


Остановите войну!
for scientists:


default search action
Peter Tiño
Peter Tino
Person information

- affiliation: University of Birmingham, School of Computer Science
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j77]Fengzhen Tang
, Peter Tino
, Haibin Yu
:
Generalized Learning Vector Quantization With Log-Euclidean Metric Learning on Symmetric Positive-Definite Manifold. IEEE Trans. Cybern. 53(8): 5178-5190 (2023) - [j76]Shuyi Zhang
, Peter Tino
, Xin Yao
:
Hierarchical Reduced-Space Drift Detection Framework for Multivariate Supervised Data Streams. IEEE Trans. Knowl. Data Eng. 35(3): 2628-2640 (2023) - [j75]Abolfazl Taghribi
, Kerstin Bunte
, Rory Smith
, Jihye Shin
, Michele Mastropietro
, Reynier F. Peletier
, Peter Tino
:
LAAT: Locally Aligned Ant Technique for Discovering Multiple Faint Low Dimensional Structures of Varying Density. IEEE Trans. Knowl. Data Eng. 35(6): 6014-6027 (2023) - [c105]Vahab Samandi
, Peter Tino
, Rami Bahsoon
:
Real-Time Workflow Scheduling in Cloud with Recursive Neural Network and List Scheduling. HAIS 2023: 244-255 - [i25]Boyu Li, Robert Simon Fong, Peter Tino:
Simple Cycle Reservoirs are Universal. CoRR abs/2308.10793 (2023) - 2022
- [b1]Robert Simon Fong
, Peter Tino
:
Population-Based Optimization on Riemannian Manifolds. Studies in Computational Intelligence 1046, Springer 2022, ISBN 978-3-031-04292-8, pp. 1-165 - [j74]Marco Canducci
, Peter Tiño, Michele Mastropietro
:
Probabilistic modelling of general noisy multi-manifold data sets. Artif. Intell. 302: 103579 (2022) - [j73]Marco Canducci
, P. Awad, Abolfazl Taghribi
, Mohammad Mohammadi
, Michele Mastropietro, Sven De Rijcke, Reynier Peletier, Rory Smith
, Kerstin Bunte
, Peter Tiño:
1-DREAM: 1D Recovery, Extraction and Analysis of Manifolds in noisy environments. Astron. Comput. 41: 100658 (2022) - [j72]Abolfazl Taghribi
, Marco Canducci
, Michele Mastropietro
, Sven De Rijcke, Kerstin Bunte
, Peter Tino:
ASAP - A sub-sampling approach for preserving topological structures modeled with geodesic topographic mapping. Neurocomputing 470: 376-388 (2022) - [j71]Mohammad Mohammadi
, Peter Tino, Kerstin Bunte
:
Manifold Alignment Aware Ants: A Markovian Process for Manifold Extraction. Neural Comput. 34(3): 595-641 (2022) - [j70]Pietro Verzelli
, Cesare Alippi
, Lorenzo Livi
, Peter Tino
:
Input-to-State Representation in Linear Reservoirs Dynamics. IEEE Trans. Neural Networks Learn. Syst. 33(9): 4598-4609 (2022) - [c104]Hayatullahi Bolaji Adeyemo, Rami Bahsoon, Peter Tiño:
Surrogate-based Digital Twin for Predictive Fault Modelling and Testing of Cyber Physical Systems. BDCAT 2022: 166-169 - [c103]Beata Ondrusova
, Jana Svehlíková, Milan Tysler, Peter Tino:
Greedy Selection of the Torso Electrodes for the Solution of Inverse Problem with a Single Dipole. CinC 2022: 1-4 - [c102]Vahab Samandi
, Peter Tino
, Rami Bahsoon
:
Duplication Scheduling with Bottom-Up Top-Down Recursive Neural Network. IDEAL 2022: 170-178 - [c101]Stephen Friess, Peter Tino, Stefan Menzel, Zhao Xu, Bernhard Sendhoff, Xin Yao:
Spatio-Temporal Activity Recognition for Evolutionary Search Behavior Prediction. IJCNN 2022: 1-8 - [e7]Hujun Yin
, David Camacho
, Peter Tiño
:
Intelligent Data Engineering and Automated Learning - IDEAL 2022 - 23rd International Conference, IDEAL 2022, Manchester, UK, November 24-26, 2022, Proceedings. Lecture Notes in Computer Science 13756, Springer 2022, ISBN 978-3-031-21752-4 [contents] - [i24]Sreejita Ghosh, Elizabeth Sarah Baranowski, Michael Biehl, Wiebke Arlt, Peter Tino, Kerstin Bunte:
Interpretable Models Capable of Handling Systematic Missingness in Imbalanced Classes and Heterogeneous Datasets. CoRR abs/2206.02056 (2022) - 2021
- [j69]Seyma Kucukozer Cavdar, Tugba Taskaya-Temizel, Abhinav Mehrotra, Mirco Musolesi, Peter Tino:
Designing Robust Models for Behaviour Prediction Using Sparse Data from Mobile Sensing: A Case Study of Office Workers' Availability for Well-being Interventions. ACM Trans. Comput. Heal. 2(4): 29:1-29:33 (2021) - [j68]Fengzhen Tang, Haifeng Feng, Peter Tino, Bailu Si, Daxiong Ji:
Probabilistic learning vector quantization on manifold of symmetric positive definite matrices. Neural Networks 142: 105-118 (2021) - [j67]Yu Zhang
, Peter Tiño
, Ales Leonardis
, Ke Tang
:
A Survey on Neural Network Interpretability. IEEE Trans. Emerg. Top. Comput. Intell. 5(5): 726-742 (2021) - [j66]Fengzhen Tang
, Mengling Fan
, Peter Tiño
:
Generalized Learning Riemannian Space Quantization: A Case Study on Riemannian Manifold of SPD Matrices. IEEE Trans. Neural Networks Learn. Syst. 32(1): 281-292 (2021) - [c100]Beata Ondrusova
, Jana Svehlíková, Jan Zelinka, Milan Tysler, Peter Tino:
Model-Based Relevance of Measuring Electrodes for the Inverse Solution with a Single Dipole. CinC 2021: 1-4 - [c99]Abdessalam Elhabbash, Rami Bahsoon, Peter Tino, Peter R. Lewis, Yehia Elkhatib:
Attaining Meta-self-awareness through Assessment of Quality-of-Knowledge. ICWS 2021: 712-723 - [c98]Marco Canducci
, Abolfazl Taghribi
, Michele Mastropietro
, Sven De Rijcke, Reynier Peletier
, Kerstin Bunte
, Peter Tino
:
Tracking the Temporal-Evolution of Supernova Bubbles in Numerical Simulations. IDEAL 2021: 493-501 - [c97]Xinyue Chen, Yuan Shen, Eder Zavala
, Krasimira Tsaneva-Atanasova
, Thomas Upton, Georgina Russell, Peter Tino:
SOMiMS - Topographic Mapping in the Model Space. IDEAL 2021: 502-510 - [c96]Stephen Friess, Peter Tiño, Zhao Xu, Stefan Menzel, Bernhard Sendhoff, Xin Yao:
Artificial Neural Networks as Feature Extractors in Continuous Evolutionary Optimization. IJCNN 2021: 1-9 - [c95]Giuseppe Serra, Zhao Xu, Mathias Niepert, Carolin Lawrence, Peter Tiño, Xin Yao:
Interpreting Node Embedding with Text-labeled Graphs. IJCNN 2021: 1-8 - [c94]Shuyi Zhang, Chao Pan, Liyan Song, Xiaoyu Wu, Zheng Hu, Ke Pei, Peter Tino, Xin Yao:
Label-Assisted Memory Autoencoder for Unsupervised Out-of-Distribution Detection. ECML/PKDD (3) 2021: 795-810 - [c93]Stephen Friess, Peter Tino, Stefan Menzel, Bernhard Sendhoff, Xin Yao:
Predicting CMA-ES Operators as Inductive Biases for Shape Optimization Problems. SSCI 2021: 1-7 - [e6]Hujun Yin
, David Camacho
, Peter Tiño
, Richard Allmendinger
, Antonio J. Tallón-Ballesteros
, Ke Tang
, Sung-Bae Cho
, Paulo Novais
, Susana Nascimento
:
Intelligent Data Engineering and Automated Learning - IDEAL 2021 - 22nd International Conference, IDEAL 2021, Manchester, UK, November 25-27, 2021, Proceedings. Lecture Notes in Computer Science 13113, Springer 2021, ISBN 978-3-030-91607-7 [contents] - [i23]Fengzhen Tang, Haifeng Feng, Peter Tiño, Bailu Si, Daxiong Ji:
Probabilistic Learning Vector Quantization on Manifold of Symmetric Positive Definite Matrices. CoRR abs/2102.00667 (2021) - 2020
- [j65]Lukas Pfannschmidt
, Jonathan Jakob, Fabian Hinder, Michael Biehl
, Peter Tiño
, Barbara Hammer:
Feature relevance determination for ordinal regression in the context of feature redundancies and privileged information. Neurocomputing 416: 266-279 (2020) - [j64]Seyma Kucukozer Cavdar
, Tugba Taskaya-Temizel, Mirco Musolesi, Peter Tiño:
A Multi-perspective Analysis of Social Context and Personal Factors in Office Settings for the Design of an Effective Mobile Notification System. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4(1): 15:1-15:38 (2020) - [j63]Peter Tiño:
Dynamical Systems as Temporal Feature Spaces. J. Mach. Learn. Res. 21: 44:1-44:42 (2020) - [j62]Frank-Michael Schleif
, Christoph Raab, Peter Tiño:
Sparsification of core set models in non-metric supervised learning. Pattern Recognit. Lett. 129: 1-7 (2020) - [c92]Stephen Friess, Peter Tiño, Stefan Menzel, Bernhard Sendhoff, Xin Yao:
Representing Experience in Continuous Evolutionary optimisation through Problem-tailored Search Operators. CEC 2020: 1-7 - [c91]Abolfazl Taghribi, Kerstin Bunte, Michele Mastropietro, Sven De Rijcke, Peter Tiño:
ASAP - A Sub-sampling Approach for Preserving Topological Structures. ESANN 2020: 67-72 - [c90]Sreejita Ghosh
, Peter Tiño, Kerstin Bunte
:
Visualisation and knowledge discovery from interpretable models. IJCNN 2020: 1-8 - [c89]Stephen Friess, Peter Tiño, Stefan Menzel, Bernhard Sendhoff, Xin Yao:
Improving Sampling in Evolution Strategies Through Mixture-Based Distributions Built from Past Problem Instances. PPSN (1) 2020: 583-596 - [i22]Pietro Verzelli, Cesare Alippi, Lorenzo Livi, Peter Tiño:
Input representation in recurrent neural networks dynamics. CoRR abs/2003.10585 (2020) - [i21]Sreejita Ghosh
, Peter Tiño, Kerstin Bunte:
Visualisation and knowledge discovery from interpretable models. CoRR abs/2005.03632 (2020) - [i20]Abolfazl Taghribi, Kerstin Bunte, Rory Smith, Jihye Shin, Michele Mastropietro
, Reynier F. Peletier
, Peter Tiño:
LAAT: Locally Aligned Ant Technique for detecting manifolds of varying density. CoRR abs/2009.08326 (2020) - [i19]Tom Goodman, Karoline van Gemst, Peter Tiño:
A Geometric Framework for Pitch Estimation on Acoustic Musical Signals. CoRR abs/2012.04517 (2020) - [i18]Yu Zhang, Peter Tiño, Ales Leonardis, Ke Tang:
A Survey on Neural Network Interpretability. CoRR abs/2012.14261 (2020)
2010 – 2019
- 2019
- [j61]Siang Yew Chong, Peter Tiño
, Jun He
:
Coevolutionary systems and PageRank. Artif. Intell. 277 (2019) - [j60]Siang Yew Chong
, Peter Tiño
, Jun He
, Xin Yao:
A New Framework for Analysis of Coevolutionary Systems - Directed Graph Representation and Random Walks. Evol. Comput. 27(2): 195-228 (2019) - [j59]Abdessalam Elhabbash
, Maria Salama
, Rami Bahsoon, Peter Tiño:
Self-awareness in Software Engineering: A Systematic Literature Review. ACM Trans. Auton. Adapt. Syst. 14(2): 5:1-5:42 (2019) - [c88]María Pérez-Ortiz, Peter Tiño, Rafal Mantiuk, César Hervás-Martínez:
Exploiting Synthetically Generated Data with Semi-Supervised Learning for Small and Imbalanced Datasets. AAAI 2019: 4715-4722 - [c87]Jana Svehlíková, Jan Zelinka
, Milan Tysler, Peter Tiño:
Multiobjective Optimization Approach to Localization of Ectopic Beats by Single Dipole: Case Study. CinC 2019: 1-4 - [c86]Lukas Pfannschmidt, Jonathan Jakob, Michael Biehl, Peter Tiño, Barbara Hammer:
Feature relevance bounds for ordinal regression. ESANN 2019 - [c85]Robert Simon Fong
, Peter Tiño
:
Extended stochastic derivative-free optimization on riemannian manifolds. GECCO (Companion) 2019: 257-258 - [c84]Stephen Friess, Peter Tiño, Stefan Menzel, Bernhard Sendhoff, Xin Yao:
Learning Transferable Variation Operators in a Continuous Genetic Algorithm. SSCI 2019: 2027-2033 - [e5]Hujun Yin, David Camacho, Peter Tiño, Antonio J. Tallón-Ballesteros, Ronaldo Menezes, Richard Allmendinger:
Intelligent Data Engineering and Automated Learning - IDEAL 2019 - 20th International Conference, Manchester, UK, November 14-16, 2019, Proceedings, Part I. Lecture Notes in Computer Science 11871, Springer 2019, ISBN 978-3-030-33606-6 [contents] - [e4]Hujun Yin, David Camacho, Peter Tiño, Antonio J. Tallón-Ballesteros, Ronaldo Menezes, Richard Allmendinger:
Intelligent Data Engineering and Automated Learning - IDEAL 2019 - 20th International Conference, Manchester, UK, November 14-16, 2019, Proceedings, Part II. Lecture Notes in Computer Science 11872, Springer 2019, ISBN 978-3-030-33616-5 [contents] - [i17]Lukas Pfannschmidt, Jonathan Jakob, Michael Biehl
, Peter Tiño, Barbara Hammer:
Feature Relevance Bounds for Ordinal Regression. CoRR abs/1902.07662 (2019) - [i16]María Pérez-Ortiz, Pedro Antonio Gutiérrez, Peter Tiño, Carlos Casanova-Mateo, Sancho Salcedo-Sanz:
A mixture of experts model for predicting persistent weather patterns. CoRR abs/1903.10012 (2019) - [i15]María Pérez-Ortiz, Peter Tiño, Rafal Mantiuk, César Hervás-Martínez:
Exploiting Synthetically Generated Data with Semi-Supervised Learning for Small and Imbalanced Datasets. CoRR abs/1903.10022 (2019) - [i14]Peter Tiño:
Dynamical Systems as Temporal Feature Spaces. CoRR abs/1907.06382 (2019) - [i13]Lukas Pfannschmidt, Jonathan Jakob, Fabian Hinder, Michael Biehl
, Peter Tiño, Barbara Hammer:
Feature Relevance Determination for Ordinal Regression in the Context of Feature Redundancies and Privileged Information. CoRR abs/1912.04832 (2019) - 2018
- [j58]Peter Tiño
:
Asymptotic Fisher memory of randomized linear symmetric Echo State Networks. Neurocomputing 298: 4-8 (2018) - [j57]Frank-Michael Schleif
, Andrej Gisbrecht, Peter Tiño
:
Supervised low rank indefinite kernel approximation using minimum enclosing balls. Neurocomputing 318: 213-226 (2018) - [c83]Michael Biehl, Kerstin Bunte, Giuseppe Longo, Peter Tiño:
Machine learning and data analysis in astroinformatics. ESANN 2018 - [c82]Claudio Gallicchio, Alessio Micheli, Peter Tiño:
Randomized Recurrent Neural Networks. ESANN 2018 - [c81]M. Pérez-Ortiz
, Pedro Antonio Gutiérrez
, Peter Tiño
, Carlos Casanova-Mateo, Sancho Salcedo-Sanz:
A mixture of experts model for predicting persistent weather patterns. IJCNN 2018: 1-8 - [c80]Frank-Michael Schleif, Christoph Raab, Peter Tiño
:
Sparsification of Indefinite Learning Models. S+SSPR 2018: 173-183 - 2017
- [j56]Fengzhen Tang, Peter Tiño
:
Ordinal regression based on learning vector quantization. Neural Networks 93: 76-88 (2017) - [j55]Frank-Michael Schleif
, Peter Tiño
:
Indefinite Core Vector Machine. Pattern Recognit. 71: 187-195 (2017) - [c79]Sreejita Ghosh, Elizabeth Sarah Baranowski, Rick van Veen, Gert-Jan de Vries, Michael Biehl, Wiebke Arlt, Peter Tiño, Kerstin Bunte:
Comparison of strategies to learn from imbalanced classes for computer aided diagnosis of inborn steroidogenic disorders. ESANN 2017 - [c78]Peter Tiño:
Fisher memory of linear Wigner echo state networks. ESANN 2017 - [c77]Abdessalam Elhabbash
, Rami Bahsoon, Peter Tiño
:
Self-Awareness for Dynamic Knowledge Management in Self-Adaptive Volunteer Services. ICWS 2017: 180-187 - [c76]Fani Tsapeli, Peter Tiño
, Mirco Musolesi
:
Probabilistic matching: Causal inference under measurement errors. IJCNN 2017: 278-285 - [c75]Luca Pasa, Alessandro Sperduti, Peter Tiño
:
Linear dynamical based models for sequential domains. IJCNN 2017: 2201-2208 - [c74]Yuan Shen, Peter Tiño
, Krasimira Tsaneva-Atanasova
:
Classification of sparsely and irregularly sampled time series: A learning in model space approach. IJCNN 2017: 3696-3703 - [i12]Fani Tsapeli, Nikolaos Bezirgiannidis, Peter Tiño, Mirco Musolesi:
Linking Twitter Events With Stock Market Jitters. CoRR abs/1709.06519 (2017) - 2016
- [j54]Hanin H. Alahmadi, Yuan Shen, Shereen Fouad
, Caroline Di Bernardi Luft
, Peter Bentham, Zoe Kourtzi
, Peter Tiño
:
Classifying Cognitive Profiles Using Machine Learning with Privileged Information in Mild Cognitive Impairment. Frontiers Comput. Neurosci. 10: 117 (2016) - [j53]Nikolaos Gianniotis
, Sven Dennis Kügler, Peter Tiño
, Kai Lars Polsterer:
Model-coupled autoencoder for time series visualisation. Neurocomputing 192: 139-146 (2016) - [j52]María Pérez-Ortiz
, Pedro Antonio Gutiérrez
, Peter Tiño
, César Hervás-Martínez:
Oversampling the Minority Class in the Feature Space. IEEE Trans. Neural Networks Learn. Syst. 27(9): 1947-1961 (2016) - [c73]Frank-Michael Schleif, Ata Kabán, Peter Tiño
:
Finding Small Sets of Random Fourier Features for Shift-Invariant Kernel Approximation. ANNPR 2016: 42-54 - [c72]Frank-Michael Schleif
, Peter Tiño, Yingyu Liang:
Learning in indefinite proximity spaces - recent trends. ESANN 2016 - [c71]Sultanah Al Otaibi, Peter Tiño
, Somak Raychaudhury
:
Probabilistic Modelling for Delay Estimation in Gravitationally Lensed Photon Streams. IDEAL 2016: 552-559 - [c70]Abdessalam Elhabbash
, Rami Bahsoon, Peter Tiño
:
Interaction-Awareness for Self-Adaptive Volunteer Computing. SASO 2016: 148-149 - [c69]Nahed Alowadi, Yuan Shen, Peter Tiño
:
Prototype-Based Spatio-Temporal Probabilistic Modelling of fMRI Data. WSOM 2016: 193-203 - [i11]Nikolaos Gianniotis, Sven Dennis Kügler, Peter Tiño, Kai Lars Polsterer:
Model-Coupled Autoencoder for Time Series Visualisation. CoRR abs/1601.05654 (2016) - [i10]Frank-Michael Schleif, Andrej Gisbrecht, Peter Tiño:
Probabilistic classifiers with low rank indefinite kernels. CoRR abs/1604.02264 (2016) - 2015
- [j51]Fengzhen Tang, Peter Tiño
, Pedro Antonio Gutiérrez
, Huanhuan Chen:
The Benefits of Modeling Slack Variables in SVMs. Neural Comput. 27(4): 954-981 (2015) - [j50]Frank-Michael Schleif, Peter Tiño
:
Indefinite Proximity Learning: A Review. Neural Comput. 27(10): 2039-2096 (2015) - [c68]Nikolaos Gianniotis, Sven Dennis Kügler, Peter Tiño, Kai Polsterer, Ranjeev Misra:
Autoencoding time series for visualisation. ESANN 2015 - [c67]Frank-Michael Schleif
, Andrej Gisbrecht, Peter Tiño:
Probabilistic Classification Vector Machine at large scale. ESANN 2015 - [c66]Rafee T. Ibrahem, Peter Tiño
, Richard J. Pearson, Trevor J. Ponman, Arif Babul
:
Automated Detection of Galaxy Groups Through Probabilistic Hough Transform. ICONIP (3) 2015: 323-331 - [c65]Abdessalam Elhabbash
, Rami Bahsoon, Peter Tiño
, Peter R. Lewis
:
Self-Adaptive Volunteered Services Composition through Stimulus- and Time-Awareness. ICWS 2015: 57-64 - [c64]Huanhuan Chen, Fengzhen Tang, Peter Tiño, Anthony G. Cohn, Xin Yao:
Model Metric Co-Learning for Time Series Classification. IJCAI 2015: 3387-3394 - [c63]Frank-Michael Schleif
, H. Chen, Peter Tiño
:
Incremental probabilistic classification vector machine with linear costs. IJCNN 2015: 1-8 - [c62]Frank-Michael Schleif, Andrej Gisbrecht, Peter Tiño
:
Large Scale Indefinite Kernel Fisher Discriminant. SIMBAD 2015: 160-170 - [p2]Peter Tiño, Lubica Benuskova, Alessandro Sperduti:
Artificial Neural Network Models. Handbook of Computational Intelligence 2015: 455-471 - [i9]Nikolaos Gianniotis, Sven Dennis Kügler, Peter Tiño, Kai Polsterer, Ranjeev Misra:
Autoencoding Time Series for Visualisation. CoRR abs/1505.00936 (2015) - 2014
- [j49]Huanhuan Chen, Peter Tiño
, Xin Yao
:
Cognitive fault diagnosis in Tennessee Eastman Process using learning in the model space. Comput. Chem. Eng. 67: 33-42 (2014) - [j48]Joseba Quevedo
, Huanhuan Chen, Miquel Àngel Cugueró
, Peter Tiño
, Vicenç Puig
, Diego García, Ramon Sarrate, Xin Yao
:
Combining learning in model space fault diagnosis with data validation/reconstruction: Application to the Barcelona water network. Eng. Appl. Artif. Intell. 30: 18-29 (2014) - [j47]Yuan Shen, Stephen D. Mayhew
, Zoe Kourtzi
, Peter Tiño
:
Spatial-temporal modelling of fMRI data through spatially regularized mixture of hidden process models. NeuroImage 84: 657-671 (2014) - [j46]Pedro Antonio Gutiérrez
, Peter Tiño
, César Hervás-Martínez:
Ordinal regression neural networks based on concentric hyperspheres. Neural Networks 59: 51-60 (2014) - [j45]Jakub Mazgut, Peter Tiño
, Mikael Bodén
, Hong Yan
:
Dimensionality reduction and topographic mapping of binary tensors. Pattern Anal. Appl. 17(3): 497-515 (2014) - [j44]Huanhuan Chen, Peter Tiño
, Ali Rodan
, Xin Yao
:
Learning in the Model Space for Cognitive Fault Diagnosis. IEEE Trans. Neural Networks Learn. Syst. 25(1): 124-136 (2014) - [j43]Huanhuan Chen, Peter Tiño
, Xin Yao
:
Efficient Probabilistic Classification Vector Machine With Incremental Basis Function Selection. IEEE Trans. Neural Networks Learn. Syst. 25(2): 356-369 (2014) - [c61]Frank-Michael Schleif
, Peter Tiño, Thomas Villmann:
Recent trends in learning of structured and non-standard data. ESANN 2014 - [c60]Fengzhen Tang, Peter Tiño, Pedro Antonio Gutiérrez, Huanhuan Chen:
Support Vector Ordinal Regression using Privileged Information. ESANN 2014 - [c59]Abdessalam Elhabbash
, Rami Bahsoon, Peter Tiño
:
Towards Self-Aware Service Composition. HPCC/CSS/ICESS 2014: 1275-1279 - [c58]Fengzhen Tang, Peter Tiño
, Huanhuan Chen:
Learning the deterministically constructed Echo State Networks. IJCNN 2014: 77-83 - [c57]Abdessalam Elhabbash
, Rami Bahsoon, Peter Tiño
, Peter R. Lewis
:
A Utility Model for Volunteered Service Composition. UCC 2014: 337-344 - 2013
- [j42]Peter Tiño:
Pushing for the Extreme: Estimation of Poisson Distribution from Low Count Unreplicated Data - How Close Can We Get? Entropy 15(4): 1202-1220 (2013) - [j41]Alessio Micheli
, Frank-Michael Schleif
, Peter Tiño
:
Novel approaches in machine learning and computational intelligence. Neurocomputing 112: 1-3 (2013) - [j40]Peter Tiño
, Ali Rodan
:
Short term memory in input-driven linear dynamical systems. Neurocomputing 112: 58-63 (2013) - [j39]Nikolay I. Nikolaev, Peter Tiño
, Evgueni N. Smirnov:
Time-dependent series variance learning with recurrent mixture density networks. Neurocomputing 122: 501-512 (2013) - [j38]Javier Sánchez-Monedero
, Pedro Antonio Gutiérrez
, Peter Tiño
, César Hervás-Martínez:
Exploitation of Pairwise Class Distances for Ordinal Classification. Neural Comput. 25(9): 2450-2485 (2013) - [j37]Orla M. Doyle
, Krasimira Tsaneva-Atanasova
, James Michael Harte
, Paul A. Tiffin
, Peter Tiño
, Vanessa Díaz-Zuccarini:
Bridging Paradigms: Hybrid Mechanistic-Discriminative Predictive Models. IEEE Trans. Biomed. Eng. 60(3): 735-742 (2013) - [j36]