moukheiber, Byron C. Wallace, Anna Rumshisky, Jennifer J. Liang, Preethi Raghavan, Leo Anthony Celi, Peter Szolovits:
Learning to Ask Like a Physician. CoRR abs/2206.02696 (2022) - 2021
- [j41]Harrison G. Zhang, Boris P. Hejblum, Griffin M. Weber, Nathan P. Palmer, Susanne E. Churchill, Peter Szolovits, Shawn N. Murphy, Katherine P. Liao, Isaac S. Kohane, Tianxi Cai:
ATLAS: an automated association test using probabilistically linked health records with application to genetic studies. J. Am. Medical Informatics Assoc. 28(12): 2582-2592 (2021) - [c68]Rachita Chandra, Preethi Raghavan, Jennifer J. Liang, Diwakar Mahajan, Peter Szolovits:
emrKBQA: Creating a Clinical Knowledge-Base Question Answering Dataset. AMIA 2021 - [c67]Preethi Raghavan, Jennifer J. Liang, Diwakar Mahajan, Rachita Chandra, Peter Szolovits:
emrKBQA: A Clinical Knowledge-Base Question Answering Dataset. BioNLP@NAACL-HLT 2021: 64-73 - [c66]Matthew B. A. McDermott, Bret Nestor, Evan Kim, Wancong Zhang, Anna Goldenberg, Peter Szolovits, Marzyeh Ghassemi:
A comprehensive EHR timeseries pre-training benchmark. CHIL 2021: 257-278 - [i39]Matthew B. A. McDermott, Brendan Yap, Tzu-Ming Harry Hsu, Di Jin, Peter Szolovits:
Adversarial Contrastive Pre-training for Protein Sequences. CoRR abs/2102.00466 (2021) - [i38]Matthew B. A. McDermott, Brendan Yap, Peter Szolovits, Marinka Zitnik:
Rethinking Relational Encoding in Language Model: Pre-Training for General Sequences. CoRR abs/2103.10334 (2021) - [i37]Sijia Liu, Andrew Wen, Liwei Wang, Huan He, Sunyang Fu, Robert T. Miller, Andrew E. Williams, Daniel R. Harris, Ramakanth Kavuluru, Mei Liu, Noor Abu-El-Rub, Rui Zhang, John D. Osborne, Masoud Rouhizadeh, Yongqun He, Emily R. Pfaff, Christopher G. Chute, Tim Duong, Melissa A. Haendel, Rafael Fuentes, Peter Szolovits, Hua Xu, Hongfang Liu:
An Open Natural Language Processing Development Framework for EHR-based Clinical Research: A case demonstration using the National COVID Cohort Collaborative (N3C). CoRR abs/2110.10780 (2021) - [i36]Di Jin, Elena Sergeeva, Wei-Hung Weng, Geeticka Chauhan, Peter Szolovits:
Explainable Deep Learning in Healthcare: A Methodological Survey from an Attribution View. CoRR abs/2112.02625 (2021) - 2020
- [j40]Di Jin, Peter Szolovits:
Advancing PICO element detection in biomedical text via deep neural networks. Bioinform. 36(12): 3856-3862 (2020) - [j39]Matthew B. A. McDermott, Jennifer Wang, Wen-Ning Zhao, Steven Sheridan, Peter Szolovits, Isaac S. Kohane, Stephen J. Haggarty, Roy H. Perlis:
Deep Learning Benchmarks on L1000 Gene Expression Data. IEEE ACM Trans. Comput. Biol. Bioinform. 17(6): 1846-1857 (2020) - [c65]Di Jin, Zhijing Jin, Joey Tianyi Zhou, Peter Szolovits:
Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment. AAAI 2020: 8018-8025 - [c64]Di Jin, Zhijing Jin, Joey Tianyi Zhou, Lisa Orii, Peter Szolovits:
Hooks in the Headline: Learning to Generate Headlines with Controlled Styles. ACL 2020: 5082-5093 - [c63]So Yeon Min, Preethi Raghavan, Peter Szolovits:
Advancing Seq2seq with Joint Paraphrase Learning. ClinicalNLP@EMNLP 2020: 269-279 - [c62]So Yeon Min, Preethi Raghavan, Peter Szolovits:
TransINT: Embedding Implication Rules in Knowledge Graphs with Isomorphic Intersections of Linear Subspaces. AKBC 2020 - [c61]Bhanu Pratap Singh Rawat, Wei-Hung Weng, So Yeon Min, Preethi Raghavan, Peter Szolovits:
Entity-Enriched Neural Models for Clinical Question Answering. BioNLP 2020: 112-122 - [c60]Geeticka Chauhan, Ruizhi Liao, William M. Wells III, Jacob Andreas, Xin Wang, Seth J. Berkowitz, Steven Horng, Peter Szolovits, Polina Golland:
Joint Modeling of Chest Radiographs and Radiology Reports for Pulmonary Edema Assessment. MICCAI (2) 2020: 529-539 - [c59]Matthew B. A. McDermott, Tzu-Ming Harry Hsu, Wei-Hung Weng, Marzyeh Ghassemi, Peter Szolovits:
CheXpert++: Approximating the CheXpert Labeler for Speed, Differentiability, and Probabilistic Output. MLHC 2020: 913-927 - [c58]Aaron Sonabend W., Junwei Lu, Leo Anthony Celi, Tianxi Cai, Peter Szolovits:
Expert-Supervised Reinforcement Learning for Offline Policy Learning and Evaluation. NeurIPS 2020 - [i35]Di Jin, Zhijing Jin, Joey Tianyi Zhou, Peter Szolovits:
Unsupervised Domain Adaptation for Neural Machine Translation with Iterative Back Translation. CoRR abs/2001.08140 (2020) - [i34]Di Jin, Zhijing Jin, Joey Tianyi Zhou, Lisa Orii, Peter Szolovits:
Hooks in the Headline: Learning to Generate Headlines with Controlled Styles. CoRR abs/2004.01980 (2020) - [i33]Bhanu Pratap Singh Rawat, Wei-Hung Weng, Preethi Raghavan, Peter Szolovits:
Entity-Enriched Neural Models for Clinical Question Answering. CoRR abs/2005.06587 (2020) - [i32]Aaron Sonabend W., Junwei Lu, Leo A. Celi, Tianxi Cai, Peter Szolovits:
Expert-Supervised Reinforcement Learning for Offline Policy Learning and Evaluation. CoRR abs/2006.13189 (2020) - [i31]Matthew B. A. McDermott, Tzu-Ming Harry Hsu, Wei-Hung Weng, Marzyeh Ghassemi, Peter Szolovits:
CheXpert++: Approximating the CheXpert labeler for Speed, Differentiability, and Probabilistic Output. CoRR abs/2006.15229 (2020) - [i30]So Yeon Min, Preethi Raghavan, Peter Szolovits:
TransINT: Embedding Implication Rules in Knowledge Graphs with Isomorphic Intersections of Linear Subspaces. CoRR abs/2007.00271 (2020) - [i29]Matthew B. A. McDermott, Bret Nestor, Evan Kim, Wancong Zhang, Anna Goldenberg, Peter Szolovits, Marzyeh Ghassemi:
A Comprehensive Evaluation of Multi-task Learning and Multi-task Pre-training on EHR Time-series Data. CoRR abs/2007.10185 (2020) - [i28]Geeticka Chauhan, Ruizhi Liao, William M. Wells III, Jacob Andreas, Xin Wang, Seth J. Berkowitz, Steven Horng, Peter Szolovits, Polina Golland:
Joint Modeling of Chest Radiographs and Radiology Reports for Pulmonary Edema Assessment. CoRR abs/2008.09884 (2020) - [i27]Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, Peter Szolovits:
What Disease does this Patient Have? A Large-scale Open Domain Question Answering Dataset from Medical Exams. CoRR abs/2009.13081 (2020)
2010 – 2019
- 2019
- [j38]Katherine P. Liao, Jiehuan Sun, Tianrun A. Cai, Nicholas B. Link, Chuan Hong, Jie Huang, Jennifer E. Huffman, Jessica L. Gronsbell, Yichi Zhang, Yuk-Lam Ho, Victor M. Castro, Vivian S. Gainer, Shawn N. Murphy, Christopher J. O'Donnell, J. Michael Gaziano, Kelly Cho, Peter Szolovits, Isaac S. Kohane, Sheng Yu:
High-throughput multimodal automated phenotyping (MAP) with application to PheWAS. J. Am. Medical Informatics Assoc. 26(11): 1255-1262 (2019) - [c57]Elena Sergeeva, Henghui Zhu, Amir Tahmasebi, Peter Szolovits:
Neural Token Representations and Negation and Speculation Scope Detection in Biomedical and General Domain Text. LOUHI@EMNLP 2019: 178-187 - [c56]Geeticka Chauhan, Matthew B. A. McDermott, Peter Szolovits:
A Framework for Relation Extraction Across Multiple Datasets in Multiple Domains. WNLP@ACL 2019: 18-20 - [c55]Geeticka Chauhan, Matthew B. A. McDermott, Peter Szolovits:
REflex: Flexible Framework for Relation Extraction in Multiple Domains. BioNLP@ACL 2019: 30-47 - [c54]Wei-Hung Weng, Yu-An Chung, Peter Szolovits:
Unsupervised Clinical Language Translation. KDD 2019: 3121-3131 - [c53]Mengxin Sun, Jason Baron, Anand Dighe, Peter Szolovits, Richard G. Wunderink, Tamara Isakova, Yuan Luo:
Early Prediction of Acute Kidney Injury in Critical Care Setting Using Clinical Notes and Structured Multivariate Physiological Measurements. MedInfo 2019: 368-372 - [c52]Guanxiong Liu, Tzu-Ming Harry Hsu, Matthew B. A. McDermott, Willie Boag, Wei-Hung Weng, Peter Szolovits, Marzyeh Ghassemi:
Clinically Accurate Chest X-Ray Report Generation. MLHC 2019: 249-269 - [c51]William Boag, Tzu-Ming Harry Hsu, Matthew B. A. McDermott, Gabriela Berner, Emily Alsentzer, Peter Szolovits:
Baselines for Chest X-Ray Report Generation. ML4H@NeurIPS 2019: 126-140 - [i26]Wei-Hung Weng, Yu-An Chung, Peter Szolovits:
Unsupervised Clinical Language Translation. CoRR abs/1902.01177 (2019) - [i25]Guanxiong Liu, Tzu-Ming Harry Hsu, Matthew B. A. McDermott, Willie Boag, Wei-Hung Weng, Peter Szolovits, Marzyeh Ghassemi:
Clinically Accurate Chest X-Ray Report Generation. CoRR abs/1904.02633 (2019) - [i24]Geeticka Chauhan, Matthew B. A. McDermott, Peter Szolovits:
REflex: Flexible Framework for Relation Extraction in Multiple Domains. CoRR abs/1906.08318 (2019) - [i23]Di Jin, Zhijing Jin, Joey Tianyi Zhou, Peter Szolovits:
Is BERT Really Robust? Natural Language Attack on Text Classification and Entailment. CoRR abs/1907.11932 (2019) - [i22]Wei-Hung Weng, Peter Szolovits:
Representation Learning for Electronic Health Records. CoRR abs/1909.09248 (2019) - 2018
- [j37]Sheng Yu, Yumeng Ma, Jessica L. Gronsbell, Tianrun A. Cai, Ashwin N. Ananthakrishnan, Vivian S. Gainer, Susanne E. Churchill, Peter Szolovits, Shawn N. Murphy, Isaac S. Kohane, Katherine P. Liao, Tianxi Cai:
Enabling phenotypic big data with PheNorm. J. Am. Medical Informatics Assoc. 25(1): 54-60 (2018) - [j36]Yuan Luo, Yu Cheng, Özlem Uzuner, Peter Szolovits, Justin Starren:
Segment convolutional neural networks (Seg-CNNs) for classifying relations in clinical notes. J. Am. Medical Informatics Assoc. 25(1): 93-98 (2018) - [j35]Yuan Luo, Peter Szolovits, Anand Dighe, Jason Baron:
3D-MICE: integration of cross-sectional and longitudinal imputation for multi-analyte longitudinal clinical data. J. Am. Medical Informatics Assoc. 25(6): 645-653 (2018) - [c50]Matthew B. A. McDermott, Tom Yan, Tristan Naumann, Nathan Hunt, Harini Suresh, Peter Szolovits, Marzyeh Ghassemi:
Semi-Supervised Biomedical Translation With Cycle Wasserstein Regression GANs. AAAI 2018: 2363-2370 - [c49]Katherine P. Liao, Jiehuan Sun, Tianrun A. Cai, Nicholas B. Link, Chuan Hong, Jie Huang, Jennifer E. Huffman, Jessica L. Gronsbell, Lauren Costa, Victor M. Castro, Vivian S. Gainer, Shawn N. Murphy, J. Michael Gaziano, Kelly Cho, Peter Szolovits, Isaac S. Kohane, Sheng Yu, Tianxi Cai:
High-Throughput Multimodal Automated Phenotyping (MAP) Incorporating Natural Language Processing with Application to PheWAS. AMIA 2018 - [c48]Yuan Luo, Peter Szolovits:
Implementing a Portable Clinical NLP System with a Common Data Model - a Lisp Perspective. BIBM 2018: 461-466 - [c47]Di Jin, Peter Szolovits:
PICO Element Detection in Medical Text via Long Short-Term Memory Neural Networks. BioNLP 2018: 67-75 - [c46]Di Jin, Peter Szolovits:
Hierarchical Neural Networks for Sequential Sentence Classification in Medical Scientific Abstracts. EMNLP 2018: 3100-3109 - [c45]Ji Young Lee, Franck Dernoncourt, Peter Szolovits:
Transfer Learning for Named-Entity Recognition with Neural Networks. LREC 2018 - [c44]Willie Boag, Harini Suresh, Leo Anthony Celi, Peter Szolovits, Marzyeh Ghassemi:
Racial Disparities and Mistrust in End-of-Life Care. MLHC 2018: 587-602 - [i21]Willie Boag, Elena Sergeeva, Saurabh Kulshreshtha, Peter Szolovits, Anna Rumshisky, Tristan Naumann:
CliNER 2.0: Accessible and Accurate Clinical Concept Extraction. CoRR abs/1803.02245 (2018) - [i20]Willie Boag, Tristan Naumann, Peter Szolovits:
Towards the Creation of a Large Corpus of Synthetically-Identified Clinical Notes. CoRR abs/1803.02728 (2018) - [i19]Wei-Hung Weng, Peter Szolovits:
Mapping Unparalleled Clinical Professional and Consumer Languages with Embedding Alignment. CoRR abs/1806.09542 (2018) - [i18]Willie Boag, Harini Suresh, Leo Anthony Celi, Peter Szolovits, Marzyeh Ghassemi:
Modeling Mistrust in End-of-Life Care. CoRR abs/1807.00124 (2018) - [i17]Di Jin, Peter Szolovits:
Hierarchical Neural Networks for Sequential Sentence Classification in Medical Scientific Abstracts. CoRR abs/1808.06161 (2018) - [i16]Di Jin, Peter Szolovits:
Advancing PICO Element Detection in Medical Text via Deep Neural Networks. CoRR abs/1810.12780 (2018) - [i15]Yuan Luo, Peter Szolovits:
Implementing a Portable Clinical NLP System with a Common Data Model - a Lisp Perspective. CoRR abs/1811.06179 (2018) - [i14]Tzu-Ming Harry Hsu, Wei-Hung Weng, Willie Boag, Matthew B. A. McDermott, Peter Szolovits:
Unsupervised Multimodal Representation Learning across Medical Images and Reports. CoRR abs/1811.08615 (2018) - [i13]Uma M. Girkar, Ryo Uchimido, Li-Wei H. Lehman, Peter Szolovits, Leo A. Celi, Wei-Hung Weng:
Predicting Blood Pressure Response to Fluid Bolus Therapy Using Attention-Based Neural Networks for Clinical Interpretability. CoRR abs/1812.00699 (2018) - 2017
- [j34]Yuan Luo, Özlem Uzuner, Peter Szolovits:
Bridging semantics and syntax with graph algorithms - state-of-the-art of extracting biomedical relations. Briefings Bioinform. 18(1): 160-178 (2017) - [j33]Yuan Luo, Fei Wang, Peter Szolovits:
Tensor factorization toward precision medicine. Briefings Bioinform. 18(3): 511-514 (2017) - [j32]Yuan Luo, Özlem Uzuner, Peter Szolovits:
Bridging semantics and syntax with graph algorithms - state-of-the-art of extracting biomedical relations. Briefings Bioinform. 18(4): 722 (2017) - [j31]Mike Wu, Marzyeh Ghassemi, Mengling Feng, Leo A. Celi, Peter Szolovits, Finale Doshi-Velez:
Understanding vasopressor intervention and weaning: risk prediction in a public heterogeneous clinical time series database. J. Am. Medical Informatics Assoc. 24(3): 488-495 (2017) - [j30]Franck Dernoncourt, Ji Young Lee, Özlem Uzuner, Peter Szolovits:
De-identification of patient notes with recurrent neural networks. J. Am. Medical Informatics Assoc. 24(3): 596-606 (2017) - [j29]Sheng Yu, Abhishek Chakrabortty, Katherine P. Liao, Tianrun A. Cai, Ashwin N. Ananthakrishnan, Vivian S. Gainer, Susanne E. Churchill, Peter Szolovits, Shawn N. Murphy, Isaac S. Kohane, Tianxi Cai:
Surrogate-assisted feature extraction for high-throughput phenotyping. J. Am. Medical Informatics Assoc. 24(e1): e143-e149 (2017) - [j28]Wei-Hung Weng, Kavishwar B. Wagholikar, Alexa T. McCray, Peter Szolovits, Henry C. Chueh:
Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach. BMC Medical Informatics Decis. Mak. 17(1): 155:1-155:13 (2017) - [j27]Mark Hoogendoorn, Thomas Berger, Ava Schulz, Timo Stolz, Peter Szolovits:
Predicting Social Anxiety Treatment Outcome Based on Therapeutic Email Conversations. IEEE J. Biomed. Health Informatics 21(5): 1449-1459 (2017) - [c43]Sheng Yu, Yumeng Ma, Jessica L. Gronsbell, Katherine P. Liao, Tianrun A. Cai, Ashwin N. Ananthakrishnan, Vivian S. Gainer, Susanne E. Churchill, Peter Szolovits, Shawn N. Murphy, Isaac S. Kohane, Tianxi Cai:
High-throughput Phenotyping via Denoised Normal Mixture Transformation. AMIA 2017 - [c42]Marzyeh Ghassemi, Mike Wu, Michael C. Hughes, Peter Szolovits, Finale Doshi-Velez:
Predicting intervention onset in the ICU with switching state space models. CRI 2017 - [c41]Franck Dernoncourt, Ji Young Lee, Peter Szolovits:
Neural Networks for Joint Sentence Classification in Medical Paper Abstracts. EACL (2) 2017: 694-700 - [c40]Franck Dernoncourt, Ji Young Lee, Peter Szolovits:
NeuroNER: an easy-to-use program for named-entity recognition based on neural networks. EMNLP (System Demonstrations) 2017: 97-102 - [c39]Jen J. Gong, Tristan Naumann, Peter Szolovits, John V. Guttag:
Predicting Clinical Outcomes Across Changing Electronic Health Record Systems. KDD 2017: 1497-1505 - [c38]Aniruddh Raghu, Matthieu Komorowski, Leo Anthony Celi, Peter Szolovits, Marzyeh Ghassemi:
Continuous State-Space Models for Optimal Sepsis Treatment: a Deep Reinforcement Learning Approach. MLHC 2017: 147-163 - [c37]Harini Suresh, Nathan Hunt, Alistair E. W. Johnson, Leo Anthony Celi, Peter Szolovits, Marzyeh Ghassemi:
Clinical Intervention Prediction and Understanding with Deep Neural Networks. MLHC 2017: 322-337 - [c36]Ji Young Lee, Franck Dernoncourt, Peter Szolovits:
MIT at SemEval-2017 Task 10: Relation Extraction with Convolutional Neural Networks. SemEval@ACL 2017: 978-984 - [i12]Harini Suresh, Peter Szolovits, Marzyeh Ghassemi:
The Use of Autoencoders for Discovering Patient Phenotypes. CoRR abs/1703.07004 (2017) - [i11]Ji Young Lee, Franck Dernoncourt, Peter Szolovits:
MIT at SemEval-2017 Task 10: Relation Extraction with Convolutional Neural Networks. CoRR abs/1704.01523 (2017) - [i10]Franck Dernoncourt, Ji Young Lee, Peter Szolovits:
NeuroNER: an easy-to-use program for named-entity recognition based on neural networks. CoRR abs/1705.05487 (2017) - [i9]Ji Young Lee, Franck Dernoncourt, Peter Szolovits:
Transfer Learning for Named-Entity Recognition with Neural Networks. CoRR abs/1705.06273 (2017) - [i8]Aniruddh Raghu, Matthieu Komorowski, Leo Anthony Celi, Peter Szolovits, Marzyeh Ghassemi:
Continuous State-Space Models for Optimal Sepsis Treatment - a Deep Reinforcement Learning Approach. CoRR abs/1705.08422 (2017) - [i7]Harini Suresh, Nathan Hunt, Alistair E. W. Johnson, Leo Anthony Celi, Peter Szolovits, Marzyeh Ghassemi:
Clinical Intervention Prediction and Understanding using Deep Networks. CoRR abs/1705.08498 (2017) - [i6]Aniruddh Raghu, Matthieu Komorowski, Imran Ahmed, Leo A. Celi, Peter Szolovits, Marzyeh Ghassemi:
Deep Reinforcement Learning for Sepsis Treatment. CoRR abs/1711.09602 (2017) - [i5]Wei-Hung Weng, Mingwu Gao, Ze He, Susu Yan, Peter Szolovits:
Representation and Reinforcement Learning for Personalized Glycemic Control in Septic Patients. CoRR abs/1712.00654 (2017) - 2016
- [j26]Mark Hoogendoorn, Peter Szolovits, Leon M. G. Moons, Mattijs E. Numans:
Utilizing uncoded consultation notes from electronic medical records for predictive modeling of colorectal cancer. Artif. Intell. Medicine 69: 53-61 (2016) - [c35]Yuan Luo, Yu Xin, Rohit Joshi, Leo A. Celi, Peter Szolovits:
Predicting ICU Mortality Risk by Grouping Temporal Trends from a Multivariate Panel of Physiologic Measurements. AAAI 2016: 42-50 - [c34]Ji Young Lee, Franck Dernoncourt, Özlem Uzuner, Peter Szolovits:
Feature-Augmented Neural Networks for Patient Note De-identification. ClinicalNLP@COLING 2016 2016: 17-22 - [c33]Mark Hoogendoorn, Ali el Hassouni, Kwongyen Mok, Marzyeh Ghassemi, Peter Szolovits:
Prediction using patient comparison vs. modeling: A case study for mortality prediction. EMBC 2016: 2464-2467 - [i4]Franck Dernoncourt, Ji Young Lee, Özlem Uzuner, Peter Szolovits:
De-identification of Patient Notes with Recurrent Neural Networks. CoRR abs/1606.03475 (2016) - [i3]Ji Young Lee, Franck Dernoncourt, Özlem Uzuner, Peter Szolovits:
Feature-Augmented Neural Networks for Patient Note De-identification. CoRR abs/1610.09704 (2016) - [i2]Franck Dernoncourt, Ji Young Lee, Peter Szolovits:
Neural Networks for Joint Sentence Classification in Medical Paper Abstracts. CoRR abs/1612.05251 (2016) - 2015
- [j25]Sheng Yu, Katherine P. Liao, Stanley Y. Shaw, Vivian S. Gainer, Susanne E. Churchill, Peter Szolovits, Shawn N. Murphy, Isaac S. Kohane, Tianxi Cai:
Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources. J. Am. Medical Informatics Assoc. 22(5): 993-1000 (2015) - [j24]Yuan Luo, Yu Xin, Ephraim P. Hochberg, Rohit Joshi, Özlem Uzuner, Peter Szolovits:
Subgraph augmented non-negative tensor factorization (SANTF) for modeling clinical narrative text. J. Am. Medical Informatics Assoc. 22(5): 1009-1019 (2015) - [c32]Marzyeh Ghassemi, Marco A. F. Pimentel, Tristan Naumann, Thomas Brennan, David A. Clifton, Peter Szolovits, Mengling Feng:
A Multivariate Timeseries Modeling Approach to Severity of Illness Assessment and Forecasting in ICU with Sparse, Heterogeneous Clinical Data. AAAI 2015: 446-453 - [c31]Uri Kartoun, Vishesh Kumar, Su-Chun Cheng, Sheng Yu, Katherine P. Liao, Elizabeth W. Karlson, Ashwin N. Ananthakrishnan, Zongqi Xia, Vivian S. Gainer, Andrew Cagan, Guergana Savova, Pei J. Chen, Shawn N. Murphy, Susanne E. Churchill, Isaac S. Kohane, Peter Szolovits, Tianxi Cai, Stanley Y. Shaw:
Demonstrating the Advantages of Applying Data Mining Techniques on Time-Dependent Electronic Medical Records. AMIA 2015 - [p1]Amber Stubbs, Özlem Uzuner, Christopher Kotfila, Ira Goldstein, Peter Szolovits:
Challenges in Synthesizing Surrogate PHI in Narrative EMRs. Medical Data Privacy Handbook 2015: 717-735 - 2014
- [j23]Yuan Luo, Aliyah R. Sohani, Ephraim P. Hochberg, Peter Szolovits:
Research and applications: Automatic lymphoma classification with sentence subgraph mining from pathology reports. J. Am. Medical Informatics Assoc. 21(5): 824-832 (2014) - [j22]Rachel Chasin, Anna Rumshisky, Özlem Uzuner, Peter Szolovits:
Research and applications: Word sense disambiguation in the clinical domain: a comparison of knowledge-rich and knowledge-poor unsupervised methods. J. Am. Medical Informatics Assoc. 21(5): 842-849 (2014) - [j21]Jeffrey G. Klann, Peter Szolovits, Stephen M. Downs, Gunther Schadow:
Decision support from local data: Creating adaptive order menus from past clinician behavior. J. Biomed. Informatics 48: 84-93 (2014) - [c30]Yuan Luo, Jason Baron, Peter Szolovits, Anand Dighe:
Quantifying Information Redundancy in Common Laboratory Tests. AMIA 2014 - [c29]Marzyeh Ghassemi, Tristan Naumann, Finale Doshi-Velez, Nicole Brimmer, Rohit Joshi, Anna Rumshisky, Peter Szolovits:
Unfolding physiological state: mortality modelling in intensive care units. KDD 2014: 75-84 - 2013
- [c28]