
Mark Hoogendoorn
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2021
- [j31]Luca Roggeveen, Ali el Hassouni, Jonas Ahrendt, Tingjie Guo, Lucas Fleuren, Patrick Thoral
, Armand R. J. Girbes
, Mark Hoogendoorn, Paul W. G. Elbers
:
Transatlantic transferability of a new reinforcement learning model for optimizing haemodynamic treatment for critically ill patients with sepsis. Artif. Intell. Medicine 112: 102003 (2021) - [i11]David W. Romero, Anna Kuzina, Erik J. Bekkers, Jakub M. Tomczak, Mark Hoogendoorn:
CKConv: Continuous Kernel Convolution For Sequential Data. CoRR abs/2102.02611 (2021) - [i10]Ali el Hassouni, Mark Hoogendoorn, Marketa Ciharova, Annet Kleiboer, Khadicha Amarti, Vesa Muhonen, Heleen Riper, A. E. Eiben:
pH-RL: A personalization architecture to bring reinforcement learning to health practice. CoRR abs/2103.15908 (2021) - 2020
- [j30]Olga Pólchlopek, Nynke R. Koning, Frederike L. Büchner, Mathilde R. Crone, Mattijs E. Numans, Mark Hoogendoorn:
Quantitative and temporal approach to utilising electronic medical records from general practices in mental health prediction. Comput. Biol. Medicine 125: 103973 (2020) - [j29]Floris den Hengst
, Eoin Martino Grua
, Ali el Hassouni
, Mark Hoogendoorn:
Reinforcement learning for personalization: A systematic literature review. Data Sci. 3(2): 107-147 (2020) - [c111]David W. Romero, Mark Hoogendoorn:
Co-Attentive Equivariant Neural Networks: Focusing Equivariance On Transformations Co-Occurring in Data. ICLR 2020 - [c110]David W. Romero, Erik J. Bekkers, Jakub M. Tomczak, Mark Hoogendoorn:
Attentive Group Equivariant Convolutional Networks. ICML 2020: 8188-8199 - [c109]Seyed Amin Tabatabaei, Jan Klein, Mark Hoogendoorn:
Estimating the F1 Score for Learning from Positive and Unlabeled Examples. LOD (1) 2020: 150-161 - [c108]Ali el Hassouni
, Mark Hoogendoorn
, A. E. Eiben
, Vesa Muhonen
:
Structural and Functional Representativity of GANs for Data Generation in Sequential Decision Making. LOD (1) 2020: 458-471 - [i9]Xixi Lu, Seyed Amin Tabatabaei, Mark Hoogendoorn, Hajo A. Reijers:
Trace Clustering on Very Large Event Data in Healthcare Using Frequent Sequence Patterns. CoRR abs/2001.03411 (2020) - [i8]David W. Romero
, Erik J. Bekkers, Jakub M. Tomczak, Mark Hoogendoorn:
Attentive Group Equivariant Convolutional Networks. CoRR abs/2002.03830 (2020) - [i7]David W. Romero, Erik J. Bekkers, Jakub M. Tomczak, Mark Hoogendoorn:
Wavelet Networks: Scale Equivariant Learning From Raw Waveforms. CoRR abs/2006.05259 (2020) - [i6]Daniel Lutscher, Ali el Hassouni, Maarten Stol, Mark Hoogendoorn:
Mixing Consistent Deep Clustering. CoRR abs/2011.01977 (2020)
2010 – 2019
- 2019
- [c107]Xixi Lu, Seyed Amin Tabatabaei
, Mark Hoogendoorn, Hajo A. Reijers:
Trace Clustering on Very Large Event Data in Healthcare Using Frequent Sequence Patterns. BPM 2019: 198-215 - [c106]Seyed Amin Tabatabaei
, Xixi Lu, Mark Hoogendoorn, Hajo A. Reijers:
Identifying Patient Groups based on Frequent Patterns of Patient Samples. HealthCom 2019: 1-6 - [c105]Caleb Mensah, Jan Klein, Sandjai Bhulai
, Mark Hoogendoorn, Rob van der Mei:
Detecting Fraudulent Bookings of Online Travel Agencies with Unsupervised Machine Learning. IEA/AIE 2019: 334-346 - [c104]Luis P. Silvestrin, Mark Hoogendoorn, Ger Koole
:
A Comparative Study of State-of-the-Art Machine Learning Algorithms for Predictive Maintenance. SSCI 2019: 760-767 - [c103]Alessandro Zonta
, Selmar K. Smit, Mark Hoogendoorn, A. E. Eiben:
Generation of Human-Like Movements Based on Environmental Features. SSCI 2019: 3079-3086 - [c102]Mark Hoogendoorn, Ward van Breda, Jeroen Ruwaard:
GP-HD: Using Genetic Programming to Generate Dynamical Systems Models for Health Care. WI 2019: 1-8 - [c101]Floris den Hengst
, Mark Hoogendoorn, Frank van Harmelen
, Joost Bosman:
Reinforcement Learning for Personalized Dialogue Management. WI 2019: 59-67 - [c100]Ali el Hassouni
, Mark Hoogendoorn, A. E. Eiben, Martijn van Otterlo, Vesa Muhonen:
End-to-end Personalization of Digital Health Interventions using Raw Sensor Data with Deep Reinforcement Learning. WI 2019: 258-264 - [c99]Eoin Martino Grua
, Mark Hoogendoorn, Ivano Malavolta
, Patricia Lago, A. E. Eiben:
CluStream-GT: Online Clustering for Personalization in the Health Domain. WI 2019: 270-275 - [i5]Seyed Amin Tabatabaei, Xixi Lu, Mark Hoogendoorn, Hajo A. Reijers:
Identifying Patient Groups based on Frequent Patterns of Patient Samples. CoRR abs/1904.01863 (2019) - [i4]Mark Hoogendoorn, Ward van Breda, Jeroen Ruwaard:
GP-HD: Using Genetic Programming to Generate Dynamical Systems Models for Health Care. CoRR abs/1904.05815 (2019) - [i3]Floris den Hengst, Mark Hoogendoorn, Frank van Harmelen, Joost Bosman:
Reinforcement Learning for Personalized Dialogue Management. CoRR abs/1908.00286 (2019) - [i2]David W. Romero
, Mark Hoogendoorn:
Co-Attentive Equivariant Neural Networks: Focusing Equivariance On Transformations Co-Occurring In Data. CoRR abs/1911.07849 (2019) - 2018
- [b1]Mark Hoogendoorn, Burkhardt Funk:
Machine Learning for the Quantified Self - On the Art of Learning from Sensory Data. Cognitive Systems Monographs 35, Springer 2018, ISBN 978-3-319-66307-4, pp. 1-221 - [c98]Jie Jiang, Mark Hoogendoorn, Qiuqiang Kong, Diederik M. Roijers
, Nigel Gilbert:
Predicting Appliance Usage Status In Home Like Environments. DSL 2018: 1-5 - [c97]Seyed Amin Tabatabaei
, Mark Hoogendoorn, Aart van Halteren
:
Narrowing Reinforcement Learning: Overcoming the Cold Start Problem for Personalized Health Interventions. PRIMA 2018: 312-327 - [c96]Ali el Hassouni
, Mark Hoogendoorn, Martijn van Otterlo, Eduardo Barbaro:
Personalization of Health Interventions Using Cluster-Based Reinforcement Learning. PRIMA 2018: 467-475 - [c95]Ali el Hassouni
, Mark Hoogendoorn, Vesa Muhonen:
Using Generative Adversarial Networks to Develop a Realistic Human Behavior Simulator. PRIMA 2018: 476-483 - [c94]Eoin Martino Grua
, Mark Hoogendoorn:
Exploring Clustering Techniques for Effective Reinforcement Learning based Personalization for Health and Wellbeing. SSCI 2018: 813-820 - [c93]Jan Klein, Sandjai Bhulai
, Mark Hoogendoorn, Rob van der Mei, Raymond Hinfelaar:
Detecting Network Intrusion beyond 1999: Applying Machine Learning Techniques to a Partially Labeled Cybersecurity Dataset. WI 2018: 784-787 - [i1]Ali el Hassouni, Mark Hoogendoorn, Martijn van Otterlo, Eduardo Barbaro:
Personalization of Health Interventions using Cluster-Based Reinforcement Learning. CoRR abs/1804.03592 (2018) - 2017
- [j28]Ward van Breda, Mark Hoogendoorn, A. E. Eiben, Matthias Berking:
Assessment of temporal predictive models for health care using a formal method. Comput. Biol. Medicine 87: 347-357 (2017) - [j27]Mark Hoogendoorn, Thomas Berger
, Ava Schulz, Timo Stolz, Peter Szolovits:
Predicting Social Anxiety Treatment Outcome Based on Therapeutic Email Conversations. IEEE J. Biomed. Health Informatics 21(5): 1449-1459 (2017) - [c92]Ryan Amirkhan, Mark Hoogendoorn, Mattijs E. Numans, Leon M. G. Moons:
Using recurrent neural networks to predict colorectal cancer among patients. SSCI 2017: 1-8 - 2016
- [j26]Mark Hoogendoorn, Peter Szolovits, Leon M. G. Moons, Mattijs E. Numans:
Utilizing uncoded consultation notes from electronic medical records for predictive modeling of colorectal cancer. Artif. Intell. Medicine 69: 53-61 (2016) - [j25]Reinier Kop, Mark Hoogendoorn, Annette ten Teije
, Frederike L. Büchner
, Pauline Slottje, Leon M. G. Moons, Mattijs E. Numans:
Predictive modeling of colorectal cancer using a dedicated pre-processing pipeline on routine electronic medical records. Comput. Biol. Medicine 76: 30-38 (2016) - [c91]Mark Hoogendoorn, Ali el Hassouni
, Kwongyen Mok, Marzyeh Ghassemi, Peter Szolovits:
Prediction using patient comparison vs. modeling: A case study for mortality prediction. EMBC 2016: 2464-2467 - [c90]Ward R. J. van Breda, Mark Hoogendoorn, A. E. Eiben, Gerhard Andersson
, Heleen Riper, Jeroen Ruwaard
, Kristofer Vernmark:
A feature representation learning method for temporal datasets. SSCI 2016: 1-8 - 2015
- [j24]Tibor Bosse, Mark Hoogendoorn:
Special issue on advances in applied artificial intelligence. Appl. Intell. 42(1): 1-2 (2015) - [j23]Richard Koopmanschap, Mark Hoogendoorn, Jan Joris Roessingh:
Tailoring a cognitive model for situation awareness using machine learning. Appl. Intell. 42(1): 36-48 (2015) - [j22]Giorgos Karafotias, Mark Hoogendoorn, Ágoston E. Eiben:
Parameter Control in Evolutionary Algorithms: Trends and Challenges. IEEE Trans. Evol. Comput. 19(2): 167-187 (2015) - [c89]Reinier Kop, Mark Hoogendoorn, Leon M. G. Moons, Mattijs E. Numans, Annette ten Teije
:
On the Advantage of Using Dedicated Data Mining Techniques to Predict Colorectal Cancer. AIME 2015: 133-142 - [c88]Ward R. J. van Breda, Mark Hoogendoorn, A. E. Eiben, Matthias Berking:
An Evaluation Framework for the Comparison of Fine-Grained Predictive Models in Health Care. AIME 2015: 148-152 - [c87]Giorgos Karafotias, Mark Hoogendoorn, A. E. Eiben:
Evaluating Reward Definitions for Parameter Control. EvoApplications 2015: 667-680 - [c86]Reinier Kop, Armon Toubman, Mark Hoogendoorn, Jan Joris Roessingh:
Evolutionary Dynamic Scripting: Adaptation of Expert Rule Bases for Serious Games. IEA/AIE 2015: 53-62 - [c85]Shu Gao, Mark Hoogendoorn:
Using Evolutionary Algorithms to Personalize Controllers in Ambient Intelligence. ISAmI 2015: 1-11 - 2014
- [j21]Mark Hoogendoorn, Syed Waqar Jaffry
, Peter-Paul van Maanen, Jan Treur
:
Design and validation of a relative trust model. Knowl. Based Syst. 57: 81-94 (2014) - [c84]Mark Hoogendoorn, Leon M. G. Moons, Mattijs E. Numans, Robert-Jan Sips:
Utilizing Data Mining for Predictive Modeling of Colorectal Cancer Using Electronic Medical Records. Brain Informatics and Health 2014: 132-141 - [c83]Giorgos Karafotias, Mark Hoogendoorn, Berend Weel:
Comparing generic parameter controllers for EAs. FOCI 2014: 46-53 - [c82]Giorgos Karafotias, Ágoston E. Eiben, Mark Hoogendoorn:
Generic parameter control with reinforcement learning. GECCO 2014: 1319-1326 - [c81]Diti Oudendag, Mark Hoogendoorn, Roel Jongeneel:
Agent-Based Modeling of Farming Behavior: A Case Study for Milk Quota Abolishment. IEA/AIE (1) 2014: 11-20 - [c80]Xander Wilcke
, Mark Hoogendoorn, Jan Joris Roessingh:
Co-evolutionary Learning for Cognitive Computer Generated Entities. IEA/AIE (2) 2014: 120-129 - [c79]Reinier Kop, Mark Hoogendoorn, Michel C. A. Klein
:
A Personalized Support Agent for Depressed Patients: Forecasting Patient Behavior Using a Mood and Coping Model. WI-IAT (3) 2014: 302-309 - 2013
- [j20]Tibor Bosse, Mark Hoogendoorn, Michel C. A. Klein
, Jan Treur
, C. Natalie van der Wal
, Arlette van Wissen:
Modelling collective decision making in groups and crowds: Integrating social contagion and interacting emotions, beliefs and intentions. Auton. Agents Multi Agent Syst. 27(1): 52-84 (2013) - [j19]Pietro Cipresso
, Mark Hoogendoorn, Michel C. A. Klein, Aleksandar Matic:
Special Issue "Technology for Mental Health". EAI Endorsed Trans. Ambient Syst. 1(2): e1 (2013) - [j18]Mark Hoogendoorn, Robbert-Jan Merk:
Utilizing theory of mind for action selection applied in the domain of fighter pilot training. Appl. Intell. 39(4): 749-760 (2013) - [j17]Mark Hoogendoorn, Michel C. A. Klein
, Zulfiqar Ali Memon
, Jan Treur
:
Formal specification and analysis of intelligent agents for model-based medicine usage management. Comput. Biol. Medicine 43(5): 444-457 (2013) - [j16]Tibor Bosse, Fiemke Both, Rob Duell, Mark Hoogendoorn, Michel C. A. Klein
, Rianne van Lambalgen, Andy van der Mee, Rogier Oorburg, Alexei Sharpanskykh, Jan Treur, Michael de Vos:
An ambient agent system assisting humans in complex tasks by analysis of a human's state and performance. Int. J. Intell. Inf. Database Syst. 7(1): 3-33 (2013) - [j15]Mark Hoogendoorn, S. Waqar Jaffry
, Peter-Paul van Maanen, Jan Treur
:
Modelling biased human trust dynamics. Web Intell. Agent Syst. 11(1): 21-40 (2013) - [c78]Giorgos Karafotias, Mark Hoogendoorn, A. E. Eiben:
Why parameter control mechanisms should be benchmarked against random variation. IEEE Congress on Evolutionary Computation 2013: 349-355 - [c77]Ágoston E. Eiben, Nicolas Bredèche, Mark Hoogendoorn, Jürgen Stradner, Jon Timmis, Andy M. Tyrrell, Alan F. T. Winfield:
The Triangle of Life. ECAL 2013: 1056-1063 - [c76]Giorgos Karafotias, Mark Hoogendoorn, A. E. Eiben:
Parameter control: strategy or luck? GECCO (Companion) 2013: 215-216 - [c75]Richard Koopmanschap, Mark Hoogendoorn, Jan Joris Roessingh:
Learning Parameters for a Cognitive Model on Situation Awareness. IEA/AIE 2013: 22-32 - [c74]Mark Hoogendoorn:
Predicting Human Behavior in Crowds: Cognitive Modeling versus Neural Networks. IEA/AIE 2013: 73-82 - [e1]Moonis Ali, Tibor Bosse, Koen V. Hindriks
, Mark Hoogendoorn, Catholijn M. Jonker, Jan Treur:
Recent Trends in Applied Artificial Intelligence, 26th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2013, Amsterdam, The Netherlands, June 17-21, 2013. Proceedings. Lecture Notes in Computer Science 7906, Springer 2013, ISBN 978-3-642-38576-6 [contents] - 2012
- [j14]Fiemke Both, Mark Hoogendoorn, Andy van der Mee, Jan Treur
, Michael de Vos:
An intelligent agent model with awareness of workflow progress. Appl. Intell. 36(2): 498-510 (2012) - [j13]Mark Hoogendoorn, S. Waqar Jaffry
, Jan Treur
:
Cognitive and neural modeling of dynamics of trust in competitive trustees. Cogn. Syst. Res. 14(1): 60-83 (2012) - [j12]Tibor Bosse, Mark Hoogendoorn, Zulfiqar Ali Memon
, Jan Treur
, Muhammad Umair:
A computational model for dynamics of desiring and feeling. Cogn. Syst. Res. 19-20: 39-61 (2012) - [j11]Tibor Bosse, Fiemke Both, Charlotte Gerritsen
, Mark Hoogendoorn, Jan Treur
:
Methods for model-based reasoning within agent-based Ambient Intelligence applications. Knowl. Based Syst. 27: 190-210 (2012) - [c73]Fiemke Both, Mark Hoogendoorn, Michel C. A. Klein
:
Validation of a Model for Coping and Mood for Virtual Agents. IAT 2012: 382-389 - [c72]Mark Hoogendoorn, Robbert-Jan Merk:
Action Selection Using Theory of Mind: A Case Study in the Domain of Fighter Pilot Training. IEA/AIE 2012: 521-533 - [c71]Berend Weel, Mark Hoogendoorn, A. E. Eiben:
On-Line Evolution of Controllers for Aggregating Swarm Robots in Changing Environments. PPSN (2) 2012: 245-254 - [p1]Mark Hoogendoorn, Pieter Huibers, Rianne van Lambalgen
, Jan Joris Roessingh:
A Model of Team Decision Making Using Situation Awareness. Modern Advances in Intelligent Systems and Tools 2012: 113-120 - 2011
- [j10]Mark Hoogendoorn, Catholijn M. Jonker, Jan Treur
:
A generic architecture for redesign of organizations triggered by changing environmental circumstances. Comput. Math. Organ. Theory 17(2): 119-151 (2011) - [j9]Tibor Bosse, Fiemke Both, Mark Hoogendoorn, S. Waqar Jaffry
, Rianne van Lambalgen, Rogier Oorburg, Alexei Sharpanskykh, Jan Treur
, Michael de Vos:
Design and Validation of a Model for a Human's Functional State and Performance. Int. J. Model. Simul. Sci. Comput. 2(4) (2011) - [j8]Tibor Bosse, Mark Hoogendoorn, Michel C. A. Klein
, Jan Treur
:
An ambient agent model for monitoring and analysing dynamics of complex human behaviour. J. Ambient Intell. Smart Environ. 3(4): 283-303 (2011) - [j7]Mark Hoogendoorn, Jan Treur
, C. Natalie van der Wal
, Arlette van Wissen:
Agent-Based Modelling of the Emergence of Collective States Based on Contagion of Individual States in Groups. Trans. Comput. Collect. Intell. 3: 152-179 (2011) - [j6]Tibor Bosse, Charlotte Gerritsen
, Mark Hoogendoorn, S. Waqar Jaffry
, Jan Treur
:
Agent-based vs. population-based simulation of displacement of crime: A comparative study. Web Intell. Agent Syst. 9(2): 147-160 (2011) - [c70]Fiemke Both, Mark Hoogendoorn, Rianne van Lambalgen
, Rogier Oorburg, Michael de Vos:
Performance Measures to Enable Agent-Based Support in Demanding Circumstances. HCI (20) 2011: 578-587 - [c69]Ard C. M. Al, Mark Hoogendoorn:
Moving Target Search Using Theory of Mind. IAT 2011: 66-71 - [c68]Mark Hoogendoorn, S. Waqar Jaffry
, Peter-Paul van Maanen, Jan Treur
:
Modeling and Validation of Biased Human Trust. IAT 2011: 256-263 - [c67]Mark Hoogendoorn, Bas W. Knopper, Andy van der Mee:
An Agent-Based Architecture for Model-Based Diagnosis Using Observation Cost. IAT 2011: 415-420 - [c66]Fiemke Both, Mark Hoogendoorn:
Utilization of a Virtual Patient Model to Enable Tailored Therapy for Depressed Patients. ICONIP (3) 2011: 700-710 - [c65]Tibor Bosse, Mark Hoogendoorn, Michel C. A. Klein
, Jan Treur
, C. Natalie van der Wal
:
Agent-Based Analysis of Patterns in Crowd Behaviour Involving Contagion of Mental States. IEA/AIE (2) 2011: 566-577 - [c64]Mark Hoogendoorn, S. Waqar Jaffry
, Peter-Paul van Maanen:
Validation and Verification of Agent Models for Trust: Independent Compared to Relative Trust. IFIPTM 2011: 35-50 - [c63]Mark Hoogendoorn, Rianne van Lambalgen, Jan Treur
:
Modeling Situation Awareness in Human-Like Agents Using Mental Models. IJCAI 2011: 1697-1704 - [c62]Maria L. Gini
, Mark Hoogendoorn, Rianne van Lambalgen
:
Learning Belief Connections in a Model for Situation Awareness. PRIMA 2011: 373-384 - [c61]Mark Hoogendoorn, Rianne van Lambalgen
, Jan Treur
:
An Integrated Agent Model Addressing Situation Awareness and Functional State in Decision Making. PRIMA 2011: 385-397 - 2010
- [c60]Mark Hoogendoorn, Jeremy Soumokil:
Evaluation of virtual agents utilizing theory of mind in a real time action game. AAMAS 2010: 59-66 - [c59]Mark Hoogendoorn, Michel C. A. Klein, Nataliya M. Mogles:
An Intelligent Support System for Diabetic Patients. HEALTHINF 2010: 98-105 - [c58]Fiemke Both, Pim Cuijpers, Mark Hoogendoorn, Michel C. A. Klein:
Towards Fully Automated Psychotherapy for Adults - BAS - Behavioral Activation Scheduling Via Web and Mobile Phone. HEALTHINF 2010: 375-380 - [c57]Tibor Bosse, Mark Hoogendoorn, Zulfiqar Ali Memon
, Jan Treur, Muhammad Umair:
An Adaptive Model for Dynamics of Desiring and Feeling Based on Hebbian Learning. Brain Informatics 2010: 14-28 - [c56]Mark Hoogendoorn, Jan Treur, C. Natalie van der Wal
, Arlette van Wissen:
Modelling the Emergence of Group Decisions Based on Mirroring and Somatic Marking. Brain Informatics 2010: 29-41 - [c55]Fiemke Both, Mark Hoogendoorn, Michel C. A. Klein
, Jan Treur:
Computational Modeling and Analysis of Therapeutical Interventions for Depression. Brain Informatics 2010: 274-287 - [c54]Jacintha Ellers, Mark Hoogendoorn, David Wendt:
An Agent-Based Modeling Approach to Investigate Emergent Patterns in Ecological Systems. IAT 2010: 6-13 - [c53]Mark Hoogendoorn, Robbert-Jan Merk, Jan Treur:
An Agent Model for Decision Making Based upon Experiences Applied in the Domain of Fighter Pilots. IAT 2010: 101-108 - [c52]Mark Hoogendoorn, S. Waqar Jaffry
, Jan Treur:
Exploration and Exploitation in Adaptive Trust-Based Decision Making in Dynamic Environments. IAT 2010: 256-260 - [c51]Mark Hoogendoorn, Jan Treur, C. Natalie van der Wal
, Arlette van Wissen:
An Agent-Based Model for the Interplay of Information and Emotion in Social Diffusion. IAT 2010: 439-444 - [c50]Tibor Bosse, Mark Hoogendoorn, Michel C. A. Klein
, Jan Treur:
A Three-Dimensional Abstraction Framework to Compare Multi-Agent System Models. ICCCI (1) 2010: 306-319 - [c49]Mark Hoogendoorn, Jan Treur, C. Natalie van der Wal
, Arlette van Wissen:
Modelling the Interplay of Emotions, Beliefs and Intentions within Collective Decision Making Based on Insights from Social Neuroscience. ICONIP (1) 2010: 196-206 - [c48]Fiemke Both, Mark Hoogendoorn, Michel C. A. Klein
, Jan Treur:
Computational Modeling and Analysis of the Role of Physical Activity in Mood Regulation and Depression. ICONIP (1) 2010: 270-281 - [c47]Mark Hoogendoorn, S. Waqar Jaffry, Jan Treur:
Incorporating Interdependency of Trust Values in Existing Trust Models for Trust Dynamics. IFIPTM 2010: 263-276 - [c46]Mark Hoogendoorn, Zulfiqar Ali Memon, Jan Treur, Muhammad Umair:
A Model-Based Ambient Agent Providing Support in Handling Desire and Temptation. PAAMS (Special Sessions and Workshops) 2010: 461-475
2000 – 2009
- 2009
- [j5]Mark Hoogendoorn, Maria L. Gini
:
Preferences of agents in decentralized task allocation. AI Commun. 22(3): 143-152 (2009) - [j4]Mark Hoogendoorn, Catholijn M. Jonker, Peter-Paul van Maanen, Jan Treur
:
Agent-based analysis and simulation of meta-reasoning processes in strategic naval planning. Knowl. Based Syst. 22(8): 589-599 (2009) - [j3]Mark Hoogendoorn, Jan Treur
:
An adaptive multi-agent organization model based on dynamic role allocation. Int. J. Knowl. Based Intell. Eng. Syst. 13(3-4): 119-139 (2009) - [c45]Mark Hoogendoorn, Maria L. Gini
:
Automated Analysis of Auction Traces. AMEC/TADA 2009: 58-73 - [c44]Fiemke Both, Mark Hoogendoorn, Michel C. A. Klein, Jan Treur:
Design and Analysis of an Ambient Intelligent System Supporting Depression Therapy. HEALTHINF 2009: 142-148 - [c43]Mark Hoogendoorn, S. Waqar Jaffry
:
The Influence of Personalities Upon the Dynamics of Trust and Reputation. CSE (3) 2009: 263-270 - [c42]Charlotte Gerritsen, Mark Hoogendoorn:
Avoidance of Norm Violation in Multi-Agent Organizations. ECMS 2009: 144-155 - [c41]Tibor Bosse, Rob Duell, Mark Hoogendoorn, Michel C. A. Klein
, Rianne van Lambalgen
, Andy van der Mee, Rogier Oorburg, Alexei Sharpanskykh, Jan Treur
, Michael de Vos:
A Generic Personal Assistant Agent Model for Support in Demanding Tasks. HCI (16) 2009: 3-12 - [c40]Mark Hoogendoorn, S. Waqar Jaffry
, Jan Treur:
An Adaptive Agent Model Estimating Human Trust in Information Sources. IAT 2009: 458-465 - [c39]Mark Hoogendoorn, Jan Treur
, Muhammad Umair:
An Ecological Model-Based Reasoning Model to Support Nature Park Managers. IEA/AIE 2009: 172-182 - [c38]Fiemke Both, Mark Hoogendoorn, S. Waqar Jaffry
, Rianne van Lambalgen
, Rogier Oorburg, Alexei Sharpanskykh, Jan Treur
, Michael de Vos:
Adaptation and Validation of an Agent Model of Functional State and Performance for Individuals. PRIMA 2009: 595-607 - 2008
- [j2]Mark Hoogendoorn, Catholijn M. Jonker, Peter-Paul van Maanen, Alexei Sharpanskykh:
Formal analysis of empirical traces in incident management. Reliab. Eng. Syst. Saf. 93(10): 1422-1433 (2008) - [c37]Fiemke Both, Mark Hoogendoorn, Jan Treur:
An Ambient Agent Model Exploiting Workflow-Based Reasoning to Recognize Task Progress. AmI 2008: 222-239 - [c36]Mark Hoogendoorn, Jan Treur, Pinar Yolum
:
Analysis and Support of Organizational Performance Based on a Labeled Graph Approach. ATOP@AAMAS 2008: 80-97 - [c35]Mark Hoogendoorn,