


Остановите войну!
for scientists:
Dinh Q. Phung
Dinh Quoc Phung – Dinh Phung 0001
Person information

- affiliation: Monash University, Melbourne, Victoria, Australia
- affiliation: Deakin University, Center of Pattern Recognition and Data Analytics, Australia
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2022
- [j59]Trung Le, Khanh Nguyen, Dinh Q. Phung:
Improving kernel online learning with a snapshot memory. Mach. Learn. 111(3): 997-1018 (2022) - [c214]Thuy-Trang Vu, Shahram Khadivi, Dinh Q. Phung, Gholamreza Haffari:
Domain Generalisation of NMT: Fusing Adapters with Leave-One-Domain-Out Training. ACL (Findings) 2022: 582-588 - [c213]Thanh Nguyen-Duc, Trung Le, He Zhao, Jianfei Cai, Dinh Q. Phung:
Particle-based Adversarial Local Distribution Regularization. AISTATS 2022: 5212-5224 - [c212]Tam Le, Truyen Nguyen, Dinh Phung, Viet Anh Nguyen:
Sobolev Transport: A Scalable Metric for Probability Measures with Graph Metrics. AISTATS 2022: 9844-9868 - [c211]Trung Le, Anh Tuan Bui, Le Minh Tri Tue, He Zhao, Paul Montague, Quan Hung Tran, Dinh Q. Phung:
On Global-view Based Defense via Adversarial Attack and Defense Risk Guaranteed Bounds. AISTATS 2022: 11438-11460 - [c210]Khai Nguyen, Dang Nguyen, Quoc Dinh Nguyen, Tung Pham, Hung Bui, Dinh Phung, Trung Le, Nhat Ho:
On Transportation of Mini-batches: A Hierarchical Approach. ICML 2022: 16622-16655 - [c209]Van-Anh Nguyen, Dai Quoc Nguyen, Van Nguyen, Trung Le, Quan Hung Tran, Dinh Phung:
ReGVD: Revisiting Graph Neural Networks for Vulnerability Detection. ICSE-Companion 2022: 178-182 - [c208]Thanh Nguyen-Duc, He Zhao, Jianfei Cai, Dinh Phung:
MED-TEX: Transfer and Explain Knowledge with Less Data from Pretrained Medical Imaging Models. ISBI 2022: 1-4 - [c207]Tin Duy Vo, Manh Luong, Duong Minh Le, Hieu Tran, Nhan Do, Tuan-Duy H. Nguyen, Thien Nguyen, Hung Bui, Dat Quoc Nguyen, Dinh Q. Phung:
Vietnamese Speech-based Question Answering over Car Manuals. IUI Companion 2022: 117-119 - [c206]Dai Quoc Nguyen, Vinh Tong, Dinh Q. Phung, Dat Quoc Nguyen:
Node Co-occurrence based Graph Neural Networks for Knowledge Graph Link Prediction. WSDM 2022: 1589-1592 - [i87]Tam Le, Truyen Nguyen, Dinh Q. Phung, Viet Anh Nguyen:
Sobolev Transport: A Scalable Metric for Probability Measures with Graph Metrics. CoRR abs/2202.10723 (2022) - [i86]Tuan Anh Bui, Trung Le, Quan Hung Tran, He Zhao, Dinh Q. Phung:
A Unified Wasserstein Distributional Robustness Framework for Adversarial Training. CoRR abs/2202.13437 (2022) - [i85]Hoang Phan, Trung Le, Trung Phung, Tuan Anh Bui, Nhat Ho, Dinh Q. Phung:
Global-Local Regularization Via Distributional Robustness. CoRR abs/2203.00553 (2022) - [i84]Chuanxia Zheng, Guoxian Song, Tat-Jen Cham, Jianfei Cai, Dinh Q. Phung, Linjie Luo:
High-Quality Pluralistic Image Completion via Code Shared VQGAN. CoRR abs/2204.01931 (2022) - [i83]Hoang Phan, Ngoc Tran, Trung Le, Toan Tran, Nhat Ho, Dinh Phung:
Stochastic Multiple Target Sampling Gradient Descent. CoRR abs/2206.01934 (2022) - [i82]Vy Vo, Van Nguyen, Trung Le, Quan Hung Tran, Gholamreza Haffari, Seyit Camtepe, Dinh Q. Phung:
An Additive Instance-Wise Approach to Multi-class Model Interpretation. CoRR abs/2207.03113 (2022) - 2021
- [j58]Viet Huynh, Nhat Ho, Nhan Dam, XuanLong Nguyen, Mikhail Yurochkin, Hung Bui, Dinh Q. Phung:
On efficient multilevel Clustering via Wasserstein distances. J. Mach. Learn. Res. 22: 145:1-145:43 (2021) - [c205]Tuan-Anh Bui, Trung Le, He Zhao, Paul Montague, Olivier Y. de Vel, Tamas Abraham, Dinh Phung:
Improving Ensemble Robustness by Collaboratively Promoting and Demoting Adversarial Robustness. AAAI 2021: 6831-6839 - [c204]Dai Quoc Nguyen, Tu Dinh Nguyen, Dinh Q. Phung:
Quaternion Graph Neural Networks. ACML 2021: 236-251 - [c203]Thuy-Trang Vu, Xuanli He, Dinh Q. Phung, Gholamreza Haffari:
Generalised Unsupervised Domain Adaptation of Neural Machine Translation with Cross-Lingual Data Selection. EMNLP (1) 2021: 3335-3346 - [c202]Van-Anh Nguyen, Tuan Nguyen, Trung Le, Quan Hung Tran, Dinh Phung:
STEM: An approach to Multi-source Domain Adaptation with Guarantees. ICCV 2021: 9332-9343 - [c201]He Zhao, Dinh Phung, Viet Huynh, Trung Le, Wray L. Buntine
:
Neural Topic Model via Optimal Transport. ICLR 2021 - [c200]Trung Le, Tuan Nguyen, Nhat Ho, Hung Bui, Dinh Phung:
LAMDA: Label Matching Deep Domain Adaptation. ICML 2021: 6043-6054 - [c199]Tuan Nguyen, Trung Le, Nhan Dam, Quan Hung Tran, Truyen Nguyen, Dinh Q. Phung:
TIDOT: A Teacher Imitation Learning Approach for Domain Adaptation with Optimal Transport. IJCAI 2021: 2862-2868 - [c198]Viet Huynh, Dinh Q. Phung, He Zhao:
Optimal Transport for Deep Generative Models: State of the Art and Research Challenges. IJCAI 2021: 4450-4457 - [c197]He Zhao, Dinh Q. Phung, Viet Huynh, Yuan Jin, Lan Du, Wray L. Buntine
:
Topic Modelling Meets Deep Neural Networks: A Survey. IJCAI 2021: 4713-4720 - [c196]Van Nguyen, Trung Le, Olivier Y. de Vel, Paul Montague, John Grundy, Dinh Phung:
Information-theoretic Source Code Vulnerability Highlighting. IJCNN 2021: 1-8 - [c195]Manh-Ha Bui, Toan Tran, Anh Tran, Dinh Q. Phung:
Exploiting Domain-Specific Features to Enhance Domain Generalization. NeurIPS 2021: 21189-21201 - [c194]Trung Phung, Trung Le, Long Vuong, Toan Tran, Anh Tran, Hung Bui, Dinh Q. Phung:
On Learning Domain-Invariant Representations for Transfer Learning with Multiple Sources. NeurIPS 2021: 27720-27733 - [c193]Tuan Nguyen, Trung Le, He Zhao, Quan Hung Tran, Truyen Nguyen, Dinh Q. Phung:
Most: multi-source domain adaptation via optimal transport for student-teacher learning. UAI 2021: 225-235 - [i81]Tuan-Anh Bui, Trung Le, He Zhao
, Paul Montague, Seyit Camtepe, Dinh Phung:
Understanding and Achieving Efficient Robustness with Adversarial Contrastive Learning. CoRR abs/2101.10027 (2021) - [i80]Khai Nguyen, Quoc Nguyen, Nhat Ho, Tung Pham, Hung Bui, Dinh Phung, Trung Le:
BoMb-OT: On Batch of Mini-batches Optimal Transport. CoRR abs/2102.05912 (2021) - [i79]He Zhao
, Dinh Phung, Viet Huynh, Yuan Jin, Lan Du, Wray L. Buntine:
Topic Modelling Meets Deep Neural Networks: A Survey. CoRR abs/2103.00498 (2021) - [i78]Dai Quoc Nguyen, Vinh Tong, Dinh Phung, Dat Quoc Nguyen:
Node Co-occurrence based Graph Neural Networks for Knowledge Graph Link Prediction. CoRR abs/2104.07396 (2021) - [i77]Mahmoud Hossam, Trung Le, He Zhao, Viet Huynh, Dinh Phung:
Improved and Efficient Text Adversarial Attacks using Target Information. CoRR abs/2104.13484 (2021) - [i76]Mahmoud Hossam, Trung Le, Michael Papasimeon, Viet Huynh, Dinh Phung:
Text Generation with Deep Variational GAN. CoRR abs/2104.13488 (2021) - [i75]Son D. Dao, Ethan Zhao, Dinh Phung, Jianfei Cai:
Multi-Label Image Classification with Contrastive Learning. CoRR abs/2107.11626 (2021) - [i74]Jing Liu, Bohan Zhuang, Mingkui Tan, Xu Liu, Dinh Phung, Yuanqing Li, Jianfei Cai:
Elastic Architecture Search for Diverse Tasks with Different Resources. CoRR abs/2108.01224 (2021) - [i73]Thuy-Trang Vu, Xuanli He, Dinh Q. Phung, Gholamreza Haffari:
Generalised Unsupervised Domain Adaptation of Neural Machine Translation with Cross-Lingual Data Selection. CoRR abs/2109.04292 (2021) - [i72]Van-Anh Nguyen, Dai Quoc Nguyen, Van Nguyen, Trung Le, Quan Hung Tran, Dinh Q. Phung:
ReGVD: Revisiting Graph Neural Networks for Vulnerability Detection. CoRR abs/2110.07317 (2021) - [i71]Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung:
Exploiting Domain-Specific Features to Enhance Domain Generalization. CoRR abs/2110.09410 (2021) - [i70]Trung Le, Dat Do, Tuan Nguyen, Huy Nguyen, Hung Bui, Nhat Ho, Dinh Q. Phung:
On Label Shift in Domain Adaptation via Wasserstein Distance. CoRR abs/2110.15520 (2021) - [i69]Dang Nguyen, Khai Nguyen, Dinh Phung, Hung Bui, Nhat Ho:
Model Fusion of Heterogeneous Neural Networks via Cross-Layer Alignment. CoRR abs/2110.15538 (2021) - [i68]Trung Phung, Trung Le, Long Vuong, Toan Tran, Anh Tran, Hung Bui, Dinh Phung:
On Learning Domain-Invariant Representations for Transfer Learning with Multiple Sources. CoRR abs/2111.13822 (2021) - [i67]Vinh Tong, Dai Quoc Nguyen, Dinh Q. Phung, Dat Quoc Nguyen:
Two-view Graph Neural Networks for Knowledge Graph Completion. CoRR abs/2112.09231 (2021) - 2020
- [j57]Thin Nguyen
, Mark E. Larsen, Bridianne O'Dea, Hung Nguyen, Duc Thanh Nguyen, John Yearwood, Dinh Quoc Phung
, Svetha Venkatesh, Helen Christensen:
Using spatiotemporal distribution of geocoded Twitter data to predict US county-level health indices. Future Gener. Comput. Syst. 110: 620-628 (2020) - [j56]Wenhe Liu
, Xiaojun Chang
, Ling Chen
, Dinh Phung
, Xiaoqin Zhang, Yi Yang, Alexander G. Hauptmann:
Pair-based Uncertainty and Diversity Promoting Early Active Learning for Person Re-identification. ACM Trans. Intell. Syst. Technol. 11(2): 21:1-21:15 (2020) - [c192]Dai Quoc Nguyen, Tuan Nguyen, Dinh Phung:
A Relational Memory-based Embedding Model for Triple Classification and Search Personalization. ACL 2020: 3429-3435 - [c191]He Zhao, Piyush Rai, Lan Du, Wray L. Buntine
, Dinh Phung, Mingyuan Zhou:
Variational Autoencoders for Sparse and Overdispersed Discrete Data. AISTATS 2020: 1684-1694 - [c190]Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen, Dinh Phung
:
A Capsule Network-based Model for Learning Node Embeddings. CIKM 2020: 3313-3316 - [c189]Quan Hung Tran, Nhan Dam, Tuan Manh Lai, Franck Dernoncourt, Trung Le, Nham Le, Dinh Phung:
Explain by Evidence: An Explainable Memory-based Neural Network for Question Answering. COLING 2020: 5205-5210 - [c188]Tuan-Anh Bui
, Trung Le
, He Zhao
, Paul Montague
, Olivier Y. DeVel
, Tamas Abraham
, Dinh Q. Phung
:
Improving Adversarial Robustness by Enforcing Local and Global Compactness. ECCV (27) 2020: 209-223 - [c187]Thuy-Trang Vu, Dinh Phung, Gholamreza Haffari:
Effective Unsupervised Domain Adaptation with Adversarially Trained Language Models. EMNLP (1) 2020: 6163-6173 - [c186]Quan Hoang, Trung Le, Dinh Phung:
Parameterized Rate-Distortion Stochastic Encoder. ICML 2020: 4293-4303 - [c185]Mahmoud Hossam, Trung Le, He Zhao, Dinh Phung:
Explain2Attack: Text Adversarial Attacks via Cross-Domain Interpretability. ICPR 2020: 8922-8928 - [c184]Nhan Dam, Trung Le, Viet Huynh, Dinh Phung
:
Stein Variational Gradient Descent with Variance Reduction. IJCNN 2020: 1-8 - [c183]Mahmoud Hossam, Trung Le, Viet Huynh, Michael Papasimeon, Dinh Phung
:
OptiGAN: Generative Adversarial Networks for Goal Optimized Sequence Generation. IJCNN 2020: 1-8 - [c182]Van Nguyen, Trung Le, Tue Le, Khanh Nguyen, Olivier Y. de Vel, Paul Montague, Dinh Phung
:
Code Pointer Network for Binary Function Scope Identification. IJCNN 2020: 1-7 - [c181]Viet Huynh, He Zhao, Dinh Phung:
OTLDA: A Geometry-aware Optimal Transport Approach for Topic Modeling. NeurIPS 2020 - [c180]Tuan Nguyen, Trung Le, Khanh Nguyen, Olivier Y. de Vel, Paul Montague, John C. Grundy
, Dinh Phung
:
Deep Cost-Sensitive Kernel Machine for Binary Software Vulnerability Detection. PAKDD (2) 2020: 164-177 - [c179]Van Nguyen, Trung Le, Olivier Y. de Vel, Paul Montague, John C. Grundy
, Dinh Phung
:
Dual-Component Deep Domain Adaptation: A New Approach for Cross Project Software Vulnerability Detection. PAKDD (1) 2020: 699-711 - [c178]Van Nguyen, Trung Le, Tue Le, Khanh Nguyen, Olivier Y. de Vel, Paul Montague, John C. Grundy
, Dinh Phung
:
Code Action Network for Binary Function Scope Identification. PAKDD (1) 2020: 712-725 - [c177]Dai Quoc Nguyen, Tu Dinh Nguyen, Dinh Phung:
A Self-attention Network Based Node Embedding Model. ECML/PKDD (3) 2020: 364-377 - [i66]Mahmoud Hossam, Trung Le, Viet Huynh, Michael Papasimeon, Dinh Phung:
OptiGAN: Generative Adversarial Networks for Goal Optimized Sequence Generation. CoRR abs/2004.07534 (2020) - [i65]Dai Quoc Nguyen, Tu Dinh Nguyen, Dinh Phung:
A Self-Attention Network based Node Embedding Model. CoRR abs/2006.12100 (2020) - [i64]Tuan-Anh Bui, Trung Le, He Zhao, Paul Montague, Olivier Y. DeVel, Tamas Abraham, Dinh Phung:
Improving Adversarial Robustness by Enforcing Local and Global Compactness. CoRR abs/2007.05123 (2020) - [i63]Thanh Nguyen-Duc, He Zhao, Jianfei Cai, Dinh Phung:
MED-TEX: Transferring and Explaining Knowledge with Less Data from Pretrained Medical Imaging Models. CoRR abs/2008.02593 (2020) - [i62]Dai Quoc Nguyen, Tu Dinh Nguyen, Dinh Phung:
Quaternion Graph Neural Networks. CoRR abs/2008.05089 (2020) - [i61]He Zhao, Dinh Phung, Viet Huynh, Trung Le, Wray L. Buntine:
Neural Sinkhorn Topic Model. CoRR abs/2008.13537 (2020) - [i60]Tuan-Anh Bui, Trung Le, He Zhao
, Paul Montague, Olivier Y. DeVel, Tamas Abraham, Dinh Phung:
Improving Ensemble Robustness by Collaboratively Promoting and Demoting Adversarial Robustness. CoRR abs/2009.09612 (2020) - [i59]Dai Quoc Nguyen, Thanh Vu, Tu Dinh Nguyen, Dinh Phung:
QuatRE: Relation-Aware Quaternions for Knowledge Graph Embeddings. CoRR abs/2009.12517 (2020) - [i58]Thuy-Trang Vu, Dinh Phung, Gholamreza Haffari:
Effective Unsupervised Domain Adaptation with Adversarially Trained Language Models. CoRR abs/2010.01739 (2020) - [i57]He Zhao
, Trung Le, Paul Montague, Olivier Y. de Vel, Tamas Abraham, Dinh Phung:
Towards Understanding Pixel Vulnerability under Adversarial Attacks for Images. CoRR abs/2010.06131 (2020) - [i56]Mahmoud Hossam, Trung Le, He Zhao
, Dinh Phung:
Explain2Attack: Text Adversarial Attacks via Cross-Domain Interpretability. CoRR abs/2010.06812 (2020) - [i55]Quan Hung Tran, Nhan Dam, Tuan Manh Lai, Franck Dernoncourt, Trung Le, Nham Le, Dinh Phung:
Explain by Evidence: An Explainable Memory-based Neural Network for Question Answering. CoRR abs/2011.03096 (2020)
2010 – 2019
- 2019
- [j55]Trung Le, Khanh Nguyen, Vu Nguyen
, Tu Dinh Nguyen, Dinh Q. Phung
:
GoGP: scalable geometric-based Gaussian process for online regression. Knowl. Inf. Syst. 60(1): 197-226 (2019) - [j54]Dai Quoc Nguyen, Dat Quoc Nguyen, Tu Dinh Nguyen, Dinh Phung
:
A convolutional neural network-based model for knowledge base completion and its application to search personalization. Semantic Web 10(5): 947-960 (2019) - [c176]Hung Vu, Tu Dinh Nguyen, Trung Le, Wei Luo, Dinh Q. Phung:
Robust Anomaly Detection in Videos Using Multilevel Representations. AAAI 2019: 5216-5223 - [c175]Thuy-Trang Vu, Ming Liu, Dinh Phung, Gholamreza Haffari:
Learning How to Active Learn by Dreaming. ACL (1) 2019: 4091-4101 - [c174]Nhat Ho, Viet Huynh, Dinh Q. Phung, Michael I. Jordan:
Probabilistic Multilevel Clustering via Composite Transportation Distance. AISTATS 2019: 3149-3157 - [c173]Tue Le, Tuan Nguyen, Trung Le, Dinh Q. Phung, Paul Montague, Olivier Y. de Vel, Lizhen Qu:
Maximal Divergence Sequential Autoencoder for Binary Software Vulnerability Detection. ICLR (Poster) 2019 - [c172]Nhan Dam, Quan Hoang, Trung Le, Tu Dinh Nguyen, Hung Bui, Dinh Phung
:
Three-Player Wasserstein GAN via Amortised Duality. IJCAI 2019: 2202-2208 - [c171]Trung Le, Quan Hoang, Hung Vu, Tu Dinh Nguyen, Hung Bui, Dinh Q. Phung
:
Learning Generative Adversarial Networks from Multiple Data Sources. IJCAI 2019: 2823-2829 - [c170]Van Nguyen, Trung Le, Tue Le, Khanh Nguyen, Olivier Y. DeVel, Paul Montague, Lizhen Qu, Dinh Q. Phung
:
Deep Domain Adaptation for Vulnerable Code Function Identification. IJCNN 2019: 1-8 - [c169]Dai Quoc Nguyen, Thanh Vu, Tu Dinh Nguyen, Dat Quoc Nguyen, Dinh Q. Phung:
A Capsule Network-based Embedding Model for Knowledge Graph Completion and Search Personalization. NAACL-HLT (1) 2019: 2180-2189 - [i54]Trung Le, Dinh Q. Phung:
When Can Neural Networks Learn Connected Decision Regions? CoRR abs/1901.08710 (2019) - [i53]Dai Quoc Nguyen
, Tu Dinh Nguyen, Dinh Q. Phung:
Relational Memory-based Knowledge Graph Embedding. CoRR abs/1907.06080 (2019) - [i52]Viet Huynh, Nhat Ho, Nhan Dam, XuanLong Nguyen, Mikhail Yurochkin, Hung Bui, Dinh Q. Phung:
On Efficient Multilevel Clustering via Wasserstein Distances. CoRR abs/1909.08787 (2019) - [i51]Dai Quoc Nguyen
, Tu Dinh Nguyen, Dinh Phung:
Unsupervised Universal Self-Attention Network for Graph Classification. CoRR abs/1909.11855 (2019) - [i50]He Zhao, Trung Le, Paul Montague, Olivier Y. de Vel, Tamas Abraham, Dinh Phung:
Perturbations are not Enough: Generating Adversarial Examples with Spatial Distortions. CoRR abs/1910.01329 (2019) - [i49]Tam Le, Viet Huynh, Nhat Ho, Dinh Q. Phung, Makoto Yamada:
On Scalable Variant of Wasserstein Barycenter. CoRR abs/1910.04483 (2019) - [i48]Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen, Dinh Phung:
A Capsule Network-based Model for Learning Node Embeddings. CoRR abs/1911.04822 (2019) - 2018
- [j53]Dang Nguyen
, Wei Luo
, Svetha Venkatesh, Dinh Q. Phung
:
Effective Identification of Similar Patients Through Sequential Matching over ICD Code Embedding. J. Medical Syst. 42(5): 94:1-94:13 (2018) - [j52]Thin Nguyen
, Svetha Venkatesh, Dinh Q. Phung
:
Academia versus social media: A psycho-linguistic analysis. J. Comput. Sci. 25: 228-237 (2018) - [j51]Adham Beykikhoshk, Ognjen Arandjelovic, Dinh Q. Phung
, Svetha Venkatesh:
Discovering topic structures of a temporally evolving document corpus. Knowl. Inf. Syst. 55(3): 599-632 (2018) - [j50]Dang Nguyen
, Wei Luo
, Dinh Q. Phung
, Svetha Venkatesh:
LTARM: A novel temporal association rule mining method to understand toxicities in a routine cancer treatment. Knowl. Based Syst. 161: 313-328 (2018) - [j49]Ba-Ngu Vo
, Nhan Dam, Dinh Q. Phung
, Quang N. Tran, Ba-Tuong Vo
:
Model-based learning for point pattern data. Pattern Recognit. 84: 136-151 (2018) - [c168]Khanh Nguyen, Nhan Dam, Trung Le, Tu Dinh Nguyen, Dinh Q. Phung:
Clustering Induced Kernel Learning. ACML 2018: 129-144 - [c167]Hung Vu, Tu Dinh Nguyen, Trung Le, Wei Luo, Dinh Q. Phung:
Batch Normalized Deep Boltzmann Machines. ACML 2018: 359-374 - [c166]Quan Hoang, Tu Dinh Nguyen, Trung Le, Dinh Q. Phung:
MGAN: Training Generative Adversarial Nets with Multiple Generators. ICLR (Poster) 2018 - [c165]Khanh Nguyen, Trung Le, Tu Dinh Nguyen, Dinh Q. Phung
:
Bayesian Multi-Hyperplane Machine for Pattern Recognition. ICPR 2018: 609-614 - [c164]Trung Le, Hung Vu, Tu Dinh Nguyen, Dinh Q. Phung
:
Geometric Enclosing Networks. IJCAI 2018: 2355-2361 - [c163]Khanh Nguyen, Trung Le, Tu Dinh Nguyen, Dinh Q. Phung
, Geoffrey I. Webb
:
Robust Bayesian Kernel Machine via Stein Variational Gradient Descent for Big Data. KDD 2018: 2003-2011 - [c162]Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen, Dinh Q. Phung:
A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network. NAACL-HLT (2) 2018: 327-333 - [c161]Dang Nguyen, Wei Luo
, Tu Dinh Nguyen, Svetha Venkatesh, Dinh Q. Phung
:
Sqn2Vec: Learning Sequence Representation via Sequential Patterns with a Gap Constraint. ECML/PKDD (2) 2018: 569-584 - [c160]Dang Nguyen
, Wei Luo, Tu Dinh Nguyen, Svetha Venkatesh, Dinh Q. Phung
:
Learning Graph Representation via Frequent Subgraphs. SDM 2018: 306-314 - [c159]Hung Nguyen, Van Nguyen, Thin Nguyen, Mark E. Larsen, Bridianne O'Dea, Duc Thanh Nguyen, Trung Le, Dinh Q. Phung
, Svetha Venkatesh, Helen Christensen:
Jointly Predicting Affective and Mental Health Scores Using Deep Neural Networks of Visual Cues on the Web. WISE (2) 2018: 100-110 - [e4]Dinh Q. Phung, Vincent S. Tseng, Geoffrey I. Webb, Bao Ho, Mohadeseh Ganji, Lida Rashidi:
Advances in Knowledge Discovery and Data Mining - 22nd Pacific-Asia Conference, PAKDD 2018, Melbourne, VIC, Australia, June 3-6, 2018, Proceedings, Part I. Lecture Notes in Computer Science 10937, Springer 2018, ISBN 978-3-319-93033-6 [contents] - [e3]Dinh Q. Phung, Vincent S. Tseng, Geoffrey I. Webb, Bao Ho, Mohadeseh Ganji, Lida Rashidi:
Advances in Knowledge Discovery and Data Mining - 22nd Pacific-Asia Conference, PAKDD 2018, Melbourne, VIC, Australia, June 3-6, 2018, Proceedings, Part II. Lecture Notes in Computer Science 10938, Springer 2018, ISBN 978-3-319-93036-7 [contents] - [e2]Dinh Q. Phung, Vincent S. Tseng, Geoffrey I. Webb, Bao Ho, Mohadeseh Ganji, Lida Rashidi:
Advances in Knowledge Discovery and Data Mining - 22nd Pacific-Asia Conference, PAKDD 2018, Melbourne, VIC, Australia, June 3-6, 2018, Proceedings, Part III. Lecture Notes in Computer Science 10939, Springer 2018, ISBN 978-3-319-93039-8 [contents] - [i47]Hung Vu, Tu Dinh Nguyen, Dinh Q. Phung:
Detection of Unknown Anomalies in Streaming Videos with Generative Energy-based Boltzmann Models. CoRR abs/1805.01090 (2018) - [i46]Dai Quoc Nguyen, Thanh Vu, Tu Dinh Nguyen, Dat Quoc Nguyen, Dinh Q. Phung:
A Capsule Network-based Embedding Model for Knowledge Graph Completion and Search Personalization. CoRR abs/1808.04122 (2018) - [i45]Nhat Ho, Viet Huynh, Dinh Q. Phung, Michael I. Jordan:
Probabilistic Multilevel Clustering via Composite Transportation Distance. CoRR abs/1810.11911 (2018) - [i44]Trung Le, Khanh Nguyen, Dinh Q. Phung:
Theoretical Perspective of Deep Domain Adaptation. CoRR abs/1811.06199 (2018) - 2017
- [j48]Truyen Tran
, Dinh Quoc Phung
, Hung Hai Bui, Svetha Venkatesh:
Hierarchical semi-Markov conditional random fields for deep recursive sequential data. Artif. Intell. 246: 53-85 (2017) - [j47]Thin Nguyen
, Mark E. Larsen, Bridianne O'Dea, Duc Thanh Nguyen, John Yearwood, Dinh Q. Phung
, Svetha Venkatesh, Helen Christensen:
Kernel-based features for predicting population health indices from geocoded social media data. Decis. Support Syst. 102: 22-31 (2017) - [j46]Bo Dao
, Thin Nguyen, Svetha Venkatesh, Dinh Q. Phung
:
Latent sentiment topic modelling and nonparametric discovery of online mental health-related communities. Int. J. Data Sci. Anal. 4(3): 209-231 (2017) - [j45]