


Остановите войну!
for scientists:


default search action
Aram Galstyan
Person information

- affiliation: University of Southern California, Los Angeles, USA
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [c101]Rahul Gupta
, Lisa Bauer
, Kai-Wei Chang
, Jwala Dhamala
, Aram Galstyan
, Palash Goyal
, Qian Hu
, Avni Khatri
, Rohit Parimi
, Charith Peris
, Apurv Verma
, Richard S. Zemel
, Prem Natarajan
:
Incorporating Fairness in Large Scale NLU Systems. WSDM 2023: 1289-1290 - [i109]Sarik Ghazarian, Yijia Shao, Rujun Han, Aram Galstyan, Nanyun Peng:
ACCENT: An Automatic Event Commonsense Evaluation Metric for Open-Domain Dialogue Systems. CoRR abs/2305.07797 (2023) - [i108]Anaelia Ovalle, Palash Goyal, Jwala Dhamala, Zachary Jaggers, Kai-Wei Chang, Aram Galstyan, Richard S. Zemel, Rahul Gupta:
"I'm fully who I am": Towards Centering Transgender and Non-Binary Voices to Measure Biases in Open Language Generation. CoRR abs/2305.09941 (2023) - [i107]Arghya Datta, Subhrangshu Nandi, Jingcheng Xu, Greg Ver Steeg, He Xie, Anoop Kumar, Aram Galstyan:
Measuring and Mitigating Local Instability in Deep Neural Networks. CoRR abs/2305.10625 (2023) - 2022
- [j20]Ninareh Mehrabi, Fred Morstatter
, Nripsuta Saxena, Kristina Lerman, Aram Galstyan:
A Survey on Bias and Fairness in Machine Learning. ACM Comput. Surv. 54(6): 115:1-115:35 (2022) - [j19]K. S. M. Tozammel Hossain, Hrayr Harutyunyan, Yue Ning, Brendan Kennedy, Naren Ramakrishnan
, Aram Galstyan:
Identifying geopolitical event precursors using attention-based LSTMs. Frontiers Artif. Intell. 5 (2022) - [j18]Myrl G. Marmarelis, Greg Ver Steeg, Aram Galstyan:
A Metric Space for Point Process Excitations. J. Artif. Intell. Res. 73 (2022) - [c100]Yang Trista Cao, Yada Pruksachatkun, Kai-Wei Chang, Rahul Gupta, Varun Kumar, Jwala Dhamala, Aram Galstyan:
On the Intrinsic and Extrinsic Fairness Evaluation Metrics for Contextualized Language Representations. ACL (2) 2022: 561-570 - [c99]Umang Gupta, Jwala Dhamala, Varun Kumar, Apurv Verma, Yada Pruksachatkun, Satyapriya Krishna, Rahul Gupta, Kai-Wei Chang, Greg Ver Steeg, Aram Galstyan:
Mitigating Gender Bias in Distilled Language Models via Counterfactual Role Reversal. ACL (Findings) 2022: 658-678 - [c98]Sarik Ghazarian, Nuan Wen, Aram Galstyan, Nanyun Peng:
DEAM: Dialogue Coherence Evaluation using AMR-based Semantic Manipulations. ACL (1) 2022: 771-785 - [c97]Tigran Galstyan, Hrayr Harutyunyan, Hrant Khachatrian, Greg Ver Steeg, Aram Galstyan:
Failure Modes of Domain Generalization Algorithms. CVPR 2022: 19055-19064 - [c96]Kuan-Hao Huang, Varun Iyer, Anoop Kumar, Sriram Venkatapathy, Kai-Wei Chang, Aram Galstyan:
Unsupervised Syntactically Controlled Paraphrase Generation with Abstract Meaning Representations. EMNLP (Findings) 2022: 1547-1554 - [c95]Anoop Kumar, Pankaj Kumar Sharma, Aravind Illa, Sriram Venkatapathy, Subhrangshu Nandi, Pritam Varma, Anurag Dwarakanath, Aram Galstyan:
Learning Under Label Noise for Robust Spoken Language Understanding systems. INTERSPEECH 2022: 3463-3467 - [c94]Hrayr Harutyunyan, Greg Ver Steeg, Aram Galstyan:
Formal limitations of sample-wise information-theoretic generalization bounds. ITW 2022: 440-445 - [c93]Judith Gaspers, Anoop Kumar, Greg Ver Steeg, Aram Galstyan:
Temporal Generalization for Spoken Language Understanding. NAACL-HLT (Industry Papers) 2022: 37-44 - [c92]Elan Markowitz, Keshav Balasubramanian, Mehrnoosh Mirtaheri, Murali Annavaram, Aram Galstyan, Greg Ver Steeg:
StATIK: Structure and Text for Inductive Knowledge Graph Completion. NAACL-HLT (Findings) 2022: 604-615 - [c91]Ninareh Mehrabi, Ahmad Beirami, Fred Morstatter, Aram Galstyan:
Robust Conversational Agents against Imperceptible Toxicity Triggers. NAACL-HLT 2022: 2831-2847 - [c90]Jwala Dhamala, Varun Kumar, Rahul Gupta, Kai-Wei Chang, Aram Galstyan:
An Analysis of The Effects of Decoding Algorithms on Fairness in Open-Ended Language Generation. SLT 2022: 655-662 - [i106]Sarik Ghazarian, Nuan Wen, Aram Galstyan, Nanyun Peng:
DEAM: Dialogue Coherence Evaluation using AMR-based Semantic Manipulations. CoRR abs/2203.09711 (2022) - [i105]Marcin Abram, Keith Burghardt, Greg Ver Steeg, Aram Galstyan, Rémi Dingreville:
Inferring topological transitions in pattern-forming processes with self-supervised learning. CoRR abs/2203.10204 (2022) - [i104]Umang Gupta, Jwala Dhamala, Varun Kumar, Apurv Verma, Yada Pruksachatkun, Satyapriya Krishna, Rahul Gupta, Kai-Wei Chang, Greg Ver Steeg, Aram Galstyan:
Mitigating Gender Bias in Distilled Language Models via Counterfactual Role Reversal. CoRR abs/2203.12574 (2022) - [i103]Yang Trista Cao, Yada Pruksachatkun, Kai-Wei Chang, Rahul Gupta, Varun Kumar, Jwala Dhamala, Aram Galstyan:
On the Intrinsic and Extrinsic Fairness Evaluation Metrics for Contextualized Language Representations. CoRR abs/2203.13928 (2022) - [i102]Myrl G. Marmarelis, Greg Ver Steeg, Aram Galstyan:
Bounding the Effects of Continuous Treatments for Hidden Confounders. CoRR abs/2204.11206 (2022) - [i101]Ninareh Mehrabi, Ahmad Beirami, Fred Morstatter, Aram Galstyan:
Robust Conversational Agents against Imperceptible Toxicity Triggers. CoRR abs/2205.02392 (2022) - [i100]Hrayr Harutyunyan, Greg Ver Steeg, Aram Galstyan:
Formal limitations of sample-wise information-theoretic generalization bounds. CoRR abs/2205.06915 (2022) - [i99]Jwala Dhamala, Varun Kumar, Rahul Gupta, Kai-Wei Chang, Aram Galstyan:
An Analysis of the Effects of Decoding Algorithms on Fairness in Open-Ended Language Generation. CoRR abs/2210.03826 (2022) - [i98]Kuan-Hao Huang, Varun Iyer, Anoop Kumar, Sriram Venkatapathy, Kai-Wei Chang, Aram Galstyan:
Unsupervised Syntactically Controlled Paraphrase Generation with Abstract Meaning Representations. CoRR abs/2211.00881 (2022) - [i97]Ninareh Mehrabi, Palash Goyal, Apurv Verma, Jwala Dhamala, Varun Kumar, Qian Hu, Kai-Wei Chang, Richard S. Zemel, Aram Galstyan, Rahul Gupta:
Is the Elephant Flying? Resolving Ambiguities in Text-to-Image Generative Models. CoRR abs/2211.12503 (2022) - 2021
- [j17]Shushan Arakelyan, Sima Arasteh, Christophe Hauser, Erik Kline, Aram Galstyan:
Bin2vec: learning representations of binary executable programs for security tasks. Cybersecur. 4(1) (2021) - [j16]Kyle Reing, Greg Ver Steeg
, Aram Galstyan:
Discovering Higher-Order Interactions Through Neural Information Decomposition. Entropy 23(1): 79 (2021) - [j15]Mehrnoosh Mirtaheri
, Sami Abu-El-Haija, Fred Morstatter
, Greg Ver Steeg, Aram Galstyan:
Identifying and Analyzing Cryptocurrency Manipulations in Social Media. IEEE Trans. Comput. Soc. Syst. 8(3): 607-617 (2021) - [c89]Ninareh Mehrabi, Muhammad Naveed, Fred Morstatter, Aram Galstyan:
Exacerbating Algorithmic Bias through Fairness Attacks. AAAI 2021: 8930-8938 - [c88]Woojeong Jin, Rahul Khanna, Suji Kim, Dong-Ho Lee, Fred Morstatter, Aram Galstyan, Xiang Ren:
ForecastQA: A Question Answering Challenge for Event Forecasting with Temporal Text Data. ACL/IJCNLP (1) 2021: 4636-4650 - [c87]James O'Neill, Greg Ver Steeg, Aram Galstyan:
Layer-Wise Neural Network Compression via Layer Fusion. ACML 2021: 1381-1396 - [c86]Kyle Reing, Greg Ver Steeg, Aram Galstyan:
Influence Decompositions For Neural Network Attribution. AISTATS 2021: 2710-2718 - [c85]Mehrnoosh Mirtaheri, Mohammad Rostami, Xiang Ren, Fred Morstatter, Aram Galstyan:
One-shot Learning for Temporal Knowledge Graphs. AKBC 2021 - [c84]Ninareh Mehrabi, Pei Zhou, Fred Morstatter, Jay Pujara, Xiang Ren, Aram Galstyan:
Lawyers are Dishonest? Quantifying Representational Harms in Commonsense Knowledge Resources. EMNLP (1) 2021: 5016-5033 - [c83]Jiawei Ma, Hanchen Xie, Guangxing Han, Shih-Fu Chang, Aram Galstyan, Wael Abd-Almageed:
Partner-Assisted Learning for Few-Shot Image Classification. ICCV 2021: 10553-10562 - [c82]Elan Sopher Markowitz, Keshav Balasubramanian, Mehrnoosh Mirtaheri, Sami Abu-El-Haija, Bryan Perozzi, Greg Ver Steeg, Aram Galstyan:
Graph Traversal with Tensor Functionals: A Meta-Algorithm for Scalable Learning. ICLR 2021 - [c81]Sarik Ghazarian, Zixi Liu, Tuhin Chakrabarty, Xuezhe Ma, Aram Galstyan, Nanyun Peng:
DiSCoL: Toward Engaging Dialogue Systems through Conversational Line Guided Response Generation. NAACL-HLT (Demonstrations) 2021: 26-34 - [c80]Sarik Ghazarian, Zixi Liu, Akash SM, Ralph M. Weischedel, Aram Galstyan, Nanyun Peng:
Plot-guided Adversarial Example Construction for Evaluating Open-domain Story Generation. NAACL-HLT 2021: 4334-4344 - [c79]Sami Abu-El-Haija, Hesham Mostafa, Marcel Nassar, Valentino Crespi, Greg Ver Steeg, Aram Galstyan:
Implicit SVD for Graph Representation Learning. NeurIPS 2021: 8419-8431 - [c78]Greg Ver Steeg, Aram Galstyan:
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling. NeurIPS 2021: 11012-11025 - [c77]Hrayr Harutyunyan, Maxim Raginsky, Greg Ver Steeg, Aram Galstyan:
Information-theoretic generalization bounds for black-box learning algorithms. NeurIPS 2021: 24670-24682 - [c76]Vaden Masrani, Rob Brekelmans, Thang Bui, Frank Nielsen, Aram Galstyan, Greg Ver Steeg, Frank Wood:
q-Paths: Generalizing the geometric annealing path using power means. UAI 2021: 1938-1947 - [c75]Hanchen Xie, Mohamed E. Hussein, Aram Galstyan, Wael Abd-Almageed:
MUSCLE: Strengthening Semi-Supervised Learning Via Concurrent Unsupervised Learning Using Mutual Information Maximization. WACV 2021: 2585-2594 - [i96]Sarik Ghazarian, Zixi Liu, Tuhin Chakrabarty, Xuezhe Ma, Aram Galstyan, Nanyun Peng:
DiSCoL: Toward Engaging Dialogue Systems through Conversational Line Guided Response Generation. CoRR abs/2102.02191 (2021) - [i95]Elan Markowitz, Keshav Balasubramanian, Mehrnoosh Mirtaheri, Sami Abu-El-Haija, Bryan Perozzi, Greg Ver Steeg, Aram Galstyan:
Graph Traversal with Tensor Functionals: A Meta-Algorithm for Scalable Learning. CoRR abs/2102.04350 (2021) - [i94]Sami Abu-El-Haija, Valentino Crespi, Greg Ver Steeg, Aram Galstyan:
Fast Graph Learning with Unique Optimal Solutions. CoRR abs/2102.08530 (2021) - [i93]Ninareh Mehrabi, Pei Zhou, Fred Morstatter, Jay Pujara, Xiang Ren, Aram Galstyan:
Lawyers are Dishonest? Quantifying Representational Harms in Commonsense Knowledge Resources. CoRR abs/2103.11320 (2021) - [i92]Sarik Ghazarian, Zixi Liu, Akash SM, Ralph M. Weischedel, Aram Galstyan, Nanyun Peng:
Plot-guided Adversarial Example Construction for Evaluating Open-domain Story Generation. CoRR abs/2104.05801 (2021) - [i91]Valentino Crespi, Wes Hardaker, Sami Abu-El-Haija, Aram Galstyan:
Identifying botnet IP address clusters using natural language processing techniques on honeypot command logs. CoRR abs/2104.10232 (2021) - [i90]Vaden Masrani, Rob Brekelmans, Thang Bui, Frank Nielsen, Aram Galstyan, Greg Ver Steeg, Frank Wood:
q-Paths: Generalizing the Geometric Annealing Path using Power Means. CoRR abs/2107.00745 (2021) - [i89]Mohammad Rostami, Aram Galstyan:
Domain Adaptation for Sentiment Analysis Using Increased Intraclass Separation. CoRR abs/2107.01598 (2021) - [i88]Ninareh Mehrabi, Umang Gupta, Fred Morstatter, Greg Ver Steeg, Aram Galstyan:
Attributing Fair Decisions with Attention Interventions. CoRR abs/2109.03952 (2021) - [i87]Jiawei Ma, Hanchen Xie, Guangxing Han, Shih-Fu Chang, Aram Galstyan, Wael Abd-Almageed:
Partner-Assisted Learning for Few-Shot Image Classification. CoRR abs/2109.07607 (2021) - [i86]Hrayr Harutyunyan, Maxim Raginsky, Greg Ver Steeg, Aram Galstyan:
Information-theoretic generalization bounds for black-box learning algorithms. CoRR abs/2110.01584 (2021) - [i85]Mohammad Rostami, Aram Galstyan:
Cognitively Inspired Learning of Incremental Drifting Concepts. CoRR abs/2110.04662 (2021) - [i84]Greg Ver Steeg, Aram Galstyan:
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling. CoRR abs/2111.02434 (2021) - [i83]Sami Abu-El-Haija, Hesham Mostafa, Marcel Nassar, Valentino Crespi, Greg Ver Steeg, Aram Galstyan:
Implicit SVD for Graph Representation Learning. CoRR abs/2111.06312 (2021) - [i82]Tigran Galstyan, Hrayr Harutyunyan, Hrant Khachatrian, Greg Ver Steeg, Aram Galstyan:
Failure Modes of Domain Generalization Algorithms. CoRR abs/2111.13733 (2021) - 2020
- [j14]Amir Ghasemian
, Homa Hosseinmardi, Aram Galstyan, Edoardo M. Airoldi
, Aaron Clauset
:
Stacking models for nearly optimal link prediction in complex networks. Proc. Natl. Acad. Sci. USA 117(38): 23393-23400 (2020) - [j13]Kyle Reing
, Greg Ver Steeg, Aram Galstyan:
Maximizing Multivariate Information With Error-Correcting Codes. IEEE Trans. Inf. Theory 66(5): 2683-2695 (2020) - [c74]Sahil Garg, Irina Rish, Guillermo A. Cecchi, Palash Goyal, Sarik Ghazarian, Shuyang Gao, Greg Ver Steeg, Aram Galstyan:
Modeling Dialogues with Hashcode Representations: A Nonparametric Approach. AAAI 2020: 3970-3979 - [c73]Sarik Ghazarian, Ralph M. Weischedel, Aram Galstyan, Nanyun Peng:
Predictive Engagement: An Efficient Metric for Automatic Evaluation of Open-Domain Dialogue Systems. AAAI 2020: 7789-7796 - [c72]Yuzhong Huang, Andrés Abeliuk, Fred Morstatter, Pavel Atanasov, Aram Galstyan:
Anchor Attention for Hybrid Crowd Forecasts Aggregation. AAMAS 2020: 1869-1871 - [c71]Ninareh Mehrabi, Thamme Gowda, Fred Morstatter, Nanyun Peng, Aram Galstyan:
Man is to Person as Woman is to Location: Measuring Gender Bias in Named Entity Recognition. HT 2020: 231-232 - [c70]Rob Brekelmans, Vaden Masrani, Frank Wood, Greg Ver Steeg, Aram Galstyan:
All in the Exponential Family: Bregman Duality in Thermodynamic Variational Inference. ICML 2020: 1111-1122 - [c69]Hrayr Harutyunyan, Kyle Reing, Greg Ver Steeg, Aram Galstyan:
Improving generalization by controlling label-noise information in neural network weights. ICML 2020: 4071-4081 - [c68]Di Huang, Zihao He, Yuzhong Huang, Kexuan Sun, Sami Abu-El-Haija, Bryan Perozzi, Kristina Lerman, Fred Morstatter, Aram Galstyan:
Graph Embedding with Personalized Context Distribution. WWW (Companion Volume) 2020: 655-661 - [i81]Shushan Arakelyan, Christophe Hauser, Erik Kline, Aram Galstyan:
Towards Learning Representations of Binary Executable Files for Security Tasks. CoRR abs/2002.03388 (2020) - [i80]Hrayr Harutyunyan, Kyle Reing, Greg Ver Steeg, Aram Galstyan:
Improving Generalization by Controlling Label-Noise Information in Neural Network Weights. CoRR abs/2002.07933 (2020) - [i79]Yuzhong Huang, Andrés Abeliuk, Fred Morstatter, Pavel Atanasov, Aram Galstyan:
Anchor Attention for Hybrid Crowd Forecasts Aggregation. CoRR abs/2003.12447 (2020) - [i78]Myrl G. Marmarelis, Greg Ver Steeg, Aram Galstyan:
Event Cartography: Latent Point Process Embeddings. CoRR abs/2005.02515 (2020) - [i77]Mohammad Rostami, Aram Galstyan:
Sequential Unsupervised Domain Adaptation through Prototypical Distributions. CoRR abs/2007.00197 (2020) - [i76]Rob Brekelmans, Vaden Masrani, Frank Wood, Greg Ver Steeg, Aram Galstyan:
All in the Exponential Family: Bregman Duality in Thermodynamic Variational Inference. CoRR abs/2007.00642 (2020) - [i75]Tigran Galstyan, Hrant Khachatrian, Greg Ver Steeg, Aram Galstyan:
Robust Classification under Class-Dependent Domain Shift. CoRR abs/2007.05335 (2020) - [i74]James O'Neill, Greg Ver Steeg, Aram Galstyan:
Compressing Deep Neural Networks via Layer Fusion. CoRR abs/2007.14917 (2020) - [i73]Akira Matsui, Emilio Ferrara, Fred Morstatter, Andrés Abeliuk, Aram Galstyan:
Leveraging Clickstream Trajectories to Reveal Low-Quality Workers in Crowdsourced Forecasting Platforms. CoRR abs/2009.01966 (2020) - [i72]Mehrnoosh Mirtaheri, Mohammad Rostami, Xiang Ren, Fred Morstatter, Aram Galstyan:
One-shot Learning for Temporal Knowledge Graphs. CoRR abs/2010.12144 (2020) - [i71]Hanchen Xie, Mohamed E. Hussein, Aram Galstyan, Wael Abd-Almageed:
MUSCLE: Strengthening Semi-Supervised Learning Via Concurrent Unsupervised Learning Using Mutual Information Maximization. CoRR abs/2012.00150 (2020) - [i70]Rob Brekelmans, Vaden Masrani, Thang Bui, Frank Wood, Aram Galstyan, Greg Ver Steeg, Frank Nielsen:
Annealed Importance Sampling with q-Paths. CoRR abs/2012.07823 (2020) - [i69]Ninareh Mehrabi, Muhammad Naveed, Fred Morstatter, Aram Galstyan:
Exacerbating Algorithmic Bias through Fairness Attacks. CoRR abs/2012.08723 (2020) - [i68]Rob Brekelmans, Frank Nielsen, Alireza Makhzani, Aram Galstyan, Greg Ver Steeg:
Likelihood Ratio Exponential Families. CoRR abs/2012.15480 (2020)
2010 – 2019
- 2019
- [c67]Sahil Garg, Aram Galstyan, Greg Ver Steeg, Irina Rish, Guillermo A. Cecchi, Shuyang Gao:
Kernelized Hashcode Representations for Relation Extraction. AAAI 2019: 6431-6440 - [c66]Shuyang Gao, Rob Brekelmans, Greg Ver Steeg, Aram Galstyan:
Auto-Encoding Total Correlation Explanation. AISTATS 2019: 1157-1166 - [c65]Ninareh Mehrabi, Fred Morstatter
, Nanyun Peng, Aram Galstyan:
Debiasing community detection: the importance of lowly connected nodes. ASONAM 2019: 509-512 - [c64]Hrant Khachatrian, Lilit Nersisyan
, Karen Hambardzumyan, Tigran Galstyan, Anna Hakobyan, Arsen Arakelyan, Andrey Rzhetsky, Aram Galstyan:
BioRelEx 1.0: Biological Relation Extraction Benchmark. BioNLP@ACL 2019: 176-190 - [c63]Rujun Han, I-Hung Hsu, Mu Yang, Aram Galstyan, Ralph M. Weischedel, Nanyun Peng:
Deep Structured Neural Network for Event Temporal Relation Extraction. CoNLL 2019: 666-106 - [c62]Sahil Garg, Aram Galstyan, Greg Ver Steeg, Guillermo A. Cecchi:
Nearly-Unsupervised Hashcode Representations for Biomedical Relation Extraction. EMNLP/IJCNLP (1) 2019: 4024-4034 - [c61]Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyunyan, Greg Ver Steeg, Aram Galstyan:
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing. ICML 2019: 21-29 - [c60]Fred Morstatter, Aram Galstyan, Gleb Satyukov, Daniel Benjamin
, Andrés Abeliuk, Mehrnoosh Mirtaheri, K. S. M. Tozammel Hossain, Pedro A. Szekely
, Emilio Ferrara
, Akira Matsui, Mark Steyvers
, Stephen Bennett, David V. Budescu, Mark Himmelstein, Michael D. Ward, Andreas Beger
, Michele Catasta, Rok Sosic, Jure Leskovec, Pavel Atanasov, Regina Joseph, Rajiv Sethi, Ali E. Abbas:
SAGE: A Hybrid Geopolitical Event Forecasting System. IJCAI 2019: 6557-6559 - [c59]Rob Brekelmans, Daniel Moyer, Aram Galstyan, Greg Ver Steeg:
Exact Rate-Distortion in Autoencoders via Echo Noise. NeurIPS 2019: 3884-3895 - [c58]Greg Ver Steeg, Hrayr Harutyunyan, Daniel Moyer, Aram Galstyan:
Fast structure learning with modular regularization. NeurIPS 2019: 15567-15577 - [c57]Yike Liu, Linhong Zhu, Pedro A. Szekely
, Aram Galstyan, Danai Koutra:
Coupled Clustering of Time-Series and Networks. SDM 2019: 531-539 - [i67]Mehrnoosh Mirtaheri, Sami Abu-El-Haija, Fred Morstatter, Greg Ver Steeg, Aram Galstyan:
Identifying and Analyzing Cryptocurrency Manipulations in Social Media. CoRR abs/1902.03110 (2019) - [i66]Ninareh Mehrabi, Fred Morstatter, Nanyun Peng, Aram Galstyan:
Debiasing Community Detection: The Importance of Lowly-Connected Nodes. CoRR abs/1903.08136 (2019) - [i65]Rob Brekelmans, Daniel Moyer, Aram Galstyan, Greg Ver Steeg:
Exact Rate-Distortion in Autoencoders via Echo Noise. CoRR abs/1904.07199 (2019) - [i64]Sarik Ghazarian, Johnny Tian-Zheng Wei, Aram Galstyan, Nanyun Peng:
Better Automatic Evaluation of Open-Domain Dialogue Systems with Contextualized Embeddings. CoRR abs/1904.10635 (2019) - [i63]Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Hrayr Harutyunyan, Nazanin Alipourfard, Kristina Lerman, Greg Ver Steeg, Aram Galstyan:
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing. CoRR abs/1905.00067 (2019) - [i62]Hrayr Harutyunyan, Daniel Moyer, Hrant Khachatrian, Greg Ver Steeg, Aram Galstyan:
Efficient Covariance Estimation from Temporal Data. CoRR abs/1905.13276 (2019) - [i61]Ninareh Mehrabi, Fred Morstatter
, Nripsuta Saxena, Kristina Lerman, Aram Galstyan:
A Survey on Bias and Fairness in Machine Learning. CoRR abs/1908.09635 (2019) - [i60]Sahil Garg, Aram Galstyan, Greg Ver Steeg, Guillermo A. Cecchi:
Nearly-Unsupervised Hashcode Representations for Relation Extraction. CoRR abs/1909.03881 (2019) - [i59]Amir Ghasemian, Homa Hosseinmardi, Aram Galstyan, Edoardo M. Airoldi, Aaron Clauset:
Stacking Models for Nearly Optimal Link Prediction in Complex Networks. CoRR abs/1909.07578 (2019) - [i58]Rujun Han, I-Hung Hsu, Mu Yang, Aram Galstyan, Ralph M. Weischedel, Nanyun Peng:
Deep Structured Neural Network for Event Temporal Relation Extraction. CoRR abs/1909.10094 (2019) - [i57]Ninareh Mehrabi, Thamme Gowda, Fred Morstatter, Nanyun Peng, Aram Galstyan:
Man is to Person as Woman is to Location: Measuring Gender Bias in Named Entity Recognition. CoRR abs/1910.10872 (2019) - [i56]Sarik Ghazarian, Ralph M. Weischedel, Aram Galstyan, Nanyun Peng:
Predictive Engagement: An Efficient Metric For Automatic Evaluation of Open-Domain Dialogue Systems. CoRR abs/1911.01456 (2019) - 2018
- [j12]Armen E. Allahverdyan, Aram Galstyan, Ali E. Abbas, Zbigniew R. Struzik
:
Adaptive decision making via entropy minimization. Int. J. Approx. Reason. 103: 270-287 (2018) - [j11]Palash Goyal
, Homa Hosseinmardi, Emilio Ferrara
, Aram Galstyan:
Capturing Edge Attributes via Network Embedding. IEEE Trans. Comput. Soc. Syst. 5(4): 907-917 (2018) - [c56]Shushan Arakelyan, Fred Morstatter, Margaret Martin, Emilio Ferrara
, Aram Galstyan:
Mining and Forecasting Career Trajectories of Music Artists. HT 2018: 11-19 - [c55]Palash Goyal
, Homa Hosseinmardi, Emilio Ferrara
, Aram Galstyan:
Embedding Networks with Edge Attributes. HT 2018: 38-42 - [c54]Sahil Garg, Guillermo A. Cecchi, Irina Rish, Shuyang Gao, Greg Ver Steeg, Sarik Ghazarian, Palash Goyal, Aram Galstyan:
Dialogue Modeling Via Hash Functions. LaCATODA@IJCAI 2018: 24-36 - [c53]Daniel Moyer, Shuyang Gao, Rob Brekelmans, Aram Galstyan, Greg Ver Steeg:
Invariant Representations without Adversarial Training. NeurIPS 2018: 9102-9111 - [c52]Neal Lawton, Greg Ver Steeg, Aram Galstyan:
A Forest Mixture Bound for Block-Free Parallel Inference. UAI 2018: 968-977 - [c51]Fred Morstatter, Yunqiu Shao, Aram Galstyan, Shanika Karunasekera:
From Alt-Right to Alt-Rechts: Twitter Analysis of the 2017 German Federal Election. WWW (Companion Volume) 2018: 621-628 - [i55]Sahil Garg, Greg Ver Steeg, Aram Galstyan:
Stochastic Learning of Nonstationary Kernels for Natural Language Modeling. CoRR abs/1801.03911 (2018) - [i54]