Остановите войну!
for scientists:
default search action
Gavin Brown 0001
Person information
- affiliation: University of Manchester, UK
Other persons with the same name
- Gavin Brown — disambiguation page
- Gavin Brown 0002 — University of Sydney, NSW, Australia
- Gavin Brown 0003 — Boston University, MA, USA
- Gavin Brown 0004 — University of Warwick, Coventry, UK
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j24]Gavin Brown, Riccardo Ali:
Bias/Variance is not the same as Approximation/Estimation. Trans. Mach. Learn. Res. 2024 (2024) - 2023
- [i16]Danny Wood, Tingting Mu, Andrew M. Webb, Henry W. J. Reeve, Mikel Luján, Gavin Brown:
A Unified Theory of Diversity in Ensemble Learning. CoRR abs/2301.03962 (2023) - [i15]Konstantinos Iordanou, Timothy Atkinson, Emre Ozer, Jedrzej Kufel, John Biggs, Gavin Brown, Mikel Luján:
Tiny Classifier Circuits: Evolving Accelerators for Tabular Data. CoRR abs/2303.00031 (2023) - [i14]Adam Perrett, Danny Wood, Gavin Brown:
A max-affine spline approximation of neural networks using the Legendre transform of a convex-concave representation. CoRR abs/2307.09602 (2023) - 2022
- [c59]Edoardo Manino, Danilo S. Carvalho, Yi Dong, Julia Rozanova, Xidan Song, Mustafa A. Mustafa, André Freitas, Gavin Brown, Mikel Luján, Xiaowei Huang, Lucas C. Cordeiro:
EnnCore: End-to-End Conceptual Guarding of Neural Architectures. SafeAI@AAAI 2022 - [c58]Danny Wood, Tingting Mu, Gavin Brown:
Bias-Variance Decompositions for Margin Losses. AISTATS 2022: 1975-2001 - [i13]Danny Wood, Tingting Mu, Gavin Brown:
Bias-Variance Decompositions for Margin Losses. CoRR abs/2204.12155 (2022) - 2020
- [j23]Laura Morán-Fernández, Konstantinos Sechidis, Verónica Bolón-Canedo, Amparo Alonso-Betanzos, Gavin Brown:
Feature selection with limited bit depth mutual information for portable embedded systems. Knowl. Based Syst. 197: 105885 (2020) - [j22]Konstantinos Sechidis, Laura Azzimonti, Adam Craig Pocock, Giorgio Corani, James Weatherall, Gavin Brown:
Correction to: Efficient feature selection using shrinkage estimators. Mach. Learn. 109(8): 1565-1567 (2020) - [c57]Andrew M. Webb, Charles Reynolds, Wenlin Chen, Henry W. J. Reeve, Dan-Andrei Iliescu, Mikel Luján, Gavin Brown:
To Ensemble or Not Ensemble: When Does End-to-End Training Fail? ECML/PKDD (3) 2020: 109-123 - [i12]Nikolaos Nikolaou, Joseph C. Mellor, Nikunj C. Oza, Gavin Brown:
Better Boosting with Bandits for Online Learning. CoRR abs/2001.06105 (2020) - [i11]Nikolaos Nikolaou, Henry W. J. Reeve, Gavin Brown:
Margin Maximization as Lossless Maximal Compression. CoRR abs/2001.10318 (2020)
2010 – 2019
- 2019
- [j21]Vasileios Christou, Markos G. Tsipouras, Nikolaos Giannakeas, Alexandros T. Tzallas, Gavin Brown:
Hybrid extreme learning machine approach for heterogeneous neural networks. Neurocomputing 361: 137-150 (2019) - [j20]Verónica Bolón-Canedo, Konstantinos Sechidis, Noelia Sánchez-Maroño, Amparo Alonso-Betanzos, Gavin Brown:
Insights into distributed feature ranking. Inf. Sci. 496: 378-398 (2019) - [j19]Konstantinos Sechidis, Laura Azzimonti, Adam Craig Pocock, Giorgio Corani, James Weatherall, Gavin Brown:
Efficient feature selection using shrinkage estimators. Mach. Learn. 108(8-9): 1261-1286 (2019) - [c56]Konstantinos Sechidis, Konstantinos Papangelou, Sarah Nogueira, James Weatherall, Gavin Brown:
On the Stability of Feature Selection in the Presence of Feature Correlations. ECML/PKDD (1) 2019: 327-342 - [c55]Andrew M. Webb, Gavin Brown, Mikel Luján:
ORB-SLAM-CNN: Lessons in Adding Semantic Map Construction to Feature-Based SLAM. TAROS (1) 2019: 221-235 - [i10]Andrew M. Webb, Charles Reynolds, Dan-Andrei Iliescu, Henry W. J. Reeve, Mikel Luján, Gavin Brown:
Joint Training of Neural Network Ensembles. CoRR abs/1902.04422 (2019) - 2018
- [j18]Konstantinos Sechidis, Konstantinos Papangelou, Paul D. Metcalfe, David Svensson, James Weatherall, Gavin Brown:
Distinguishing prognostic and predictive biomarkers: an information theoretic approach. Bioinform. 34(19): 3365-3376 (2018) - [j17]Konstantinos Sechidis, Konstantinos Papangelou, Paul D. Metcalfe, David Svensson, James Weatherall, Gavin Brown:
Distinguishing prognostic and predictive biomarkers: an information theoretic approach. Bioinform. 34(23): 4139 (2018) - [j16]Henry W. J. Reeve, Gavin Brown:
Diversity and degrees of freedom in regression ensembles. Neurocomputing 298: 55-68 (2018) - [j15]Konstantinos Sechidis, Gavin Brown:
Simple strategies for semi-supervised feature selection. Mach. Learn. 107(2): 357-395 (2018) - [c54]Henry W. J. Reeve, Joe Mellor, Gavin Brown:
The K-Nearest Neighbour UCB Algorithm for Multi-Armed Bandits with Covariates. ALT 2018: 725-752 - [c53]Konstantinos Papangelou, Konstantinos Sechidis, James Weatherall, Gavin Brown:
Toward an Understanding of Adversarial Examples in Clinical Trials. ECML/PKDD (1) 2018: 35-51 - [c52]Henry W. J. Reeve, Tingting Mu, Gavin Brown:
Modular Dimensionality Reduction. ECML/PKDD (1) 2018: 605-619 - [i9]Henry W. J. Reeve, Gavin Brown:
Minimax rates for cost-sensitive learning on manifolds with approximate nearest neighbours. CoRR abs/1803.00310 (2018) - [i8]Henry W. J. Reeve, Gavin Brown:
Diversity and degrees of freedom in regression ensembles. CoRR abs/1803.00314 (2018) - [i7]Henry W. J. Reeve, Joe Mellor, Gavin Brown:
The K-Nearest Neighbour UCB algorithm for multi-armed bandits with covariates. CoRR abs/1803.00316 (2018) - [i6]Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, Fabio Roli:
Is feature selection secure against training data poisoning? CoRR abs/1804.07933 (2018) - 2017
- [j14]Konstantinos Sechidis, Matthew Sperrin, Emily Petherick, Mikel Luján, Gavin Brown:
Dealing with under-reported variables: An information theoretic solution. Int. J. Approx. Reason. 85: 159-177 (2017) - [j13]Sarah Nogueira, Konstantinos Sechidis, Gavin Brown:
On the Stability of Feature Selection Algorithms. J. Mach. Learn. Res. 18: 174:1-174:54 (2017) - [c51]Henry W. J. Reeve, Gavin Brown:
Minimax rates for cost-sensitive learning on manifolds with approximate nearest neighbours. ALT 2017: 11-56 - [c50]James Clarkson, Christos Kotselidis, Gavin Brown, Mikel Luján:
Boosting Java Performance Using GPGPUs. ARCS 2017: 59-70 - [c49]Diego Fernández-Francos, Oscar Fontenla-Romero, Amparo Alonso-Betanzos, Gavin Brown:
Mutual information for improving the efficiency of the SCH algorithm. ESANN 2017 - [c48]Henry W. J. Reeve, Gavin Brown:
Degrees of Freedom in Regression Ensembles. ESANN 2017 - [c47]Sarah Nogueira, Konstantinos Sechidis, Gavin Brown:
On the Use of Spearman's Rho to Measure the Stability of Feature Rankings. IbPRIA 2017: 381-391 - [c46]Marco Melis, Ambra Demontis, Battista Biggio, Gavin Brown, Giorgio Fumera, Fabio Roli:
Is Deep Learning Safe for Robot Vision? Adversarial Examples Against the iCub Humanoid. ICCV Workshops 2017: 751-759 - [c45]Verónica Bolón-Canedo, Konstantinos Sechidis, Noelia Sánchez-Maroño, Amparo Alonso-Betanzos, Gavin Brown:
Exploring the consequences of distributed feature selection in DNA microarray data. IJCNN 2017: 1665-1672 - [c44]Nikolaos Nikolaou, Efstratios Batzelis, Gavin Brown:
Gradient Boosting Models for Photovoltaic Power Estimation Under Partial Shading Conditions. DARE@PKDD/ECML 2017: 13-25 - [i5]Marco Melis, Ambra Demontis, Battista Biggio, Gavin Brown, Giorgio Fumera, Fabio Roli:
Is Deep Learning Safe for Robot Vision? Adversarial Examples against the iCub Humanoid. CoRR abs/1708.06939 (2017) - 2016
- [j12]Nikolaos Nikolaou, Narayanan Unny Edakunni, Meelis Kull, Peter A. Flach, Gavin Brown:
Cost-sensitive boosting algorithms: Do we really need them? Mach. Learn. 104(2-3): 359-384 (2016) - [j11]Paraskevas Yiapanis, Gavin Brown, Mikel Luján:
Compiler-Driven Software Speculation for Thread-Level Parallelism. ACM Trans. Program. Lang. Syst. 38(2): 5:1-5:45 (2016) - [c43]Konstantinos Sechidis, Matthew Sperrin, Emily Petherick, Gavin Brown:
Estimating Mutual Information in Under-Reported Variables. Probabilistic Graphical Models 2016: 449-461 - [c42]Sarah Nogueira, Gavin Brown:
Measuring the Stability of Feature Selection. ECML/PKDD (2) 2016: 442-457 - [i4]Konstantinos Sechidis, Emily Turner, Paul D. Metcalfe, James Weatherall, Gavin Brown:
Ranking Biomarkers Through Mutual Information. CoRR abs/1612.01316 (2016) - 2015
- [j10]Amir Ahmad, Gavin Brown:
Random Ordinality Ensembles: Ensemble methods for multi-valued categorical data. Inf. Sci. 296: 75-94 (2015) - [j9]Gavin Brown:
On unifiers, diversifiers, and the nature of pattern recognition. Pattern Recognit. Lett. 64: 11-20 (2015) - [c41]Anthony Kleerekoper, Michael Pappas, Adam Craig Pocock, Gavin Brown, Mikel Luján:
A scalable implementation of information theoretic feature selection for high dimensional data. IEEE BigData 2015: 339-346 - [c40]Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, Fabio Roli:
Is Feature Selection Secure against Training Data Poisoning? ICML 2015: 1689-1698 - [c39]Nikolaos Nikolaou, Gavin Brown:
Calibrating AdaBoost for Asymmetric Learning. MCS 2015: 112-124 - [c38]Sarah Nogueira, Gavin Brown:
Measuring the Stability of Feature Selection with Applications to Ensemble Methods. MCS 2015: 135-146 - [c37]Henry W. J. Reeve, Gavin Brown:
Modular Autoencoders for Ensemble Feature Extraction. FE@NIPS 2015: 242-259 - [c36]Viachaslau Sazonau, Uli Sattler, Gavin Brown:
General Terminology Induction in OWL. OWLED 2015: 1-13 - [c35]Konstantinos Sechidis, Gavin Brown:
Markov Blanket Discovery in Positive-Unlabelled and Semi-supervised Data. ECML/PKDD (1) 2015: 351-366 - [c34]Viachaslau Sazonau, Uli Sattler, Gavin Brown:
General Terminology Induction in OWL. ISWC (1) 2015: 533-550 - [i3]James Clarkson, Christos Kotselidis, Gavin Brown, Mikel Luján:
Boosting Java Performance using GPGPUs. CoRR abs/1508.06791 (2015) - [i2]Henry W. J. Reeve, Gavin Brown:
Modular Autoencoders for Ensemble Feature Extraction. CoRR abs/1511.07340 (2015) - 2014
- [j8]Amir Ahmad, Gavin Brown:
Random Projection Random Discretization Ensembles - Ensembles of Linear Multivariate Decision Trees. IEEE Trans. Knowl. Data Eng. 26(5): 1225-1239 (2014) - [c33]Viachaslau Sazonau, Uli Sattler, Gavin Brown:
Predicting OWL Reasoners: Locally or Globally? Description Logics 2014: 713-724 - [c32]Viachaslau Sazonau, Uli Sattler, Gavin Brown:
Predicting Performance of OWL Reasoners: Locally or Globally? KR 2014 - [c31]Konstantinos Sechidis, Borja Calvo, Gavin Brown:
Statistical Hypothesis Testing in Positive Unlabelled Data. ECML/PKDD (3) 2014: 66-81 - [c30]Konstantinos Sechidis, Nikolaos Nikolaou, Gavin Brown:
Information Theoretic Feature Selection in Multi-label Data through Composite Likelihood. S+SSPR 2014: 143-152 - [e1]Pasi Fränti, Gavin Brown, Marco Loog, Francisco Escolano, Marcello Pelillo:
Structural, Syntactic, and Statistical Pattern Recognition - Joint IAPR International Workshop, S+SSPR 2014, Joensuu, Finland, August 20-22, 2014. Proceedings. Lecture Notes in Computer Science 8621, Springer 2014, ISBN 978-3-662-44414-6 [contents] - 2013
- [j7]Ming-Jie Zhao, Narayanan Unny Edakunni, Adam Craig Pocock, Gavin Brown:
Beyond Fano's inequality: bounds on the optimal F-score, BER, and cost-sensitive risk and their implications. J. Mach. Learn. Res. 14(1): 1033-1090 (2013) - [j6]Paraskevas Yiapanis, Demian Rosas-Ham, Gavin Brown, Mikel Luján:
Optimizing software runtime systems for speculative parallelization. ACM Trans. Archit. Code Optim. 9(4): 39:1-39:27 (2013) - [c29]Anthony Kleerekoper, Mikel Luján, Gavin Brown:
Exploring sketches for probability estimation with sublinear memory. IEEE BigData 2013: 79-86 - [c28]Michele Filannino, Gavin Brown, Goran Nenadic:
ManTIME: Temporal expression identification and normalization in the TempEval-3 challenge. SemEval@NAACL-HLT 2013: 53-57 - [i1]Michele Filannino, Gavin Brown, Goran Nenadic:
ManTIME: Temporal expression identification and normalization in the TempEval-3 challenge. CoRR abs/1304.7942 (2013) - 2012
- [j5]Gavin Brown, Adam Craig Pocock, Ming-Jie Zhao, Mikel Luján:
Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection. J. Mach. Learn. Res. 13: 27-66 (2012) - [c27]Adam Craig Pocock, Mikel Luján, Gavin Brown:
Informative Priors for Markov Blanket Discovery. AISTATS 2012: 905-913 - 2011
- [c26]Richard John Stapenhurst, Gavin Brown:
Theoretical and empirical analysis of diversity in non-stationary learning. CIDUE 2011: 25-32 - [c25]Tim Kovacs, Narayanan Unny Edakunni, Gavin Brown:
Accuracy exponentiation in UCS and its effect on voting margins. GECCO 2011: 1251-1258 - [c24]Narayanan Unny Edakunni, Gavin Brown, Tim Kovacs:
Online, GA based mixture of experts: a probabilistic model of ucs. GECCO 2011: 1267-1274 - [c23]Jeremy Singer, George Kovoor, Gavin Brown, Mikel Luján:
Garbage collection auto-tuning for Java mapreduce on multi-cores. ISMM 2011: 109-118 - 2010
- [j4]Robi Polikar, Joseph DePasquale, Hussein Syed Mohammed, Gavin Brown, Ludmila I. Kuncheva:
Learn++.MF: A random subspace approach for the missing feature problem. Pattern Recognit. 43(11): 3817-3832 (2010) - [c22]Tom Seaton, Gavin Brown, Julian F. Miller:
Analytic Solutions to Differential Equations under Graph-Based Genetic Programming. EuroGP 2010: 232-243 - [c21]Nikolas Ioannou, Jeremy Singer, Salman Khan, Polychronis Xekalakis, Paraskevas Yiapanis, Adam Craig Pocock, Gavin Brown, Mikel Luján, Ian Watson, Marcelo Cintra:
Toward a more accurate understanding of the limits of the TLS execution paradigm. IISWC 2010: 1-12 - [c20]Jeremy Singer, Richard E. Jones, Gavin Brown, Mikel Luján:
The economics of garbage collection. ISMM 2010: 103-112 - [c19]Gavin Brown, Ludmila I. Kuncheva:
"Good" and "Bad" Diversity in Majority Vote Ensembles. MCS 2010: 124-133 - [c18]Adam Craig Pocock, Paraskevas Yiapanis, Jeremy Singer, Mikel Luján, Gavin Brown:
Online Non-stationary Boosting. MCS 2010: 205-214 - [c17]Gavin Brown:
Some Thoughts at the Interface of Ensemble Methods and Feature Selection. MCS 2010: 314 - [r1]Gavin Brown:
Ensemble Learning. Encyclopedia of Machine Learning 2010: 312-320
2000 – 2009
- 2009
- [c16]Narayanan Unny Edakunni, Tim Kovacs, Gavin Brown, James A. R. Marshall:
Modeling UCS as a mixture of experts. GECCO 2009: 1187-1194 - [c15]Amir Ahmad, Gavin Brown:
Random Ordinality Ensembles A Novel Ensemble Method for Multi-valued Categorical Data. MCS 2009: 222-231 - [c14]Manuela Zanda, Gavin Brown:
A Study of Semi-supervised Generative Ensembles. MCS 2009: 242-251 - [c13]Gavin Brown:
An Information Theoretic Perspective on Multiple Classifier Systems. MCS 2009: 344-353 - [c12]Amir Ahmad, Gavin Brown:
A Study of Random Linear Oracle Ensembles. MCS 2009: 488-497 - [c11]Jeremy Singer, Gavin Brown, Mikel Luján, Adam Craig Pocock, Paraskevas Yiapanis:
Fundamental Nano-Patterns to Characterize and Classify Java Methods. LDTA 2009: 191-204 - [c10]Gavin Brown:
A New Perspective for Information Theoretic Feature Selection. AISTATS 2009: 49-56 - 2007
- [j3]Stephen B. Furber, Gavin Brown, Joy Bose, J. Mike Cumpstey, P. Marshall, Jonathan L. Shapiro:
Sparse Distributed Memory Using Rank-Order Neural Codes. IEEE Trans. Neural Networks 18(3): 648-659 (2007) - [c9]Gavin Brown, Tim Kovacs, James A. R. Marshall:
UCSpv: principled voting in UCS rule populations. GECCO 2007: 1774-1781 - [c8]James A. R. Marshall, Gavin Brown, Tim Kovacs:
Bayesian estimation of rule accuracy in UCS. GECCO (Companion) 2007: 2831-2834 - [c7]Jeremy Singer, Gavin Brown, Ian Watson, John Cavazos:
Intelligent selection of application-specific garbage collectors. ISMM 2007: 91-102 - [c6]Manuela Zanda, Gavin Brown, Giorgio Fumera, Fabio Roli:
Ensemble Learning in Linearly Combined Classifiers Via Negative Correlation. MCS 2007: 440-449 - [c5]Jeremy Singer, Gavin Brown, Mikel Luján, Ian Watson:
Towards intelligent analysis techniques for object pretenuring. PPPJ 2007: 203-208 - 2006
- [c4]Jeremy Singer, Gavin Brown:
Return Value Prediction meets Information Theory. QAPL 2006: 137-151 - 2005
- [j2]Gavin Brown, Jeremy L. Wyatt, Rachel Harris, Xin Yao:
Diversity creation methods: a survey and categorisation. Inf. Fusion 6(1): 5-20 (2005) - [j1]Gavin Brown, Jeremy L. Wyatt, Peter Tiño:
Managing Diversity in Regression Ensembles. J. Mach. Learn. Res. 6: 1621-1650 (2005) - [c3]Gavin Brown, Jeremy L. Wyatt, Ping Sun:
Between Two Extremes: Examining Decompositions of the Ensemble Objective Function. Multiple Classifier Systems 2005: 296-305 - 2004
- [b1]Gavin Brown:
Diversity in neural network ensembles. University of Birmingham, UK, 2004 - 2003
- [c2]Gavin Brown, Jeremy L. Wyatt:
The Use of the Ambiguity Decomposition in Neural Network Ensemble Learning Methods. ICML 2003: 67-74 - [c1]Gavin Brown, Jeremy L. Wyatt:
Negative Correlation Learning and the Ambiguity Family of Ensemble Methods. Multiple Classifier Systems 2003: 266-275
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-04 01:21 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint