default search action
María Pérez-Ortiz 0001
M. Pérez-Ortiz 0001
Person information
- affiliation: University College London, AI Centre, United Kingdom
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j25]Nicolas Belissent, José M. Peña, Gustavo A. Mesías-Ruiz, John Shawe-Taylor, María Pérez-Ortiz:
Transfer and zero-shot learning for scalable weed detection and classification in UAV images. Knowl. Based Syst. 292: 111586 (2024) - [c49]Yuxiang Qiu, Karim Djemili, Denis Elezi, Aaneel Shalman Srazali, María Pérez-Ortiz, Emine Yilmaz, John Shawe-Taylor, Sahan Bulathwela:
A Toolbox for Modelling Engagement with Educational Videos. AAAI 2024: 23128-23136 - [c48]Xiao Fu, María Pérez-Ortiz, Aldo Lipani:
An Analysis of Stopping Strategies in Conversational Search Systems. ICTIR 2024: 247-257 - [i28]Yuxiang Qiu, Karim Djemili, Denis Elezi, Aaneel Shalman, María Pérez-Ortiz, Emine Yilmaz, John Shawe-Taylor, Sahan Bulathwela:
A Toolbox for Modelling Engagement with Educational Videos. CoRR abs/2401.05424 (2024) - [i27]Zekun Wu, Sahan Bulathwela, María Pérez-Ortiz, Adriano Soares Koshiyama:
Auditing Large Language Models for Enhanced Text-Based Stereotype Detection and Probing-Based Bias Evaluation. CoRR abs/2404.01768 (2024) - [i26]Noah Y. Siegel, Oana-Maria Camburu, Nicolas Heess, María Pérez-Ortiz:
The Probabilities Also Matter: A More Faithful Metric for Faithfulness of Free-Text Explanations in Large Language Models. CoRR abs/2404.03189 (2024) - [i25]Henning Heyen, Amy Widdicombe, Noah Y. Siegel, María Pérez-Ortiz, Philip Treleaven:
The Effect of Model Size on LLM Post-hoc Explainability via LIME. CoRR abs/2405.05348 (2024) - [i24]Ze Wang, Zekun Wu, Xin Guan, Michael Thaler, Adriano S. Koshiyama, Skylar Lu, Sachin Beepath, Ediz Ertekin Jr., María Pérez-Ortiz:
JobFair: A Framework for Benchmarking Gender Hiring Bias in Large Language Models. CoRR abs/2406.15484 (2024) - [i23]Nathan Herr, Fernando Acero, Roberta Raileanu, María Pérez-Ortiz, Zhibin Li:
Are Large Language Models Strategic Decision Makers? A Study of Performance and Bias in Two-Player Non-Zero-Sum Games. CoRR abs/2407.04467 (2024) - 2023
- [c47]Yuxiang Qiu, Karim Djemili, Denis Elezi, Aaneel Shalman, María Pérez-Ortiz, Sahan Bulathwela:
TrueLearn: A Python Library for Personalised Informational Recommendations with (Implicit) Feedback. ORSUM@RecSys 2023 - [i22]Yuxiang Qiu, Karim Djemili, Denis Elezi, Aaneel Shalman, María Pérez-Ortiz, Sahan Bulathwela:
TrueLearn: A Python Library for Personalised Informational Recommendations with (Implicit) Feedback. CoRR abs/2309.11527 (2023) - [i21]Theodore Wolf, Nantas Nardelli, John Shawe-Taylor, María Pérez-Ortiz:
Can Reinforcement Learning support policy makers? A preliminary study with Integrated Assessment Models. CoRR abs/2312.06527 (2023) - 2022
- [j24]Aliaksei Mikhailiuk, María Pérez-Ortiz, Dingcheng Yue, Wilson Suen, Rafal K. Mantiuk:
Consolidated Dataset and Metrics for High-Dynamic-Range Image Quality. IEEE Trans. Multim. 24: 2125-2138 (2022) - [c46]María Pérez-Ortiz, Sahan Bulathwela, Claire Dormann, Meghana Verma, Stefan Kreitmayer, Richard Noss, John Shawe-Taylor, Yvonne Rogers, Emine Yilmaz:
Watch Less and Uncover More: Could Navigation Tools Help Users Search and Explore Videos? CHIIR 2022: 90-101 - [c45]Sahan Bulathwela, Meghana Verma, María Pérez-Ortiz, Emine Yilmaz, John Shawe-Taylor:
Can Population-based Engagement Improve Personalisation? A Novel Dataset and Experiments. EDM 2022 - [e1]Stefan Schlobach, María Pérez-Ortiz, Myrthe Tielman:
HHAI 2022: Augmenting Human Intellect - Proceedings of the First International Conference on Hybrid Human-Artificial Intelligence, Amsterdam, The Netherlands, 13-17 June 2022. Frontiers in Artificial Intelligence and Applications 354, IOS Press 2022, ISBN 978-1-64368-308-9 [contents] - [i20]María Pérez-Ortiz, Sahan Bulathwela, Claire Dormann, Meghana Verma, Stefan Kreitmayer, Richard Noss, John Shawe-Taylor, Yvonne Rogers, Emine Yilmaz:
Watch Less and Uncover More: Could Navigation Tools Help Users Search and Explore Videos? CoRR abs/2201.03408 (2022) - [i19]Sahan Bulathwela, Meghana Verma, María Pérez-Ortiz, Emine Yilmaz, John Shawe-Taylor:
Can Population-based Engagement Improve Personalisation? A Novel Dataset and Experiments. CoRR abs/2207.01504 (2022) - [i18]Ben Dixon, María Pérez-Ortiz, Jacob Bieker:
Comparing the carbon costs and benefits of low-resource solar nowcasting. CoRR abs/2210.04554 (2022) - 2021
- [j23]María Pérez-Ortiz, Omar Rivasplata, John Shawe-Taylor, Csaba Szepesvári:
Tighter Risk Certificates for Neural Networks. J. Mach. Learn. Res. 22: 227:1-227:40 (2021) - [c44]María Pérez-Ortiz, Claire Dormann, Yvonne Rogers, Sahan Bulathwela, Stefan Kreitmayer, Emine Yilmaz, Richard Noss, John Shawe-Taylor:
X5Learn: A Personalised Learning Companion at the Intersection of AI and HCI. IUI Companion 2021: 70-74 - [i17]Sahan Bulathwela, María Pérez-Ortiz, Erik Novak, Emine Yilmaz, John Shawe-Taylor:
PEEK: A Large Dataset of Learner Engagement with Educational Videos. CoRR abs/2109.03154 (2021) - [i16]María Pérez-Ortiz, Omar Rivasplata, Benjamin Guedj, Matthew Gleeson, Jingyu Zhang, John Shawe-Taylor, Miroslaw Bober, Josef Kittler:
Learning PAC-Bayes Priors for Probabilistic Neural Networks. CoRR abs/2109.10304 (2021) - [i15]María Pérez-Ortiz, Omar Rivasplata, Emilio Parrado-Hernández, Benjamin Guedj, John Shawe-Taylor:
Progress in Self-Certified Neural Networks. CoRR abs/2111.07737 (2021) - [i14]María Pérez-Ortiz, Erik Novak, Sahan Bulathwela, John Shawe-Taylor:
An AI-based Learning Companion Promoting Lifelong Learning Opportunities for All. CoRR abs/2112.01242 (2021) - [i13]Sahan Bulathwela, María Pérez-Ortiz, Catherine Holloway, John Shawe-Taylor:
Could AI Democratise Education? Socio-Technical Imaginaries of an EdTech Revolution. CoRR abs/2112.02034 (2021) - [i12]Sahan Bulathwela, María Pérez-Ortiz, Emine Yilmaz, John Shawe-Taylor:
Semantic TrueLearn: Using Semantic Knowledge Graphs in Recommendation Systems. CoRR abs/2112.04368 (2021) - 2020
- [j22]Sahan Bulathwela, María Pérez-Ortiz, Rishabh Mehrotra, Davor Orlic, Colin de la Higuera, John Shawe-Taylor, Emine Yilmaz:
Report on the WSDM 2020 workshop on state-based user modelling (SUM'20). SIGIR Forum 54(1): 5:1-5:11 (2020) - [j21]María Pérez-Ortiz, Aliaksei Mikhailiuk, Emin Zerman, Vedad Hulusic, Giuseppe Valenzise, Rafal K. Mantiuk:
From Pairwise Comparisons and Rating to a Unified Quality Scale. IEEE Trans. Image Process. 29: 1139-1151 (2020) - [c43]Sahan Bulathwela, María Pérez-Ortiz, Emine Yilmaz, John Shawe-Taylor:
TrueLearn: A Family of Bayesian Algorithms to Match Lifelong Learners to Open Educational Resources. AAAI 2020: 565-573 - [c42]Sahan Bulathwela, María Pérez-Ortiz, Emine Yilmaz, John Shawe-Taylor:
Towards an Integrative Educational Recommender for Lifelong Learners (Student Abstract). AAAI 2020: 13759-13760 - [c41]Sahan Bulathwela, María Pérez-Ortiz, Aldo Lipani, Emine Yilmaz, John Shawe-Taylor:
Predicting Engagement in Video Lectures. EDM 2020 - [c40]Aliaksei Mikhailiuk, Clifford Wilmot, María Pérez-Ortiz, Dingcheng Yue, Rafal K. Mantiuk:
Active Sampling for Pairwise Comparisons via Approximate Message Passing and Information Gain Maximization. ICPR 2020: 2559-2566 - [c39]Sahan Bulathwela, Stefan Kreitmayer, María Pérez-Ortiz:
What's in it for me?: Augmenting Recommended Learning Resources with Navigable Annotations. IUI Companion 2020: 114-115 - [c38]Sahan Bulathwela, María Pérez-Ortiz, Rishabh Mehrotra, Davor Orlic, Colin de la Higuera, John Shawe-Taylor, Emine Yilmaz:
SUM'20: State-based User Modelling. WSDM 2020: 899-900 - [i11]Aliaksei Mikhailiuk, Clifford Wilmot, María Pérez-Ortiz, Dingcheng Yue, Rafal Mantiuk:
Active Sampling for Pairwise Comparisons via Approximate Message Passing and Information Gain Maximization. CoRR abs/2004.05691 (2020) - [i10]Sahan Bulathwela, María Pérez-Ortiz, Aldo Lipani, Emine Yilmaz, John Shawe-Taylor:
Predicting Engagement in Video Lectures. CoRR abs/2006.00592 (2020) - [i9]María Pérez-Ortiz, Omar Rivasplata, John Shawe-Taylor, Csaba Szepesvári:
Tighter risk certificates for neural networks. CoRR abs/2007.12911 (2020) - [i8]Sahan Bulathwela, María Pérez-Ortiz, Emine Yilmaz, John Shawe-Taylor:
VLEngagement: A Dataset of Scientific Video Lectures for Evaluating Population-based Engagement. CoRR abs/2011.02273 (2020) - [i7]Théophile Cantelobre, Benjamin Guedj, María Pérez-Ortiz, John Shawe-Taylor:
A PAC-Bayesian Perspective on Structured Prediction with Implicit Loss Embeddings. CoRR abs/2012.03780 (2020) - [i6]Aliaksei Mikhailiuk, María Pérez-Ortiz, Dingcheng Yue, Wilson Suen, Rafal K. Mantiuk:
Consolidated Dataset and Metrics for High-Dynamic-Range Image Quality. CoRR abs/2012.10758 (2020)
2010 – 2019
- 2019
- [j20]María Pérez-Ortiz, Antonio Manuel Durán-Rosal, Pedro Antonio Gutiérrez, Javier Sánchez-Monedero, Athanasia Nikolaou, Francisco Fernández-Navarro, César Hervás-Martínez:
On the use of evolutionary time series analysis for segmenting paleoclimate data. Neurocomputing 326-327: 3-14 (2019) - [j19]Javier Sánchez-Monedero, Pedro Antonio Gutiérrez, María Pérez-Ortiz:
ORCA: A Matlab/Octave Toolbox for Ordinal Regression. J. Mach. Learn. Res. 20: 125:1-125:5 (2019) - [c37]María Pérez-Ortiz, Peter Tiño, Rafal Mantiuk, César Hervás-Martínez:
Exploiting Synthetically Generated Data with Semi-Supervised Learning for Small and Imbalanced Datasets. AAAI 2019: 4715-4722 - [c36]Nanyang Ye, María Pérez-Ortiz, Rafal K. Mantiuk:
Visibility Metric for Visually Lossless Image Compression. PCS 2019: 1-5 - [i5]María Pérez-Ortiz, Pedro Antonio Gutiérrez, Peter Tiño, Carlos Casanova-Mateo, Sancho Salcedo-Sanz:
A mixture of experts model for predicting persistent weather patterns. CoRR abs/1903.10012 (2019) - [i4]María Pérez-Ortiz, Peter Tiño, Rafal Mantiuk, César Hervás-Martínez:
Exploiting Synthetically Generated Data with Semi-Supervised Learning for Small and Imbalanced Datasets. CoRR abs/1903.10022 (2019) - [i3]Sahan Bulathwela, María Pérez-Ortiz, Emine Yilmaz, John Shawe-Taylor:
TrueLearn: A Family of Bayesian Algorithms to Match Lifelong Learners to Open Educational Resources. CoRR abs/1911.09471 (2019) - [i2]Sahan Bulathwela, María Pérez-Ortiz, Emine Yilmaz, John Shawe-Taylor:
Towards an Integrative Educational Recommender for Lifelong Learners. CoRR abs/1912.01592 (2019) - 2018
- [j18]Javier Sánchez-Monedero, María Pérez-Ortiz, Aurora Sáez, Pedro Antonio Gutiérrez, César Hervás-Martínez:
Partial order label decomposition approaches for melanoma diagnosis. Appl. Soft Comput. 64: 341-355 (2018) - [j17]Ricardo P. M. Cruz, Kelwin Fernandes, Joaquim F. Pinto da Costa, María Pérez-Ortiz, Jaime S. Cardoso:
Binary ranking for ordinal class imbalance. Pattern Anal. Appl. 21(4): 931-939 (2018) - [c35]Nanyang Ye, María Pérez-Ortiz, Rafal K. Mantiuk:
Trained Perceptual Transform for Quality Assessment of High Dynamic Range Images and Video. ICIP 2018: 1718-1722 - [c34]M. Pérez-Ortiz, Pedro Antonio Gutiérrez, Peter Tiño, Carlos Casanova-Mateo, Sancho Salcedo-Sanz:
A mixture of experts model for predicting persistent weather patterns. IJCNN 2018: 1-8 - [c33]Aliaksei Mikhailiuk, María Pérez-Ortiz, Rafal Mantiuk:
Psychometric scaling of TID2013 dataset. QoMEX 2018: 1-6 - 2017
- [j16]Manuel Dorado-Moreno, María Pérez-Ortiz, Pedro Antonio Gutiérrez, Rubén Ciria, Javier Briceño, César Hervás-Martínez:
Dynamically weighted evolutionary ordinal neural network for solving an imbalanced liver transplantation problem. Artif. Intell. Medicine 77: 1-11 (2017) - [j15]M. Pérez-Ortiz, Pedro Antonio Gutiérrez, María Dolores Ayllón-Terán, N. Heaton, Rubén Ciria, Javier Briceño, César Hervás-Martínez:
Synthetic semi-supervised learning in imbalanced domains: Constructing a model for donor-recipient matching in liver transplantation. Knowl. Based Syst. 123: 75-87 (2017) - [c32]Ricardo P. M. Cruz, Kelwin Fernandes, Joaquim F. Pinto da Costa, María Pérez-Ortiz, Jaime S. Cardoso:
Ordinal Class Imbalance with Ranking. IbPRIA 2017: 3-12 - [c31]Pedro Antonio Gutiérrez, María Pérez-Ortiz, Alberto Suárez:
Class Switching Ensembles for Ordinal Regression. IWANN (1) 2017: 408-419 - [c30]Francisco Javier Maestre-García, Carlos García-Martínez, María Pérez-Ortiz, Pedro Antonio Gutiérrez:
An Iterated Greedy Algorithm for Improving the Generation of Synthetic Patterns in Imbalanced Learning. IWANN (2) 2017: 513-524 - [c29]María Pérez-Ortiz, Kelwin Fernandes, Ricardo P. M. Cruz, Jaime S. Cardoso, Javier Briceño, César Hervás-Martínez:
Fine-to-Coarse Ranking in Ordinal and Imbalanced Domains: An Application to Liver Transplantation. IWANN (2) 2017: 525-537 - [c28]Ricardo P. M. Cruz, Kelwin Fernandes, Joaquim F. Pinto da Costa, María Pérez-Ortiz, Jaime S. Cardoso:
Combining Ranking with Traditional Methods for Ordinal Class Imbalance. IWANN (2) 2017: 538-548 - [i1]María Pérez-Ortiz, Rafal K. Mantiuk:
A practical guide and software for analysing pairwise comparison experiments. CoRR abs/1712.03686 (2017) - 2016
- [j14]María Pérez-Ortiz, José Manuel Peñá-Barragán, Pedro Antonio Gutiérrez, Jorge Torres-Sánchez, César Hervás-Martínez, Francisca López-Granados:
Selecting patterns and features for between- and within- crop-row weed mapping using UAV-imagery. Expert Syst. Appl. 47: 85-94 (2016) - [j13]M. Pérez-Ortiz, Pedro Antonio Gutiérrez, Mariano Carbonero-Ruz, César Hervás-Martínez:
Semi-supervised learning for ordinal Kernel Discriminant Analysis. Neural Networks 84: 57-66 (2016) - [j12]M. Pérez-Ortiz, Pedro Antonio Gutiérrez, Javier Sánchez-Monedero, César Hervás-Martínez:
A Study on Multi-Scale Kernel Optimisation via Centered Kernel-Target Alignment. Neural Process. Lett. 44(2): 491-517 (2016) - [j11]M. Pérez-Ortiz, Manuel Fernández Delgado, Eva Cernadas, R. Domínguez-Petit, Pedro Antonio Gutiérrez, César Hervás-Martínez:
On the Use of Nominal and Ordinal Classifiers for the Discrimination of States of Development in Fish Oocytes. Neural Process. Lett. 44(2): 555-570 (2016) - [j10]Pedro Antonio Gutiérrez, María Pérez-Ortiz, Javier Sánchez-Monedero, Francisco Fernández-Navarro, César Hervás-Martínez:
Ordinal Regression Methods: Survey and Experimental Study. IEEE Trans. Knowl. Data Eng. 28(1): 127-146 (2016) - [j9]María Pérez-Ortiz, Pedro Antonio Gutiérrez, Peter Tiño, César Hervás-Martínez:
Oversampling the Minority Class in the Feature Space. IEEE Trans. Neural Networks Learn. Syst. 27(9): 1947-1961 (2016) - [c27]María Pérez-Ortiz, Pedro Antonio Gutiérrez, Mariano Carbonero-Ruz, César Hervás-Martínez:
Learning from Label Proportions via an Iterative Weighting Scheme and Discriminant Analysis. CAEPIA 2016: 79-88 - [c26]Javier Sánchez-Monedero, Aurora Sáez, María Pérez-Ortiz, Pedro Antonio Gutiérrez, César Hervás-Martínez:
Classification of Melanoma Presence and Thickness Based on Computational Image Analysis. HAIS 2016: 427-438 - [c25]Manuel Dorado-Moreno, María Pérez-Ortiz, María Dolores Ayllón-Terán, Pedro Antonio Gutiérrez, César Hervás-Martínez:
Ordinal Evolutionary Artificial Neural Networks for Solving an Imbalanced Liver Transplantation Problem. HAIS 2016: 451-462 - [c24]María Pérez-Ortiz, Mercedes Torres-Jiménez, Pedro Antonio Gutiérrez, Javier Sánchez-Monedero, César Hervás-Martínez:
Fisher Score-Based Feature Selection for Ordinal Classification: A Social Survey on Subjective Well-Being. HAIS 2016: 597-608 - [c23]María Pérez-Ortiz, Aurora Sáez, Javier Sánchez-Monedero, Pedro Antonio Gutiérrez, César Hervás-Martínez:
Tackling the ordinal and imbalance nature of a melanoma image classification problem. IJCNN 2016: 2156-2163 - [c22]Pedro Antonio Gutiérrez, María Pérez-Ortiz, Javier Sánchez-Monedero, César Hervás-Martínez:
Representing ordinal input variables in the context of ordinal classification. IJCNN 2016: 2174-2181 - [c21]María Pérez-Ortiz, Pedro Antonio Gutiérrez, José M. Peña, Jorge Torres-Sánchez, Francisca López-Granados, César Hervás-Martínez:
Machine learning paradigms for weed mapping via unmanned aerial vehicles. SSCI 2016: 1-8 - [c20]María Pérez-Ortiz, Pedro Antonio Gutiérrez, Mariano Carbonero-Ruz, César Hervás-Martínez:
Adapting linear discriminant analysis to the paradigm of learning from label proportions. SSCI 2016: 1-7 - 2015
- [j8]M. Pérez-Ortiz, José Manuel Peñá-Barragán, Pedro Antonio Gutiérrez, Jorge Torres-Sánchez, César Hervás-Martínez, Francisca López-Granados:
A semi-supervised system for weed mapping in sunflower crops using unmanned aerial vehicles and a crop row detection method. Appl. Soft Comput. 37: 533-544 (2015) - [j7]María Pérez-Ortiz, Pedro Antonio Gutiérrez, Manuel Cruz-Ramírez, Javier Sánchez-Monedero, César Hervás-Martínez:
Kernelising the Proportional Odds Model through kernel learning techniques. Neurocomputing 164: 23-33 (2015) - [j6]María Pérez-Ortiz, Pedro Antonio Gutiérrez, César Hervás-Martínez, Xin Yao:
Graph-Based Approaches for Over-Sampling in the Context of Ordinal Regression. IEEE Trans. Knowl. Data Eng. 27(5): 1233-1245 (2015) - [c19]Pedro Antonio Gutiérrez, Juan Carlos Fernández, María Pérez-Ortiz, Laura Cornejo-Bueno, Enrique Alexandre-Cortizo, Sancho Salcedo-Sanz, César Hervás-Martínez:
Energy Flux Range Classification by Using a Dynamic Window Autoregressive Model. IWANN (2) 2015: 92-102 - [c18]María Pérez-Ortiz, Pedro Antonio Gutiérrez, José Manuel Peñá-Barragán, Jorge Torres-Sánchez, César Hervás-Martínez, Francisca López-Granados:
An Experimental Comparison for the Identification of Weeds in Sunflower Crops via Unmanned Aerial Vehicles and Object-Based Analysis. IWANN (1) 2015: 252-262 - 2014
- [j5]M. Pérez-Ortiz, Manuel Cruz-Ramírez, María Dolores Ayllón-Terán, N. Heaton, Rubén Ciria, César Hervás-Martínez:
An organ allocation system for liver transplantation based on ordinal regression. Appl. Soft Comput. 14: 88-98 (2014) - [j4]Laura García-Hernández, M. Pérez-Ortiz, Antonio Arauzo-Azofra, Lorenzo Salas-Morera, César Hervás-Martínez:
An evolutionary neural system for incorporating expert knowledge into the UA-FLP. Neurocomputing 135: 69-78 (2014) - [j3]M. Pérez-Ortiz, Monica-de la Paz-Marin, Pedro Antonio Gutiérrez, César Hervás-Martínez:
Classification of EU countries' progress towards sustainable development based on ordinal regression techniques. Knowl. Based Syst. 66: 178-189 (2014) - [j2]María Pérez-Ortiz, Pedro Antonio Gutiérrez, César Hervás-Martínez:
Projection-Based Ensemble Learning for Ordinal Regression. IEEE Trans. Cybern. 44(5): 681-694 (2014) - [c17]Manuel Cruz-Ramírez, Monica-de la Paz-Marin, M. Pérez-Ortiz, César Hervás-Martínez:
Time Series Segmentation and Statistical Characterisation of the Spanish Stock Market Ibex-35 Index. HAIS 2014: 74-85 - [c16]M. Pérez-Ortiz, Pedro Antonio Gutiérrez, Javier Sánchez-Monedero, César Hervás-Martínez, Athanasia Nikolaou, Isabelle Dicaire, Francisco Fernández-Navarro:
Time Series Segmentation of Paleoclimate Tipping Points by an Evolutionary Algorithm. HAIS 2014: 318-329 - [c15]M. Pérez-Ortiz, Pedro Antonio Gutiérrez, César Hervás-Martínez:
Log-Gamma Distribution Optimisation via Maximum Likelihood for Ordered Probability Estimates. HAIS 2014: 454-465 - [c14]María Pérez-Ortiz, Pedro Antonio Gutiérrez, César Hervás-Martínez:
Incorporating Privileged Information to Improve Manifold Ordinal Regression. IJCCI (NCTA) 2014: 187-194 - [c13]María Pérez-Ortiz, Pedro Antonio Gutiérrez, César Hervás-Martínez:
Learning Kernel Label Decompositions for Ordinal Classification Problems. IJCCI (NCTA) 2014: 218-225 - 2013
- [j1]Manuel Cruz-Ramírez, César Hervás-Martínez, Pedro Antonio Gutiérrez, María Pérez-Ortiz, Javier Briceño, Manuel de la Mata:
Memetic Pareto differential evolutionary neural network used to solve an unbalanced liver transplantation problem. Soft Comput. 17(2): 275-284 (2013) - [c12]María Pérez-Ortiz, Pedro Antonio Gutiérrez, César Hervás-Martínez:
Synthetic over-sampling in the empirical feature space. ESANN 2013 - [c11]María Pérez-Ortiz, Pedro Antonio Gutiérrez, Javier Sánchez-Monedero, César Hervás-Martínez:
Multi-scale Support Vector Machine Optimization by Kernel Target-Alignment. ESANN 2013 - [c10]María Pérez-Ortiz, Pedro Antonio Gutiérrez, César Hervás-Martínez:
Borderline Kernel Based Over-Sampling. HAIS 2013: 472-481 - [c9]María Pérez-Ortiz, Pedro Antonio Gutiérrez, Manuel Cruz-Ramírez, Javier Sánchez-Monedero, César Hervás-Martínez:
Kernelizing the Proportional Odds Model through the Empirical Kernel Mapping. IWANN (1) 2013: 270-279 - [c8]María Pérez-Ortiz, Rosa Colmenarejo, Juan Carlos Fernández Caballero, César Hervás-Martínez:
Can Machine Learning Techniques Help to Improve the Common Fisheries Policy? IWANN (2) 2013: 278-286 - [c7]Javier Sánchez-Monedero, Pedro Antonio Gutiérrez, María Pérez-Ortiz, César Hervás-Martínez:
An n-Spheres Based Synthetic Data Generator for Supervised Classification. IWANN (1) 2013: 613-621 - 2012
- [c6]Pedro Antonio Gutiérrez, M. Pérez-Ortiz, Francisco Fernández-Navarro, Javier Sánchez-Monedero, César Hervás-Martínez:
An Experimental Study of Different Ordinal Regression Methods and Measures. HAIS (2) 2012: 296-307 - [c5]M. Pérez-Ortiz, Manuel Cruz-Ramírez, Juan Carlos Fernández Caballero, César Hervás-Martínez:
Hybrid Multi-objective Machine Learning Classification in Liver Transplantation. HAIS (1) 2012: 397-408 - [c4]M. Pérez-Ortiz, Pedro Antonio Gutiérrez, César Hervás-Martínez, Javier Briceño, Manuel de la Mata:
An ensemble approach for ordinal threshold models applied to liver transplantation. IJCNN 2012: 1-8 - [c3]M. Pérez-Ortiz, Laura García-Hernández, Lorenzo Salas-Morera, Antonio Arauzo-Azofra, César Hervás-Martínez:
An Ordinal Regression Approach for the Unequal Area Facility Layout Problem. SOCO 2012: 13-21 - [c2]M. Pérez-Ortiz, Antonio Arauzo-Azofra, César Hervás-Martínez, Laura García-Hernández, Lorenzo Salas-Morera:
A System Learning User Preferences for Multiobjective Optimization of Facility Layouts. SOCO 2012: 43-52 - 2011
- [c1]M. Pérez-Ortiz, Pedro Antonio Gutiérrez, Carlos R. García-Alonso, Luis Salvador-Carulla, Jose Alberto Salinas-Perez, César Hervás-Martínez:
Ordinal classification of depression spatial hot-spots of prevalence. ISDA 2011: 1170-1175