


Остановите войну!
for scientists:


default search action
Lawrence Carin
Person information

- affiliation: Duke University, Durham, USA
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j124]Hongteng Xu
, Jiachang Liu
, Dixin Luo
, Lawrence Carin:
Representing Graphs via Gromov-Wasserstein Factorization. IEEE Trans. Pattern Anal. Mach. Intell. 45(1): 999-1016 (2023) - [j123]Dixin Luo
, Hongteng Xu
, Lawrence Carin:
Differentiable Hierarchical Optimal Transport for Robust Multi-View Learning. IEEE Trans. Pattern Anal. Mach. Intell. 45(6): 7293-7307 (2023) - [j122]Paidamoyo Chapfuwa
, Chenyang Tao
, Chunyuan Li, Irfan Khan
, Karen Chandross
, Michael J. Pencina, Lawrence Carin, Ricardo Henao
:
Calibration and Uncertainty in Neural Time-to-Event Modeling. IEEE Trans. Neural Networks Learn. Syst. 34(4): 1666-1680 (2023) - [j121]Hao Zhang
, Chaojie Wang
, Zhengjue Wang
, Zhibin Duan, Bo Chen
, Mingyuan Zhou, Ricardo Henao
, Lawrence Carin:
Learning Hierarchical Document Graphs From Multilevel Sentence Relations. IEEE Trans. Neural Networks Learn. Syst. 34(8): 4273-4285 (2023) - [c306]Vinay Kumar Verma, Nikhil Mehta, Shijing Si, Ricardo Henao, Lawrence Carin:
Pushing the Efficiency Limit Using Structured Sparse Convolutions. WACV 2023: 6492-6502 - [i173]Ke Bai, Guoyin Wang, Jiwei Li, Sunghyun Park, Sungjin Lee, Puyang Xu, Ricardo Henao, Lawrence Carin:
Open World Classification with Adaptive Negative Samples. CoRR abs/2303.05581 (2023) - 2022
- [j120]Weituo Hao
, Nikhil Mehta, Kevin J. Liang
, Pengyu Cheng, Mostafa El-Khamy, Lawrence Carin:
WAFFLe: Weight Anonymized Factorization for Federated Learning. IEEE Access 10: 49207-49218 (2022) - [j119]Rachel Lea Draelos
, Lawrence Carin:
Explainable multiple abnormality classification of chest CT volumes. Artif. Intell. Medicine 132: 102372 (2022) - [j118]Xunlin Zhan
, Yuan Li, Xiao Dong, Xiaodan Liang, Zhiting Hu, Lawrence Carin:
elBERto: Self-supervised commonsense learning for question answering. Knowl. Based Syst. 258: 109964 (2022) - [j117]Longxi Zhou
, Xianglin Meng
, Yuxin Huang, Kai Kang, Juexiao Zhou
, Yuetan Chu, Haoyang Li, Dexuan Xie, Jiannan Zhang, Weizhen Yang, Na Bai, Yi Zhao, Mingyan Zhao, Guohua Wang
, Lawrence Carin
, Xigang Xiao
, Kaijiang Yu
, Zhaowen Qiu
, Xin Gao
:
An interpretable deep learning workflow for discovering subvisual abnormalities in CT scans of COVID-19 inpatients and survivors. Nat. Mach. Intell. 4(5): 494-503 (2022) - [c305]Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, Weizhu Chen:
What Makes Good In-Context Examples for GPT-3? DeeLIO@ACL 2022: 100-114 - [c304]Dhanasekar Sundararaman, Vivek Subramanian, Guoyin Wang, Liyan Xu, Lawrence Carin:
Improving Downstream Task Performance by Treating Numbers as Entities. CIKM 2022: 4535-4539 - [c303]Ke Bai, Guoyin Wang, Jiwei Li, Sunghyun Park, Sungjin Lee, Puyang Xu, Ricardo Henao, Lawrence Carin:
Open World Classification with Adaptive Negative Samples. EMNLP 2022: 4378-4392 - [c302]Qitong Gao, Dong Wang, Joshua David Amason, Siyang Yuan, Chenyang Tao, Ricardo Henao, Majda Hadziahmetovic, Lawrence Carin, Miroslav Pajic:
Gradient Importance Learning for Incomplete Observations. ICLR 2022 - [c301]Qing Guo, Junya Chen, Dong Wang, Yuewei Yang, Xinwei Deng, Jing Huang, Lawrence Carin, Fan Li, Chenyang Tao:
Tight Mutual Information Estimation With Contrastive Fenchel-Legendre Optimization. NeurIPS 2022 - [c300]Paidamoyo Chapfuwa, Sherri Rose, Lawrence Carin, Edward Meeds, Ricardo Henao:
Capturing actionable dynamics with structured latent ordinary differential equations. UAI 2022: 286-295 - [c299]Siyang Yuan, Yitong Li, Dong Wang, Ke Bai, Lawrence Carin, David E. Carlson:
Learning to Weight Filter Groups for Robust Classification. WACV 2022: 3321-3330 - [i172]Paidamoyo Chapfuwa, Sherri Rose, Lawrence Carin, Edward Meeds, Ricardo Henao:
Capturing Actionable Dynamics with Structured Latent Ordinary Differential Equations. CoRR abs/2202.12932 (2022) - [i171]Xunlin Zhan, Yuan Li, Xiao Dong, Xiaodan Liang, Zhiting Hu, Lawrence Carin:
elBERto: Self-supervised Commonsense Learning for Question Answering. CoRR abs/2203.09424 (2022) - [i170]Dhanasekar Sundararaman, Vivek Subramanian, Guoyin Wang, Liyan Xu, Lawrence Carin:
Number Entity Recognition. CoRR abs/2205.03559 (2022) - [i169]Ke Bai, Aonan Zhang, Zhizhong Li, Ricardo Henao, Chong Wang, Lawrence Carin:
Collaborative Anomaly Detection. CoRR abs/2209.09923 (2022) - [i168]Dhanasekar Sundararaman, Nikhil Mehta, Lawrence Carin:
Pseudo-OOD training for robust language models. CoRR abs/2210.09132 (2022) - [i167]Vinay Kumar Verma, Nikhil Mehta, Shijing Si, Ricardo Henao, Lawrence Carin:
Pushing the Efficiency Limit Using Structured Sparse Convolutions. CoRR abs/2210.12818 (2022) - 2021
- [j116]David Dov, Shahar Z. Kovalsky, Serge Assaad, Jonathan Cohen, Danielle Elliott Range, Avani A. Pendse, Ricardo Henao, Lawrence Carin:
Weakly supervised instance learning for thyroid malignancy prediction from whole slide cytopathology images. Medical Image Anal. 67: 101814 (2021) - [j115]Rachel Lea Draelos
, David Dov, Maciej A. Mazurowski, Joseph Y. Lo
, Ricardo Henao, Geoffrey D. Rubin
, Lawrence Carin:
Machine-learning-based multiple abnormality prediction with large-scale chest computed tomography volumes. Medical Image Anal. 67: 101857 (2021) - [c298]Hongteng Xu, Dixin Luo, Lawrence Carin, Hongyuan Zha:
Learning Graphons via Structured Gromov-Wasserstein Barycenters. AAAI 2021: 10505-10513 - [c297]Yulai Cong, Miaoyun Zhao, Jianqiao Li, Junya Chen, Lawrence Carin:
GO Hessian for Expectation-Based Objectives. AAAI 2021: 12060-12068 - [c296]Nikhil Mehta, Kevin J. Liang, Vinay Kumar Verma, Lawrence Carin:
Continual Learning using a Bayesian Nonparametric Dictionary of Weight Factors. AISTATS 2021: 100-108 - [c295]Serge Assaad, Shuxi Zeng, Chenyang Tao, Shounak Datta, Nikhil Mehta, Ricardo Henao, Fan Li, Lawrence Carin:
Counterfactual Representation Learning with Balancing Weights. AISTATS 2021: 1972-1980 - [c294]David Dov, Serge Assaad, Shijing Si, Rui Wang, Hongteng Xu, Shahar Ziv Kovalsky
, Jonathan Bell, Danielle Elliott Range, Jonathan Cohen, Ricardo Henao, Lawrence Carin:
Affinitention nets: kernel perspective on attention architectures for set classification with applications to medical text and images. CHIL 2021: 14-24 - [c293]Paidamoyo Chapfuwa, Serge Assaad, Shuxi Zeng, Michael J. Pencina, Lawrence Carin, Ricardo Henao:
Enabling counterfactual survival analysis with balanced representations. CHIL 2021: 133-145 - [c292]Dhanasekar Sundararaman, Vivek Subramanian, Guoyin Wang, Shijing Si, Dinghan Shen, Dong Wang, Lawrence Carin:
Syntactic Knowledge-Infused Transformer and BERT Models. CIKM Workshops 2021 - [c291]Weituo Hao, Mostafa El-Khamy, Jungwon Lee, Jianyi Zhang, Kevin J. Liang, Changyou Chen, Lawrence Carin:
Towards Fair Federated Learning With Zero-Shot Data Augmentation. CVPR Workshops 2021: 3310-3319 - [c290]Vinay Kumar Verma, Kevin J. Liang, Nikhil Mehta, Piyush Rai, Lawrence Carin:
Efficient Feature Transformations for Discriminative and Generative Continual Learning. CVPR 2021: 13865-13875 - [c289]Liqun Chen, Dong Wang, Zhe Gan, Jingjing Liu, Ricardo Henao, Lawrence Carin:
Wasserstein Contrastive Representation Distillation. CVPR 2021: 16296-16305 - [c288]Dhanasekar Sundararaman, Henry Tsai, Kuang-Huei Lee, Iulia Turc, Lawrence Carin:
Learning Task Sampling Policy for Multitask Learning. EMNLP (Findings) 2021: 4410-4415 - [c287]Pengyu Cheng, Weituo Hao, Siyang Yuan, Shijing Si, Lawrence Carin:
FairFil: Contrastive Neural Debiasing Method for Pretrained Text Encoders. ICLR 2021 - [c286]Kevin J. Liang, Weituo Hao, Dinghan Shen, Yufan Zhou, Weizhu Chen, Changyou Chen, Lawrence Carin:
MixKD: Towards Efficient Distillation of Large-scale Language Models. ICLR 2021 - [c285]Siyang Yuan, Pengyu Cheng, Ruiyi Zhang, Weituo Hao, Zhe Gan, Lawrence Carin:
Improving Zero-Shot Voice Style Transfer via Disentangled Representation Learning. ICLR 2021 - [c284]Qian Yang, Jianyi Zhang, Weituo Hao, Gregory P. Spell, Lawrence Carin:
FLOP: Federated Learning on Medical Datasets using Partial Networks. KDD 2021: 3845-3853 - [c283]Shuyang Dai, Zhe Gan, Yu Cheng, Chenyang Tao, Lawrence Carin, Jingjing Liu:
APo-VAE: Text Generation in Hyperbolic Space. NAACL-HLT 2021: 416-431 - [c282]Vivek Subramanian, Matthew Engelhard, Samuel Berchuck, Liqun Chen, Ricardo Henao, Lawrence Carin:
SpanPredict: Extraction of Predictive Document Spans with Neural Attention. NAACL-HLT 2021: 5234-5258 - [c281]Sakshi Varshney, Vinay Kumar Verma, P. K. Srijith, Lawrence Carin, Piyush Rai:
CAM-GAN: Continual Adaptation Modules for Generative Adversarial Networks. NeurIPS 2021: 15175-15187 - [c280]Junya Chen, Zidi Xiu, Benjamin Goldstein, Ricardo Henao, Lawrence Carin, Chenyang Tao:
Supercharging Imbalanced Data Learning With Energy-based Contrastive Representation Transfer. NeurIPS 2021: 21229-21243 - [c279]Wenlin Wang, Hongteng Xu, Guoyin Wang, Wenqi Wang, Lawrence Carin:
Zero-Shot Recognition via Optimal Transport. WACV 2021: 3470-3480 - [i166]Yehua Wei, Lei Zhang, Ruiyi Zhang, Shijing Si, Hao Zhang, Lawrence Carin:
Reinforcement Learning for Flexibility Design Problems. CoRR abs/2101.00355 (2021) - [i165]Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, Weizhu Chen:
What Makes Good In-Context Examples for GPT-3? CoRR abs/2101.06804 (2021) - [i164]Qian Yang, Jianyi Zhang, Weituo Hao, Gregory Spell, Lawrence Carin:
FLOP: Federated Learning on Medical Datasets using Partial Networks. CoRR abs/2102.05218 (2021) - [i163]Vinay Kumar Verma, Kevin J. Liang, Nikhil Mehta, Lawrence Carin:
Meta-Learned Attribute Self-Gating for Continual Generalized Zero-Shot Learning. CoRR abs/2102.11856 (2021) - [i162]Sakshi Varshney, Vinay Kumar Verma, Lawrence Carin, Piyush Rai:
Efficient Continual Adaptation for Generative Adversarial Networks. CoRR abs/2103.04032 (2021) - [i161]Pengyu Cheng, Weituo Hao, Siyang Yuan, Shijing Si, Lawrence Carin:
FairFil: Contrastive Neural Debiasing Method for Pretrained Text Encoders. CoRR abs/2103.06413 (2021) - [i160]Siyang Yuan, Pengyu Cheng, Ruiyi Zhang, Weituo Hao, Zhe Gan, Lawrence Carin:
Improving Zero-shot Voice Style Transfer via Disentangled Representation Learning. CoRR abs/2103.09420 (2021) - [i159]Vinay Kumar Verma, Kevin J. Liang, Nikhil Mehta, Piyush Rai, Lawrence Carin:
Efficient Feature Transformations for Discriminative and Generative Continual Learning. CoRR abs/2103.13558 (2021) - [i158]Meng Xia, Meenal K. Kheterpal, Samantha C. Wong, Christine Park, William Ratliff, Lawrence Carin, Ricardo Henao:
Malignancy Prediction and Lesion Identification from Clinical Dermatological Images. CoRR abs/2104.02652 (2021) - [i157]Weituo Hao, Mostafa El-Khamy, Jungwon Lee, Jianyi Zhang, Kevin J. Liang, Changyou Chen, Lawrence Carin:
Towards Fair Federated Learning with Zero-Shot Data Augmentation. CoRR abs/2104.13417 (2021) - [i156]Qing Guo, Junya Chen, Dong Wang, Yuewei Yang, Xinwei Deng, Lawrence Carin, Fan Li, Chenyang Tao:
Tight Mutual Information Estimation With Contrastive Fenchel-Legendre Optimization. CoRR abs/2107.01131 (2021) - [i155]Junya Chen, Zhe Gan, Xuan Li, Qing Guo, Liqun Chen, Shuyang Gao, Tagyoung Chung, Yi Xu, Belinda Zeng, Wenlian Lu, Fan Li, Lawrence Carin, Chenyang Tao:
Simpler, Faster, Stronger: Breaking The log-K Curse On Contrastive Learners With FlatNCE. CoRR abs/2107.01152 (2021) - [i154]Qitong Gao, Dong Wang, Joshua D. Amason, Siyang Yuan, Chenyang Tao, Ricardo Henao, Majda Hadziahmetovic, Lawrence Carin, Miroslav Pajic:
Imputation-Free Learning from Incomplete Observations. CoRR abs/2107.01983 (2021) - [i153]Serge Assaad, Shuxi Zeng, Henry D. Pfister, Fan Li, Lawrence Carin:
Hölder Bounds for Sensitivity Analysis in Causal Reasoning. CoRR abs/2107.04661 (2021) - [i152]Junya Chen, Danni Lu, Zidi Xiu, Ke Bai, Lawrence Carin, Chenyang Tao:
Variational Inference with Holder Bounds. CoRR abs/2111.02947 (2021) - [i151]Junya Chen, Sijia Wang, Lawrence Carin, Chenyang Tao:
Finite-Time Consensus Learning for Decentralized Optimization with Nonlinear Gossiping. CoRR abs/2111.02949 (2021) - [i150]Rachel Lea Draelos, Lawrence Carin:
Explainable multiple abnormality classification of chest CT volumes with AxialNet and HiResCAM. CoRR abs/2111.12215 (2021) - 2020
- [c278]Wenlin Wang, Hongteng Xu, Zhe Gan, Bai Li, Guoyin Wang, Liqun Chen, Qian Yang, Wenqi Wang, Lawrence Carin:
Graph-Driven Generative Models for Heterogeneous Multi-Task Learning. AAAI 2020: 979-988 - [c277]Miaoyun Zhao, Yulai Cong, Shuyang Dai, Lawrence Carin:
Bridging Maximum Likelihood and Adversarial Learning via α-Divergence. AAAI 2020: 6901-6908 - [c276]Liqun Chen, Ke Bai, Chenyang Tao, Yizhe Zhang, Guoyin Wang, Wenlin Wang, Ricardo Henao, Lawrence Carin:
Sequence Generation with Optimal-Transport-Enhanced Reinforcement Learning. AAAI 2020: 7512-7520 - [c275]Pengyu Cheng, Yitong Li, Xinyuan Zhang, Liqun Chen, David E. Carlson, Lawrence Carin:
Dynamic Embedding on Textual Networks via a Gaussian Process. AAAI 2020: 7562-7569 - [c274]Yuan Li, Chunyuan Li, Yizhe Zhang, Xiujun Li, Guoqing Zheng, Lawrence Carin, Jianfeng Gao:
Complementary Auxiliary Classifiers for Label-Conditional Text Generation. AAAI 2020: 8303-8310 - [c273]Shuyang Dai, Yu Cheng, Yizhe Zhang, Zhe Gan, Jingjing Liu, Lawrence Carin:
Contrastively Smoothed Class Alignment for Unsupervised Domain Adaptation. ACCV (4) 2020: 268-283 - [c272]Ruiyi Zhang, Changyou Chen, Zhe Gan, Wenlin Wang, Dinghan Shen, Guoyin Wang, Zheng Wen, Lawrence Carin:
Improving Adversarial Text Generation by Modeling the Distant Future. ACL 2020: 2516-2531 - [c271]Pengyu Cheng, Martin Renqiang Min, Dinghan Shen, Christopher Malon, Yizhe Zhang, Yitong Li, Lawrence Carin:
Improving Disentangled Text Representation Learning with Information-Theoretic Guidance. ACL 2020: 7530-7541 - [c270]Ruiyi Zhang, Changyou Chen, Zhe Gan, Zheng Wen, Wenlin Wang, Lawrence Carin:
Nested-Wasserstein Self-Imitation Learning for Sequence Generation. AISTATS 2020: 422-433 - [c269]Jianyi Zhang, Ruiyi Zhang, Lawrence Carin, Changyou Chen:
Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory. AISTATS 2020: 1877-1887 - [c268]Shuyang Dai, Kihyuk Sohn, Yi-Hsuan Tsai, Lawrence Carin, Manmohan Chandraker:
Adaptation Across Extreme Variations using Unlabeled Bridges. BMVC 2020 - [c267]Yuewei Yang, Kevin J. Liang, Lawrence Carin:
Object Detection as a Positive-Unlabeled Problem. BMVC 2020 - [c266]Siyang Yuan, Ke Bai, Liqun Chen, Yizhe Zhang, Chenyang Tao, Chunyuan Li, Guoyin Wang, Ricardo Henao, Lawrence Carin:
Advancing weakly supervised cross-domain alignment with optimal transport. BMVC 2020 - [c265]Paidamoyo Chapfuwa, Chunyuan Li, Nikhil Mehta, Lawrence Carin
, Ricardo Henao:
Survival cluster analysis. CHIL 2020: 60-68 - [c264]Yantao Lu, Yunhan Jia, Jianyu Wang, Bai Li, Weiheng Chai, Lawrence Carin, Senem Velipasalar:
Enhancing Cross-Task Black-Box Transferability of Adversarial Examples With Dispersion Reduction. CVPR 2020: 937-946 - [c263]Weituo Hao, Chunyuan Li, Xiujun Li, Lawrence Carin, Jianfeng Gao:
Towards Learning a Generic Agent for Vision-and-Language Navigation via Pre-Training. CVPR 2020: 13134-13143 - [c262]John McManigle
, Raquel Bartz, Lawrence Carin:
Y-Net for Chest X-Ray Preprocessing: Simultaneous Classification of Geometry and Segmentation of Annotations. EMBC 2020: 1266-1269 - [c261]Ruiyi Zhang, Changyou Chen, Xinyuan Zhang, Ke Bai, Lawrence Carin:
Semantic Matching via Optimal Partial Transport. EMNLP (Findings) 2020: 212-222 - [c260]Gregory Spell, Brian Guay, Sunshine Hillygus, Lawrence Carin:
An Embedding Model for Estimating Legislative Preferences from the Frequency and Sentiment of Tweets. EMNLP (1) 2020: 627-641 - [c259]Rui Wang, Shijing Si, Guoyin Wang, Lei Zhang, Lawrence Carin, Ricardo Henao:
Integrating Task Specific Information into Pretrained Language Models for Low Resource Fine Tuning. EMNLP (Findings) 2020: 3181-3186 - [c258]Dhanasekar Sundararaman, Shijing Si, Vivek Subramanian, Guoyin Wang, Devamanyu Hazarika, Lawrence Carin:
Methods for Numeracy-Preserving Word Embeddings. EMNLP (1) 2020: 4742-4753 - [c257]Jianqiao Li, Chunyuan Li, Guoyin Wang, Hao Fu, Yuh-Chen Lin, Liqun Chen, Yizhe Zhang, Chenyang Tao, Ruiyi Zhang, Wenlin Wang, Dinghan Shen, Qian Yang, Lawrence Carin:
Improving Text Generation with Student-Forcing Optimal Transport. EMNLP (1) 2020: 9144-9156 - [c256]Nathan Inkawhich, Kevin J. Liang, Lawrence Carin, Yiran Chen:
Transferable Perturbations of Deep Feature Distributions. ICLR 2020 - [c255]Sam Lobel, Chunyuan Li, Jianfeng Gao, Lawrence Carin:
RaCT: Toward Amortized Ranking-Critical Training For Collaborative Filtering. ICLR 2020 - [c254]Liqun Chen, Zhe Gan, Yu Cheng, Linjie Li, Lawrence Carin, Jingjing Liu:
Graph Optimal Transport for Cross-Domain Alignment. ICML 2020: 1542-1553 - [c253]Pengyu Cheng, Weituo Hao, Shuyang Dai, Jiachang Liu, Zhe Gan, Lawrence Carin:
CLUB: A Contrastive Log-ratio Upper Bound of Mutual Information. ICML 2020: 1779-1788 - [c252]Hongteng Xu, Dixin Luo, Ricardo Henao, Svati Shah, Lawrence Carin:
Learning Autoencoders with Relational Regularization. ICML 2020: 10576-10586 - [c251]Miaoyun Zhao, Yulai Cong, Lawrence Carin:
On Leveraging Pretrained GANs for Generation with Limited Data. ICML 2020: 11340-11351 - [c250]Shijing Si, Chris J. Oates, Andrew B. Duncan, Lawrence Carin, François-Xavier Briol:
Scalable Control Variates for Monte Carlo Methods Via Stochastic Optimization. MCQMC 2020: 205-221 - [c249]Shijing Si, Rui Wang, Jedrek Wosik, Hao Zhang, David Dov, Guoyin Wang, Lawrence Carin:
Students Need More Attention: BERT-based Attention Model for Small Data with Application to Automatic Patient Message Triage. MLHC 2020: 436-456 - [c248]Hao Zhang, Yuan Li, Zhijie Deng, Xiaodan Liang, Lawrence Carin, Eric P. Xing:
AutoSync: Learning to Synchronize for Data-Parallel Distributed Deep Learning. NeurIPS 2020 - [c247]Yulai Cong, Miaoyun Zhao, Jianqiao Li, Sijia Wang, Lawrence Carin:
GAN Memory with No Forgetting. NeurIPS 2020 - [c246]Nathan Inkawhich, Kevin J. Liang, Binghui Wang, Matthew Inkawhich, Lawrence Carin, Yiran Chen:
Perturbing Across the Feature Hierarchy to Improve Standard and Strict Blackbox Attack Transferability. NeurIPS 2020 - [c245]Danni Lu, Chenyang Tao, Junya Chen, Fan Li, Feng Guo, Lawrence Carin:
Reconsidering Generative Objectives For Counterfactual Reasoning. NeurIPS 2020 - [c244]Pravendra Singh, Vinay Kumar Verma, Pratik Mazumder, Lawrence Carin, Piyush Rai:
Calibrating CNNs for Lifelong Learning. NeurIPS 2020 - [i149]Ruiyi Zhang, Changyou Chen, Zhe Gan, Zheng Wen, Wenlin Wang, Lawrence Carin:
Nested-Wasserstein Self-Imitation Learning for Sequence Generation. CoRR abs/2001.06944 (2020) - [i148]Zhouyuan Huo, Qian Yang, Bin Gu, Lawrence Carin, Heng Huang:
Faster On-Device Training Using New Federated Momentum Algorithm. CoRR abs/2002.02090 (2020) - [i147]Hongteng Xu, Dixin Luo, Ricardo Henao, Svati Shah, Lawrence Carin:
Learning Autoencoders with Relational Regularization. CoRR abs/2002.02913 (2020) - [i146]Yuewei Yang, Kevin J. Liang
, Lawrence Carin:
Object Detection as a Positive-Unlabeled Problem. CoRR abs/2002.04672 (2020) - [i145]Rachel Lea Draelos, David Dov, Maciej A. Mazurowski, Joseph Y. Lo, Ricardo Henao, Geoffrey D. Rubin, Lawrence Carin:
Machine-Learning-Based Multiple Abnormality Prediction with Large-Scale Chest Computed Tomography Volumes. CoRR abs/2002.04752 (2020) - [i144]Weituo Hao, Chunyuan Li, Xiujun Li, Lawrence Carin, Jianfeng Gao:
Towards Learning a Generic Agent for Vision-and-Language Navigation via Pre-training. CoRR abs/2002.10638 (2020) - [i143]Miaoyun Zhao, Yulai Cong, Lawrence Carin:
On Leveraging Pretrained GANs for Limited-Data Generation. CoRR abs/2002.11810 (2020) - [i142]Paidamoyo Chapfuwa
, Chunyuan Li, Nikhil Mehta, Lawrence Carin, Ricardo Henao:
Survival Cluster Analysis. CoRR abs/2003.00355 (2020) - [i141]Bai Li, Shiqi Wang
, Yunhan Jia, Yantao Lu, Zhenyu Zhong, Lawrence Carin, Suman Jana:
Towards Practical Lottery Ticket Hypothesis for Adversarial Training. CoRR abs/2003.05733 (2020) - [i140]Nikhil Mehta, Kevin J. Liang
, Lawrence Carin:
Bayesian Nonparametric Weight Factorization for Continual Learning. CoRR abs/2004.10098 (2020) - [i139]Nathan Inkawhich, Kevin J. Liang
, Lawrence Carin, Yiran Chen:
Transferable Perturbations of Deep Feature Distributions. CoRR abs/2004.12519 (2020) - [i138]Nathan Inkawhich, Kevin J. Liang
, Binghui Wang, Matthew Inkawhich, Lawrence Carin, Yiran Chen:
Perturbing Across the Feature Hierarchy to Improve Standard and Strict Blackbox Attack Transferability. CoRR abs/2004.14861 (2020) - [i137]Shuyang Dai, Zhe Gan, Yu Cheng, Chenyang Tao, Lawrence Carin, Jingjing Liu:
APo-VAE: Text Generation in Hyperbolic Space. CoRR abs/2005.00054 (2020) - [i136]Ruiyi Zhang, Changyou Chen, Zhe Gan, Wenlin Wang, Dinghan Shen, Guoyin Wang, Zheng Wen, Lawrence Carin:
Improving Adversarial Text Generation by Modeling the Distant Future. CoRR abs/2005.01279 (2020) - [i135]Ruiyi Zhang, Tong Yu, Yilin Shen, Hongxia Jin, Changyou Chen, Lawrence Carin:
Reward Constrained Interactive Recommendation with Natural Language Feedback. CoRR abs/2005.01618 (2020)