


default search action
NIPS 1999: Denver, CO, USA
- Sara A. Solla, Todd K. Leen, Klaus-Robert Müller:

Advances in Neural Information Processing Systems 12, [NIPS Conference, Denver, Colorado, USA, November 29 - December 4, 1999]. The MIT Press 2000, ISBN 0-262-19450-3
Cognitive Science
- Jessica D. Bayliss, Dana H. Ballard:

Recognizing Evoked Potentials in a Virtual Environment. 3-9 - Gustavo Deco, Josef Zihl:

A Neurodynamical Approach to Visual Attention. 10-16 - Thea B. Ghiselli-Crippa, Paul W. Munro:

Effects of Spatial and Temporal Contiguity on the Acquisition of Spatial Information. 17-23 - Sham M. Kakade, Peter Dayan:

Acquisition in Autoshaping. 24-30 - Soo-Young Lee, Michael Mozer:

Robust Recognition of Noisy and Superimposed Patterns via Selective Attention. 31-37 - Xiuwen Liu, DeLiang L. Wang:

Perceptual Organization Based on Temporal Dynamics. 38-44 - Javier R. Movellan, James L. McClelland:

Information Factorization in Connectionist Models of Perception. 45-51 - Shan Parfitt, Peter Tiño, Georg Dorffner:

Graded Grammaticality in Prediction Fractal Machines. 52-58 - Joshua B. Tenenbaum:

Rules and Similarity in Concept Learning. 59-65 - Bradley Tonkes, Alan D. Blair, Janet Wiles:

Evolving Learnable Languages. 66-72 - Ton Weijters, Antal van den Bosch, Eric O. Postma:

Learning Statistically Neutral Tasks without Expert Guidance. 73-79 - Richard S. Zemel, Michael Mozer:

A Generative Model for Attractor Dynamics. 80-88
Neuroscience
- Péter Adorján, Lars Schwabe, Christian Piepenbrock, Klaus Obermayer:

Recurrent Cortical Competition: Strengthen or Weaken? 89-95 - Gal Chechik, Isaac Meilijson, Eytan Ruppin:

Effective Learning Requires Neuronal Remodeling of Hebbian Synapses. 96-102 - Dmitri B. Chklovskii, Charles F. Stevens:

Wiring Optimization in the Brain. 103-107 - Dmitri B. Chklovskii:

Optimal Sizes of Dendritic and Axonal Arbors. 108-114 - Christian W. Eurich, Stefan D. Wilke, Helmut Schwegler:

Neural Representation of Multi-Dimensional Stimuli. 115-121 - Geoffrey E. Hinton, Andrew D. Brown:

Spiking Boltzmann Machines. 122-128 - David Horn, Nir Levy, Isaac Meilijson, Eytan Ruppin:

Distributed Synchrony of Spiking Neurons in a Hebbian Cell Assembly. 129-135 - Zhaoping Li:

Can VI Mechanisms Account for Figure-Ground and Medial Axis Effects? 136-142 - Amit Manwani, Peter N. Steinmetz, Christof Koch:

Channel Noise in Excitable Neural Membranes. 143-149 - Paul W. Munro, Gerardina Hernández:

LTD Facilitates Learning in a Noisy Environment. 150-156 - Panayiota Poirazi, Bartlett W. Mel:

Memory Capacity of Linear vs. Nonlinear Models of Dendritic Integration. 157-163 - Rajesh P. N. Rao, Terrence J. Sejnowski:

Predictive Sequence Learning in Recurrent Neocortical Circuits. 164-170 - Alfonso Renart, Néstor Parga, Edmund T. Rolls:

A Recurrent Model of the Interaction Between Prefrontal and Inferotemporal Cortex in Delay Tasks. 171-177 - Elad Schneidman, Idan Segev, Naftali Tishby:

Information Capacity and Robustness of Stochastic Neuron Models. 178-184 - Akaysha C. Tang, Barak A. Pearlmutter, Tim A. Hely, Michael Zibulevsky, Michael P. Weisend:

An MEG Study of Response Latency and Variability in the Human Visual System During a Visual-Motor Integration Task. 185-191 - Si Wu, Hiroyuki Nakahara, Noboru Murata, Shun-ichi Amari:

Population Decoding Based on an Unfaithful Model. 192-198 - Xiaohui Xie, H. Sebastian Seung:

Spike-based Learning Rules and Stabilization of Persistent Neural Activity. 199-208
Theory
- Hagai Attias:

A Variational Baysian Framework for Graphical Models. 209-215 - Joachim M. Buhmann, Marcus Held:

Model Selection in Clustering by Uniform Convergence Bounds. 216-222 - Christopher J. C. Burges, David J. Crisp:

Uniqueness of the SVM Solution. 223-229 - Olivier Chapelle, Vladimir Vapnik:

Model Selection for Support Vector Machines. 230-236 - Anthony C. C. Coolen, C. W. H. Mace:

Dynamics of Supervised Learning with Restricted Training Sets and Noisy Teachers. 237-243 - David J. Crisp, Christopher J. C. Burges:

A Geometric Interpretation of v-SVM Classifiers. 244-250 - Lehel Csató, Ernest Fokoué, Manfred Opper, Bernhard Schottky, Ole Winther:

Efficient Approaches to Gaussian Process Classification. 251-257 - Nigel Duffy, David P. Helmbold:

Potential Boosters? 258-264 - Lars Kai Hansen

:
Bayesian Averaging is Well-Temperated. 265-271 - Yoshiyuki Kabashima, Tatsuto Murayama, David Saad, Renato Vicente:

Regular and Irregular Gallager-zype Error-Correcting Codes. 272-278 - Jonathan Q. Li, Andrew R. Barron:

Mixture Density Estimation. 279-285 - Song Li, K. Y. Michael Wong:

Statistical Dynamics of Batch Learning. 286-292 - Wolfgang Maass:

Neural Computation with Winner-Take-All as the Only Nonlinear Operation. 293-299 - Yishay Mansour, David A. McAllester:

Boosting with Multi-Way Branching in Decision Trees. 300-306 - Claude Nadeau, Yoshua Bengio:

Inference for the Generalization Error. 307-313 - Toru Ohira, Yuzuru Sato, Jack D. Cowan:

Resonance in a Stochastic Neuron Model with Delayed Interaction. 314-320 - Sebastian Risau-Gusman, Mirta B. Gordon:

Understanding Stepwise Generalization of Support Vector Machines: a Toy Model. 321-327 - Michael Schmitt:

Lower Bounds on the Complexity of Approximating Continuous Functions by Sigmoidal Neural Networks. 328-334 - Hava T. Siegelmann, Alexander Roitershtein, Asa Ben-Hur:

Noisy Neural Networks and Generalizations. 335-341 - Alexander J. Smola, John Shawe-Taylor, Bernhard Schölkopf, Robert C. Williamson:

The Entropy Regularization Information Criterion. 342-348 - Peter Sollich:

Probabilistic Methods for Support Vector Machines. 349-355 - Sumio Watanabe:

Algebraic Analysis for Non-regular Learning Machines. 356-362 - Liqing Zhang, Shun-ichi Amari, Andrzej Cichocki:

Semiparametric Approach to Multichannel Blind Deconvolution of Nonminimum Phase Systems. 363-369 - Tong Zhang:

Some Theoretical Results Concerning the Convergence of Compositions of Regularized Linear Functions. 370-378
Algorithms and Architecture
- Christophe Andrieu, João F. G. de Freitas, Arnaud Doucet:

Robust Full Bayesian Methods for Neural Networks. 379-385 - Hagai Attias:

Independent Factor Analysis with Temporally Structured Sources. 386-392 - David Barber, Peter Sollich:

Gaussian Fields for Approximate Inference in Layered Sigmoid Belief Networks. 393-399 - Yoshua Bengio, Samy Bengio:

Modeling High-Dimensional Discrete Data with Multi-Layer Neural Networks. 400-406 - Thomas Briegel, Volker Tresp:

Robust Neural Network Regression for Offline and Online Learning. 407-413 - Miguel Á. Carreira-Perpiñán:

Reconstruction of Sequential Data with Probabilistic Models and Continuity Constraints. 414-420 - Olivier Chapelle, Vladimir Vapnik, Jason Weston:

Transductive Inference for Estimating Values of Functions. 421-427 - Oliver B. Downs, David J. C. MacKay, Daniel D. Lee:

The Nonnegative Boltzmann Machine. 428-434 - Gary William Flake, Barak A. Pearlmutter:

Differentiating Functions of the Jacobian with Respect to the Weights. 435-441 - Brendan J. Frey:

Local Probability Propagation for Factor Analysis. 442-448 - Zoubin Ghahramani, Matthew J. Beal:

Variational Inference for Bayesian Mixtures of Factor Analysers. 449-455 - Thore Graepel, Ralf Herbrich, Klaus Obermayer:

Bayesian Transduction. 456-462 - Geoffrey E. Hinton, Zoubin Ghahramani, Yee Whye Teh:

Learning to Parse Images. 463-469 - Tommi S. Jaakkola, Marina Meila, Tony Jebara:

Maximum Entropy Discrimination. 470-476 - Nebojsa Jojic, Brendan J. Frey:

Topographic Transformation as a Discrete Latent Variable. 477-483 - Pavel Laskov:

An Improved Decomposition Algorithm for Regression Support Vector Machines. 484-490 - Daniel D. Lee, Uri Rokni, Haim Sompolinsky:

Algorithms for Independent Components Analysis and Higher Order Statistics. 491-497 - Yi Li, Philip M. Long:

The Relaxed Online Maximum Margin Algorithm. 498-504 - Dimitris Margaritis, Sebastian Thrun:

Bayesian Network Induction via Local Neighborhoods. 505-511 - Llew Mason, Jonathan Baxter, Peter L. Bartlett, Marcus R. Frean:

Boosting Algorithms as Gradient Descent. 512-518 - Chris Mesterharm:

A Multi-class Linear Learning Algorithm Related to Winnow. 519-525 - Sebastian Mika, Gunnar Rätsch, Jason Weston, Bernhard Schölkopf, Alexander J. Smola, Klaus-Robert Müller:

Invariant Feature Extraction and Classification in Kernel Spaces. 526-532 - Andrew Y. Ng, Michael I. Jordan:

Approximate Inference A lgorithms for Two-Layer Bayesian Networks. 533-539 - Dirk Ormoneit, Trevor Hastie:

Optimal Kernel Shapes for Local Linear Regression. 540-546 - John C. Platt, Nello Cristianini, John Shawe-Taylor:

Large Margin DAGs for Multiclass Classification. 547-553 - Carl Edward Rasmussen:

The Infinite Gaussian Mixture Model. 554-560 - Gunnar Rätsch, Bernhard Schölkopf, Alexander J. Smola, Klaus-Robert Müller, Takashi Onoda, Sebastian Mika:

v-Arc: Ensemble Learning in the Presence of Outliers. 561-567 - Volker Roth, Volker Steinhage:

Nonlinear Discriminant Analysis Using Kernel Functions. 568-574 - Paat Rusmevichientong, Benjamin Van Roy:

An Analysis of Turbo Decoding with Gaussian Densities. 575-581 - Bernhard Schölkopf, Robert C. Williamson, Alexander J. Smola, John Shawe-Taylor, John C. Platt:

Support Vector Method for Novelty Detection. 582-588 - Mike Schuster:

Better Generative Models for Sequential Data Problems: Bidirectional Recurrent Mixture Density Networks. 589-595 - Dale Schuurmans:

Greedy Importance Sampling. 596-602 - Matthias W. Seeger:

Bayesian Model Selection for Support Vector Machines, Gaussian Processes and Other Kernel Classifiers. 603-609 - Yoram Singer:

Leveraged Vector Machines. 610-616 - Noam Slonim, Naftali Tishby:

Agglomerative Information Bottleneck. 617-623 - Masashi Sugiyama, Hidemitsu Ogawa:

Training Data Selection for Optimal Generalization in Trigonometric Polynomial Networks. 624-630 - S. Sundararajan, S. Sathiya Keerthi:

Predictive App roaches for Choosing Hyperparameters in Gaussian Processes. 631-637 - Peter Sykacek:

On Input Selection with Reversible Jump Markov Chain Monte Carlo Sampling. 638-644 - Peter Tiño, Georg Dorffner:

Building Predictive Models from Fractal Representations of Symbolic Sequences. 645-651 - Michael E. Tipping:

The Relevance Vector Machine. 652-658 - Vladimir Vapnik, Sayan Mukherjee:

Support Vector Method for Multivariate Density Estimation. 659-665 - Eric A. Wan, Rudolph van der Merwe, Alex T. Nelson:

Dual Estimation and the Unscented Transformation. 666-672 - Yair Weiss, William T. Freeman:

Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology. 673-679 - Christopher K. I. Williams:

A MCMC Approach to Hierarchical Mixture Modelling. 680-686 - Howard Hua Yang, John E. Moody:

Data Visualization and Feature Selection: New Algorithms for Nongaussian Data. 687-702 - Mark Zlochin, Yoram Baram:

Manifold Stochastic Dynamics for Bayesian Learning. 694-702
Implementation
- Charles Lee Isbell Jr., Parry Husbands:

The Parallel Problems Server: an Interactive Tool for Large Scale Machine Learning. 703-709 - Oliver Landolt, Steve Gyger:

An Oculo-Motor System with Multi-Chip Neuromorphic Analog VLSI Control. 710-716 - Shih-Chii Liu:

A Winner-Take-All Circuit with Controllable Soft Max Property. 717-723 - Girish N. Patel, Edgar A. Brown, Stephen P. DeWeerth:

A Neuromorphic VLSI System for Modeling the Neural Control of Axial Locomotion. 724-730 - Girish N. Patel, Gennady S. Cymbalyuk, Ronald L. Calabrese, Stephen P. DeWeerth:

Bifurcation Analysis of a Silicon Neuron. 731-737 - André van Schaik:

An Analog VLSI Model of Periodicity Extraction. 738-746
Speech, Handwriting and Signal Processing
- Guy J. Brown, DeLiang L. Wang:

An Oscillatory Correlation Frame work for Computational Auditory Scene Analysis. 747-753 - Pedro A. d. F. R. Højen-Sørensen, Lars Kai Hansen

, Carl Edward Rasmussen:
Bayesian Modelling of fMRI lime Series. 754-760 - Craig T. Jin, Simon Carlile:

Neural System Model of Human Sound Localization. 761-767 - Craig T. Jin, Anna Corderoy, Simon Carlile, André van Schaik:

Spectral Cues in Human Sound Localization. 768-774 - Justinian P. Rosca, Joseph Ó Ruanaidh, Alexander Jourjine, Scott Rickard:

Broadband Direction-Of-Arrival Estimation Based on Second Order Statistics. 775-781 - Sam T. Roweis:

Constrained Hidden Markov Models. 782-788 - Nicol N. Schraudolph, Xavier Giannakopoulos:

Online Independent Component Analysis with Local Learning Rate Adaptation. 789-795 - Gavin Smith, João F. G. de Freitas, Tony Robinson, Mahesan Niranjan:

Speech Modelling Using Subspace and EM Techniques. 796-802 - Howard Hua Yang, Hynek Hermansky:

Search for Information Bearing Components in Speech. 803-812
Visual Processing
- John R. Hershey, Javier R. Movellan:

Audio Vision: Using Audio-Visual Synchrony to Locate Sounds. 813-819 - Nicholas R. Howe, Michael E. Leventon, William T. Freeman:

Bayesian Reconstruction of 3D Human Motion from Single-Camera Video. 820-826 - Aapo Hyvärinen, Patrik O. Hoyer:

Emergence of Topography and Complex Cell Properties from Natural Images using Extensions of ICA. 827-833 - Tai Sing Lee, Stella X. Yu:

An Information-Theoretic Framework for Understanding Saccadic Eye Movements. 834-840 - Bruno A. Olshausen, K. Jarrod Millman:

Learning Sparse Codes with a Mixture-of-Gaussians Prior. 841-847 - Clay Spence, Lucas C. Parra:

Hierarchical Image Probability (H1P) Models. 848-854 - Martin J. Wainwright, Eero P. Simoncelli:

Scale Mixtures of Gaussians and the Statistics of Natural Images. 855-861 - Ming-Hsuan Yang, Dan Roth, Narendra Ahuja:

A SNoW-Based Face Detector. 862-868 - Zhiyong Yang, Richard S. Zemel:

Managing Uncertainty in Cue Combination. 869-878
Applications
- Rembrandt Bakker, Jaap C. Schouten, Marc-Olivier Coppens, Floris Takens, C. Lee Giles

, Cor M. van den Bleek:
Robust Learning of Chaotic Attractors. 879-885 - Marian Stewart Bartlett, Gianluca Donato, Javier R. Movellan, Joseph C. Hager, Paul Ekman, Terrence J. Sejnowski:

Image Representations for Facial Expression Coding. 886-892 - Timothy X. Brown:

Low Power Wireless Communication via Reinforcement Learning. 893-899 - John W. Fisher III, Alexander T. Ihler, Paul A. Viola:

Learning Informative Statistics: A Nonparametnic Approach. 900-906 - Richard M. Golden:

Kirchoff Law Markov Fields for Analog Circuit Design. 907-913 - Thomas Hofmann:

Learning the Similarity of Documents: An Information-Geometric Approach to Document Retrieval and Categorization. 914-920 - Yuansong Liao, John E. Moody:

Constructing Heterogeneous Committees Using Input Feature Grouping: Application to Economic Forecasting. 921-927 - Eric Mjolsness, Tobias Mann, Rebecca Castaño, Barbara J. Wold:

From Coexpression to Coregulation: An Approach to Inferring Transcriptional Regulation among Gene Classes from Large-Scale Expression Data. 928-934 - Michael Mozer, Richard H. Wolniewicz, David B. Grimes, Eric Johnson, Howard Kaushansky:

Churn Reduction in the Wireless Industry. 935-941 - Lucas C. Parra, Clay Spence, Paul Sajda, Andreas Ziehe, Klaus-Robert Müller:

Unmixing Hyperspectral Data. 942-948 - Holger Schoner, Martin Stetter, Ingo Schießl, John E. W. Mayhew, Jennifer S. Lund, Niall McLoughlin, Klaus Obermayer:

Application of Blind Separation of Sources to Optical Recording of Brain Activity. 949-955 - Satinder Singh, Michael J. Kearns, Diane J. Litman, Marilyn A. Walker:

Reinforcement Learning for Spoken Dialogue Systems. 956-962 - Xubo B. Song, Joseph Sill, Yaser S. Abu-Mostafa, Harvey Kasdan:

Image Recognition in Context: Application to Microscopic Urinalysis. 963-969 - Shivakumar Vaithyanathan, Byron Dom:

Generalized Model Selection for Unsupervised Learning in High Dimensions. 970-976 - Nuno Vasconcelos, Andrew Lippman:

Learning from User Feedback in Image Retrieval Systems. 977-986
Control, Navigation and Planning
- Samuel P. M. Choi, Dit-Yan Yeung, Nevin Lianwen Zhang:

An Environment Model for Nonstationary Reinforcement Learning. 987-993 - Thomas G. Dietterich:

State Abstraction in MAXQ Hierarchical Reinforcement Learning. 994-1000 - Michael J. Kearns, Yishay Mansour, Andrew Y. Ng:

Approximate Planning in Large POMDPs via Reusable Trajectories. 1001-1007 - Vijay R. Konda, John N. Tsitsiklis:

Actor-Critic Algorithms. 1008-1014 - Kevin P. Murphy:

Bayesian Map Learning in Dynamic Environments. 1015-1021 - Andrew Y. Ng, Ronald Parr, Daphne Koller:

Policy Search via Density Estimation. 1022-1028 - Stephen Piche, James D. Keeler, Greg Martin, Gene Boe, Doug Johnson, Mark Gerules:

Neural Network Based Model Predictive Control. 1029-1035 - Andres C. Rodriguez, Ronald Parr, Daphne Koller:

Reinforcement Learning Using Approximate Belief States. 1036-1042 - Nicholas Roy, Sebastian Thrun:

Coastal Navigation with Mobile Robots. 1043-1049 - Brian Sallans:

Learning Factored Representations for Partially Observable Markov Decision Processes. 1050-1056 - Richard S. Sutton, David A. McAllester, Satinder Singh, Yishay Mansour:

Policy Gradient Methods for Reinforcement Learning with Function Approximation. 1057-1063 - Sebastian Thrun:

Monte Carlo POMDPs. 1064-1070

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














