


default search action
25th KDD 2019: Anchorage, AK, USA
- Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, George Karypis
:
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019. ACM 2019, ISBN 978-1-4503-6201-6
Keynote Talks
- Cynthia Rudin:
Do Simpler Models Exist and How Can We Find Them? 1-2 - Peter Lee:
The Unreasonable Effectiveness, and Difficulty, of Data in Healthcare. 3-4
Research Track Papers
- Sho Inaba, Carl Tony Fakhry, Rahul V. Kulkarni, Kourosh Zarringhalam:
A Free Energy Based Approach for Distance Metric Learning. 5-13 - Qingxin Meng, Hengshu Zhu
, Keli Xiao, Le Zhang, Hui Xiong:
A Hierarchical Career-Path-Aware Neural Network for Job Mobility Prediction. 14-24 - Pinghui Wang, Yiyan Qi, Yuanming Zhang, Qiaozhu Zhai, Chenxu Wang, John C. S. Lui, Xiaohong Guan:
A Memory-Efficient Sketch Method for Estimating High Similarities in Streaming Sets. 25-33 - Bo Wang, Minghui Qiu, Xisen Wang, Yaliang Li, Yu Gong, Xiaoyi Zeng, Jun Huang, Bo Zheng, Deng Cai, Jingren Zhou:
A Minimax Game for Instance based Selective Transfer Learning. 34-43 - Yuchao Liu, Ery Arias-Castro:
A Multiscale Scan Statistic for Adaptive Submatrix Localization. 44-53 - Elias Chaibub Neto, Abhishek Pratap, Thanneer M. Perumal
, Meghasyam Tummalacherla, Brian M. Bot, Lara M. Mangravite, Larsson Omberg:
A Permutation Approach to Assess Confounding in Machine Learning Applications for Digital Health. 54-64 - Yifan Hou
, Hongzhi Chen, Changji Li
, James Cheng, Ming-Chang Yang:
A Representation Learning Framework for Property Graphs. 65-73 - Yang Yang, Da-Wei Zhou
, De-Chuan Zhan, Hui Xiong, Yuan Jiang:
Adaptive Deep Models for Incremental Learning: Considering Capacity Scalability and Sustainability. 74-82 - Deng-Bao Wang, Li Li, Min-Ling Zhang
:
Adaptive Graph Guided Disambiguation for Partial Label Learning. 83-91 - Jundong Li, Ruocheng Guo, Chenghao Liu, Huan Liu:
Adaptive Unsupervised Feature Selection on Attributed Networks. 92-100 - Thomas Hartvigsen, Cansu Sen, Xiangnan Kong, Elke A. Rundensteiner:
Adaptive-Halting Policy Network for Early Classification. 101-110 - Junxiang Wang
, Fuxun Yu, Xiang Chen, Liang Zhao:
ADMM for Efficient Deep Learning with Global Convergence. 111-119 - Binbin Hu, Yuan Fang
, Chuan Shi:
Adversarial Learning on Heterogeneous Information Networks. 120-129 - Pengyang Wang, Yanjie Fu, Hui Xiong, Xiaolin Li:
Adversarial Substructured Representation Learning for Mobile User Profiling. 130-138 - Xiang Zhang
, Lina Yao, Feng Yuan:
Adversarial Variational Embedding for Robust Semi-supervised Learning. 139-147 - Dmitrii Avdiukhin, Slobodan Mitrovic, Grigory Yaroslavtsev, Samson Zhou:
Adversarially Robust Submodular Maximization under Knapsack Constraints. 148-156 - Tong Yu, Yilin Shen, Hongxia Jin:
A Visual Dialog Augmented Interactive Recommender System. 157-165 - Ben Goodrich, Vinay Rao, Peter J. Liu, Mohammad Saleh:
Assessing The Factual Accuracy of Generated Text. 166-175 - Cong Fu, Yonghui Zhang, Deng Cai, Xiang Ren:
AtSNE: Efficient and Robust Visualization on GPU through Hierarchical Optimization. 176-186 - Sheng Guan, Hanchao Ma, Yinghui Wu:
Attribute-Driven Backbone Discovery. 187-195 - Congzheng Song, Vitaly Shmatikov:
Auditing Data Provenance in Text-Generation Models. 196-206 - Kunpeng Liu
, Yanjie Fu, Pengfei Wang
, Le Wu, Rui Bo, Xiaolin Li:
Automating Feature Subspace Exploration via Multi-Agent Reinforcement Learning. 207-215 - Ke Tu, Jianxin Ma, Peng Cui, Jian Pei
, Wenwu Zhu:
AutoNE: Hyperparameter Optimization for Massive Network Embedding. 216-225 - Xuezhou Zhang, Sarah Tan, Paul Koch, Yin Lou, Urszula Chajewska, Rich Caruana:
Axiomatic Interpretability for Multiclass Additive Models. 226-234 - Wenyi Xiao, Huan Zhao, Haojie Pan, Yangqiu Song, Vincent W. Zheng, Qiang Yang:
Beyond Personalization: Social Content Recommendation for Creator Equality and Consumer Satisfaction. 235-245 - Daniel Zügner, Stephan Günnemann:
Certifiable Robustness and Robust Training for Graph Convolutional Networks. 246-256 - Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, Cho-Jui Hsieh:
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks. 257-266 - Sara Ahmadian, Alessandro Epasto
, Ravi Kumar, Mohammad Mahdian:
Clustering without Over-Representation. 267-275 - Hongchang Gao, Jian Pei
, Heng Huang:
Conditional Random Field Enhanced Graph Convolutional Neural Networks. 276-284 - Silu Huang, Jialu Liu, Flip Korn, Xuezhi Wang, You Wu, Dale Markowitz, Cong Yu:
Contextual Fact Ranking and Its Applications in Table Synthesis and Compression. 285-293 - Anes Bendimerad
, Jefrey Lijffijt
, Marc Plantevit
, Céline Robardet, Tijl De Bie:
Contrastive Antichains in Hierarchies. 294-304 - Junchen Ye, Leilei Sun
, Bowen Du, Yanjie Fu, Xinran Tong, Hui Xiong:
Co-Prediction of Multiple Transportation Demands Based on Deep Spatio-Temporal Neural Network. 305-313 - Yanhao Wang
, Yuchen Li
, Kian-Lee Tan
:
Coresets for Minimum Enclosing Balls over Sliding Windows. 314-323 - Hanpeng Liu, Yaguang Li, Michael Tsang, Yan Liu:
CoSTCo: A Neural Tensor Completion Model for Sparse Tensors. 324-334 - Qingquan Song, Shiyu Chang, Xia Hu:
Coupled Variational Recurrent Collaborative Filtering. 335-343 - Donghua Liu, Jing Li, Bo Du, Jun Chang, Rong Gao:
DAML: Dual Attention Mutual Learning between Ratings and Reviews for Item Recommendation. 344-352 - Guansong Pang
, Chunhua Shen, Anton van den Hengel
:
Deep Anomaly Detection with Deviation Networks. 353-362 - Kan Ren, Jiarui Qin, Lei Zheng, Zhengyu Yang, Weinan Zhang, Yong Yu:
Deep Landscape Forecasting for Real-time Bidding Advertising. 363-372 - Maya Okawa, Tomoharu Iwata, Takeshi Kurashima, Yusuke Tanaka
, Hiroyuki Toda, Naonori Ueda:
Deep Mixture Point Processes: Spatio-temporal Event Prediction with Rich Contextual Information. 373-383 - Guolin Ke, Zhenhui Xu, Jia Zhang, Jiang Bian, Tie-Yan Liu:
DeepGBM: A Deep Learning Framework Distilled by GBDT for Online Prediction Tasks. 384-394 - Kai Shu, Limeng Cui, Suhang Wang
, Dongwon Lee
, Huan Liu:
dEFEND: Explainable Fake News Detection. 395-405 - Jun Wu
, Jingrui He, Jiejun Xu:
DEMO-Net: Degree-specific Graph Neural Networks for Node and Graph Classification. 406-415 - Jing-Han Wu, Min-Ling Zhang
:
Disambiguation Enabled Linear Discriminant Analysis for Partial Label Dimensionality Reduction. 416-424 - Michael Doron, Idan Segev
, Dafna Shahaf:
Discovering Unexpected Local Nonlinear Interactions in Scientific Black-box Models. 425-435 - Baojian Zhou, Feng Chen, Yiming Ying:
Dual Averaging Method for Online Graph-structured Sparsity. 436-446 - Qitian Wu, Yirui Gao, Xiaofeng Gao, Paul Weng, Guihai Chen
:
Dual Sequential Prediction Models Linking Sequential Recommendation and Information Dissemination. 447-457 - Yasuko Matsubara, Yasushi Sakurai:
Dynamic Modeling and Forecasting of Time-evolving Data Streams. 458-468 - Chengxi Zang
, Peng Cui, Wenwu Zhu, Fei Wang:
Dynamical Origins of Distribution Functions. 469-478 - Pei-Zhen Li, Ling Huang, Chang-Dong Wang, Jian-Huang Lai:
EdMot: An Edge Enhancement Approach for Motif-aware Community Detection. 479-487 - Lisi Chen, Shuo Shang, Christian S. Jensen
, Bin Yao, Zhiwei Zhang, Ling Shao
:
Effective and Efficient Reuse of Past Travel Behavior for Route Recommendation. 488-498 - Zheng Wang, Cheng Long, Gao Cong, Ce Ju
:
Effective and Efficient Sports Play Retrieval with Deep Representation Learning. 499-509 - Yexin Li
, Yu Zheng, Qiang Yang:
Efficient and Effective Express via Contextual Cooperative Reinforcement Learning. 510-519 - Lingfei Wu, Ian En-Hsu Yen, Siyu Huo, Liang Zhao, Kun Xu, Liang Ma, Shouling Ji, Charu C. Aggarwal:
Efficient Global String Kernel with Random Features: Beyond Counting Substructures. 520-528 - Lijun Chang:
Efficient Maximum Clique Computation over Large Sparse Graphs. 529-538 - Jingyuan Wang, Ning Wu, Wayne Xin Zhao, Fanzhang Peng, Xin Lin:
Empowering A* Search Algorithms with Neural Networks for Personalized Route Recommendation. 539-547 - Qinyong Wang, Hongzhi Yin
, Hao Wang, Quoc Viet Hung Nguyen
, Zi Huang
, Lizhen Cui:
Enhancing Collaborative Filtering with Generative Augmentation. 548-556 - Shibo Yao, Dantong Yu, Keli Xiao:
Enhancing Domain Word Embedding via Latent Semantic Imputation. 557-565 - Wenjie Shang, Yang Yu, Qingyang Li, Zhiwei (Tony) Qin, Yiping Meng, Jieping Ye:
Environment Reconstruction with Hidden Confounders for Reinforcement Learning based Recommendation. 566-576 - Bijaya Adhikari, Xinfeng Xu, Naren Ramakrishnan
, B. Aditya Prakash:
EpiDeep: Exploiting Embeddings for Epidemic Forecasting. 577-586 - Kirill Paramonov, Dmitry Shemetov, James Sharpnack:
Estimating Graphlet Statistics via Lifting. 587-595 - Namyong Park, Andrey Kan, Xin Luna Dong, Tong Zhao, Christos Faloutsos:
Estimating Node Importance in Knowledge Graphs Using Graph Neural Networks. 596-606 - Songshan Yang, Jiawei Wen, Xiang Zhan, Daniel Kifer
:
ET-Lasso: A New Efficient Tuning of Lasso-type Regularization for High-Dimensional Data. 607-616 - Yu Gong, Yu Zhu, Lu Duan, Qingwen Liu, Ziyu Guan, Fei Sun, Wenwu Ou, Kenny Q. Zhu:
Exact-K Recommendation via Maximal Clique Optimization. 617-626 - Qi Liu, Shiwei Tong, Chuanren Liu
, Hongke Zhao, Enhong Chen
, Haiping Ma, Shijin Wang:
Exploiting Cognitive Structure for Adaptive Learning. 627-635 - Qingyun Wu, Zhige Li, Huazheng Wang, Wei Chen
, Hongning Wang
:
Factorization Bandits for Online Influence Maximization. 636-646 - Minji Yoon, Bryan Hooi, Kijung Shin, Christos Faloutsos:
Fast and Accurate Anomaly Detection in Dynamic Graphs with a Two-Pronged Approach. 647-657 - Chi Wang, Bailu Ding:
Fast Approximation of Empirical Entropy via Subsampling. 658-667 - Haoyang Li, Peng Cui, Chengxi Zang
, Tianyang Zhang, Wenwu Zhu, Yishi Lin:
Fates of Microscopic Social Ecosystems: Keep Alive or Dead? 668-676 - Victor Amelkin
, Ambuj K. Singh:
Fighting Opinion Control in Social Networks via Link Recommendation. 677-685 - Nikita Klyuchnikov, Davide Mottin
, Georgia Koutrika, Emmanuel Müller, Panagiotis Karras:
Figuring out the User in a Few Steps: Bayesian Multifidelity Active Search with Cokriging. 686-695 - Hao Zou, Kun Kuang, Boqi Chen, Peixuan Chen, Peng Cui:
Focused Context Balancing for Robust Offline Policy Evaluation. 696-704 - Peng Han, Peng Yang, Peilin Zhao, Shuo Shang, Yong Liu
, Jiayu Zhou, Xin Gao, Panos Kalnis
:
GCN-MF: Disease-Gene Association Identification By Graph Convolutional Networks and Matrix Factorization. 705-713 - Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed:
Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. 714-722 - Yao Ma, Suhang Wang
, Charu C. Aggarwal, Jiliang Tang:
Graph Convolutional Networks with EigenPooling. 723-731 - Xiao Huang
, Qingquan Song, Yuening Li, Xia Hu:
Graph Recurrent Networks With Attributed Random Walks. 732-740 - Hongyang Gao, Shuiwang Ji
:
Graph Representation Learning via Hard and Channel-Wise Attention Networks. 741-749 - Kien Do
, Truyen Tran, Svetha Venkatesh:
Graph Transformation Policy Network for Chemical Reaction Prediction. 750-760 - Junteng Jia, Michael T. Schaub
, Santiago Segarra
, Austin R. Benson:
Graph-based Semi-Supervised & Active Learning for Edge Flows. 761-771 - Yujun Yan
, Jiong Zhu
, Marlena Duda, Eric Solarz, Chandra Sekhar Sripada, Danai Koutra:
GroupINN: Grouping-based Interpretable Neural Network for Classification of Limited, Noisy Brain Data. 772-782 - Changping Meng, Jiasen Yang, Bruno Ribeiro
, Jennifer Neville:
HATS: A Hierarchical Sequence-Attention Framework for Inductive Set-of-Sets Embeddings. 783-792 - Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, Nitesh V. Chawla
:
Heterogeneous Graph Neural Network. 793-803 - Zhe Jiang
, Arpan Man Sainju
:
Hidden Markov Contour Tree: A Spatial Structured Model for Hydrological Applications. 804-813 - Yue Cui
, Liwei Deng, Yan Zhao, Bin Yao, Vincent W. Zheng, Kai Zheng:
Hidden POI Ranking with Spatial Crowdsourcing. 814-824 - Chen Ma
, Peng Kang, Xue Liu:
Hierarchical Gating Networks for Sequential Recommendation. 825-833 - Hongliang Fei, Shulong Tan, Ping Li:
Hierarchical Multi-Task Word Embedding Learning for Synonym Prediction. 834-842 - Kishlay Jha
, Guangxu Xun
, Yaqing Wang, Aidong Zhang:
Hypothesis Generation From Text Based On Co-Evolution Of Biomedical Concepts. 843-851 - Alexander Marx
, Jilles Vreeken
:
Identifiability of Cause and Effect using Regularized Regression. 852-861 - Yunzhe Jia, James Bailey, Kotagiri Ramamohanarao, Christopher Leckie
, Michael E. Houle:
Improving the Quality of Explanations with Local Embedding Perturbations. 875-884 - Weiyu Cheng, Yanyan Shen, Linpeng Huang, Yanmin Zhu:
Incorporating Interpretability into Latent Factor Models via Fast Influence Analysis. 885-893 - Zhige Li, Derek Yang, Li Zhao, Jiang Bian, Tao Qin
, Tie-Yan Liu:
Individualized Indicator for All: Stock-wise Technical Indicator Optimization with Stock Embedding. 894-902 - Yao Ming, Panpan Xu, Huamin Qu, Liu Ren:
Interpretable and Steerable Sequence Learning via Prototypes. 903-913 - Rui Yan, Ran Le, Yang Song, Tao Zhang, Xiangliang Zhang
, Dongyan Zhao:
Interview Choice Reveals Your Preference on the Market: To Improve Job-Resume Matching through Profiling Memories. 914-922 - Mengyang Liu, Jiaxin Mao, Yiqun Liu, Min Zhang, Shaoping Ma:
Investigating Cognitive Effects in Session-level Search User Satisfaction. 923-931 - Ninghao Liu, Qiaoyu Tan, Yuening Li, Hongxia Yang, Jingren Zhou, Xia Hu:
Is a Single Vector Enough?: Exploring Node Polysemy for Network Embedding. 932-940 - Bi-Cun Xu, Kai Ming Ting, Zhi-Hua Zhou:
Isolation Set-Kernel and Its Application to Multi-Instance Learning. 941-949 - Xiang Wang
, Xiangnan He, Yixin Cao, Meng Liu, Tat-Seng Chua:
KGAT: Knowledge Graph Attention Network for Recommendation. 950-958 - Feiping Nie
, Cheng-Long Wang
, Xuelong Li:
K-Multiple-Means: A Multiple-Means Clustering Method with Specified K Clusters. 959-967 - Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec
, Miao Zhao, Wenjie Li
, Zhongyuan Wang:
Knowledge-aware Graph Neural Networks with Label Smoothness Regularization for Recommender Systems. 968-977 - Yihong Chen, Bei Chen, Xiangnan He, Chen Gao, Yong Li, Jian-Guang Lou, Yue Wang:
λOpt: Learn to Regularize Recommender Models in Finer Levels. 978-986 - Di Jin, Ryan A. Rossi, Eunyee Koh, Sungchul Kim, Anup Rao, Danai Koutra:
Latent Network Summarization: Bridging Network Embedding and Summarization. 987-997 - Ming-Kun Xie, Sheng-Jun Huang:
Learning Class-Conditional GANs with Active Sampling. 998-1006 - Songgaojun Deng, Huzefa Rangwala, Yue Ning
:
Learning Dynamic Context Graphs for Predicting Social Events. 1007-1016 - Zhenyu Zhang, Peng Zhao, Yuan Jiang, Zhi-Hua Zhou:
Learning from Incomplete and Inaccurate Supervision. 1017-1025 - Tomoki Yoshida, Ichiro Takeuchi, Masayuki Karasuyama:
Learning Interpretable Metric between Graphs: Convex Formulation and Computation with Graph Mining. 1026-1036 - Zhicheng He, Jie Liu, Na Li, Yalou Huang:
Learning Network-to-Network Model for Content-rich Network Embedding. 1037-1045 - Pinghua Xu, Wenbin Hu, Jia Wu
, Bo Du:
Link Prediction with Signed Latent Factors in Signed Social Networks. 1046-1054 - Zhiqiang Tao, Sheng Li, Zhaowen Wang, Chen Fang, Longqi Yang, Handong Zhao, Yun Fu:
Log2Intent: Towards Interpretable User Modeling via Recurrent Semantics Memory Unit. 1055-1063 - Hao Wang
, Tong Xu, Qi Liu, Defu Lian
, Enhong Chen
, Dongfang Du, Han Wu, Wen Su:
MCNE: An End-to-End Framework for Learning Multiple Conditional Network Representations of Social Network. 1064-1072 - Hoyeop Lee, Jinbae Im, Seongwon Jang, Hyunsouk Cho, Sehee Chung:
MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation. 1073-1082 - Hanwen Zha, Wenhu Chen, Keqian Li, Xifeng Yan:
Mining Algorithm Roadmap in Scientific Publications. 1083-1092 - Haoyu Zhang, Qin Zhang
:
MinJoin: Efficient Edit Similarity Joins via Local Hash Minima. 1093-1103 - Hemank Lamba, Neil Shah:
Modeling Dwell Time Engagement on Visual Multimedia. 1104-1113 - Daizong Ding, Mi Zhang, Xudong Pan, Min Yang
, Xiangnan He:
Modeling Extreme Events in Time Series Prediction. 1114-1122 - Jiejie Zhao, Bowen Du, Leilei Sun
, Fuzhen Zhuang, Weifeng Lv, Hui Xiong:
Multiple Relational Attention Network for Multi-task Learning. 1123-1131