Stop the war!
Остановите войну!
for scientists:
default search action
Sung-Bae Cho
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j195]Ishita Agarwal, Aanchal Singh, Aran Agarwal, Shruti Mishra, Sandeep Kumar Satapathy, Sung-Bae Cho, Manas Ranjan Prusty, Sachi Nandan Mohanty:
Enhancing Road Safety and Cybersecurity in Traffic Management Systems: Leveraging the Potential of Reinforcement Learning. IEEE Access 12: 9963-9975 (2024) - [j194]Robin Inho Kee, Dahyun Nam, Seok-Jun Bu, Sung-Bae Cho:
Disentangled Prototypical Convolutional Network for Few-Shot Learning in In-Vehicle Noise Classification. IEEE Access 12: 66801-66808 (2024) - [j193]Gye-Bong Jang, Sung-Bae Cho:
Multi-Instance Attention Network for Anomaly Detection from Multivariate Time Series. Cybern. Syst. 55(6): 1417-1440 (2024) - [j192]Sarat Chandra Nayak, Satchidananda Dehuri, Sung-Bae Cho:
Expediting Prediction Accuracy with Exploration and Incorporation of Virtual Data. SN Comput. Sci. 5(5): 545 (2024) - [j191]Sarat Chandra Nayak, Subhranginee Das, Bijan Bihari Misra, Sung-Bae Cho:
Estimation of compressive strength of concrete cement using random vector functional link networks: a case study. Soft Comput. 28(15-16): 8641-8656 (2024) - [c288]Hyung-Jun Moon, Sung-Bae Cho:
Extended Generative Adversarial Imitation Learning for Autonomous Agents in Minecraft Game. CEC 2024: 1-8 - [c287]Jeongwhan Choi, Sumin Park, Hyowon Wi, Sung-Bae Cho, Noseong Park:
PANDA: Expanded Width-Aware Message Passing Beyond Rewiring. ICML 2024 - [c286]Hyung-Jun Moon, Sung-Bae Cho:
Contrastive Learning of Multivariate Gaussian Distributions of Incremental Classes for Continual Learning. IWINAC 2024: 518-527 - [i8]Chaejeong Lee, Jeongwhan Choi, Hyowon Wi, Sung-Bae Cho, Noseong Park:
Stochastic Sampling for Contrastive Views and Hard Negative Samples in Graph-based Collaborative Filtering. CoRR abs/2405.00287 (2024) - [i7]Jeongwhan Choi, Sumin Park, Hyowon Wi, Sung-Bae Cho, Noseong Park:
PANDA: Expanded Width-Aware Message Passing Beyond Rewiring. CoRR abs/2406.03671 (2024) - 2023
- [j190]Sarat Chandra Nayak, Subhranginee Das, Satchidananda Dehuri, Sung-Bae Cho:
An Elitist Artificial Electric Field Algorithm Based Random Vector Functional Link Network for Cryptocurrency Prices Forecasting. IEEE Access 11: 57693-57716 (2023) - [j189]Kyoung-Won Park, Sung-Bae Cho:
A residual graph convolutional network with spatio-temporal features for autism classification from fMRI brain images. Appl. Soft Comput. 142: 110363 (2023) - [j188]Jin-Young Kim, Sung-Bae Cho:
Predicting Residential Energy Consumption by Explainable Deep Learning with Long-Term and Short-Term Latent Variables. Cybern. Syst. 54(3): 270-285 (2023) - [j187]Hyung-Jun Moon, Seok-Jun Bu, Sung-Bae Cho:
A graph convolution network with subgraph embedding for mutagenic prediction in aromatic hydrocarbons. Neurocomputing 530: 60-68 (2023) - [j186]Seok-Jun Bu, Sung-Bae Cho:
Malware classification with disentangled representation learning of evolutionary triplet network. Neurocomputing 552: 126534 (2023) - [j185]Seok-Jun Bu, Sung-Bae Cho:
Triplet-trained graph transformer with control flow graph for few-shot malware classification. Inf. Sci. 649: 119598 (2023) - [c285]Seok-Jun Bu, Sung-Bae Cho:
Phishing URL Detection with Prototypical Neural Network Disentangled by Triplet Sampling. CISIS-ICEUTE 2023: 132-143 - [c284]Jaeil Park, Sung-Bae Cho:
Adversarial Discriminator to Mitigate Gender Bias in Abusive Language Detection. ECAI 2023: 1851-1858 - [c283]Seok-Jun Bu, Sung-Bae Cho:
A Causally Explainable Deep Learning Model with Modular Bayesian Network for Predicting Electric Energy Demand. HAIS 2023: 519-532 - [c282]Hyung-Jun Moon, Sung-Bae Cho:
Exploiting Local Information with Subgraph Embedding for Graph Neural Networks. ICDM (Workshops) 2023: 1113-1120 - [c281]Jeongwhan Choi, Seoyoung Hong, Noseong Park, Sung-Bae Cho:
GREAD: Graph Neural Reaction-Diffusion Networks. ICML 2023: 5722-5747 - [c280]Hyung-Jun Moon, Sung-Bae Cho:
A Subgraph Embedded GIN with Attention for Graph Classification. IDEAL 2023: 356-367 - [c279]Jeongwhan Choi, Seoyoung Hong, Noseong Park, Sung-Bae Cho:
Blurring-Sharpening Process Models for Collaborative Filtering. SIGIR 2023: 1096-1106 - [e10]Huimin Lu, Michael Blumenstein, Sung-Bae Cho, Cheng-Lin Liu, Yasushi Yagi, Tohru Kamiya:
Pattern Recognition - 7th Asian Conference, ACPR 2023, Kitakyushu, Japan, November 5-8, 2023, Proceedings, Part I. Lecture Notes in Computer Science 14406, Springer 2023, ISBN 978-3-031-47633-4 [contents] - [e9]Huimin Lu, Michael Blumenstein, Sung-Bae Cho, Cheng-Lin Liu, Yasushi Yagi, Tohru Kamiya:
Pattern Recognition - 7th Asian Conference, ACPR 2023, Kitakyushu, Japan, November 5-8, 2023, Proceedings, Part II. Lecture Notes in Computer Science 14407, Springer 2023, ISBN 978-3-031-47636-5 [contents] - [e8]Huimin Lu, Michael Blumenstein, Sung-Bae Cho, Cheng-Lin Liu, Yasushi Yagi, Tohru Kamiya:
Pattern Recognition - 7th Asian Conference, ACPR 2023, Kitakyushu, Japan, November 5-8, 2023, Proceedings, Part III. Lecture Notes in Computer Science 14408, Springer 2023, ISBN 978-3-031-47664-8 [contents] - [i6]Jeongwhan Choi, Hyowon Wi, Chaejeong Lee, Sung-Bae Cho, Dongha Lee, Noseong Park:
RDGCL: Reaction-Diffusion Graph Contrastive Learning for Recommendation. CoRR abs/2312.16563 (2023) - 2022
- [j184]Sarat Chandra Nayak, Satchidananda Dehuri, Sung-Bae Cho:
Intelligent Financial Forecasting With an Improved Chemical Reaction Optimization Algorithm Based Dendritic Neuron Model. IEEE Access 10: 130921-130943 (2022) - [j183]Jin-Young Kim, Sung-Bae Cho:
Obfuscated Malware Detection Using Deep Generative Model based on Global/Local Features. Comput. Secur. 112: 102501 (2022) - [j182]Gwang-Myong Go, Seok-Jun Bu, Sung-Bae Cho:
Insider attack detection in database with deep metric neural network with Monte Carlo sampling. Log. J. IGPL 30(6): 979-992 (2022) - [j181]Trilok Nath Pandey, Alok Kumar Jagadev, Satchidananda Dehuri, Sung-Bae Cho:
Prediction of exchange rate using improved particle swarm optimised radial basis function networks. Int. J. Adv. Intell. Paradigms 23(3/4): 332-356 (2022) - [j180]Jin-Young Kim, Sung-Bae Cho:
A deep neural network ensemble of multimodal signals for classifying excavator operations. Neurocomputing 470: 290-299 (2022) - [j179]Jin-Young Kim, Sung-Bae Cho:
An information theoretic approach to reducing algorithmic bias for machine learning. Neurocomputing 500: 26-38 (2022) - [j178]Enol García González, Mario Villar, Mirko Fáñez, José R. Villar, Enrique A. de la Cal, Sung-Bae Cho:
Towards effective detection of elderly falls with CNN-LSTM neural networks. Neurocomputing 500: 231-240 (2022) - [j177]Álvaro Herrero, Emilio Corchado, Michal Wozniak, Sung-Bae Cho, Slobodan Petrovic:
Cybersecurity applications of computational intelligence. Neural Comput. Appl. 34(23): 20447-20448 (2022) - [j176]Gye-Bong Jang, Sung-Bae Cho:
Cross-Domain Adaptation Using Domain Interpolation for Rotating Machinery Fault Diagnosis. IEEE Trans. Instrum. Meas. 71: 1-17 (2022) - [c278]Seoyoung Hong, Minju Jo, Seungji Kook, Jaeeun Jung, Hyowon Wi, Noseong Park, Sung-Bae Cho:
TimeKit: A Time-series Forecasting-based Upgrade Kit for Collaborative Filtering. IEEE Big Data 2022: 565-574 - [c277]Sarat Chandra Nayak, Satchidananda Dehuri, Sung-Bae Cho:
ELMVDP: extreme learning based virtual data position exploration and incorporation method for escalation of time series forecasting accuracy. OCIT 2022: 129-133 - [c276]Kyoung-Won Park, Seok-Jun Bu, Sung-Bae Cho:
Evolutionary Triplet Network of Learning Disentangled Malware Space for Malware Classification. HAIS 2022: 311-322 - [c275]Jaeil Park, Seok-Jun Bu, Sung-Bae Cho:
A Neuro-Symbolic AI System for Visual Question Answering in Pedestrian Video Sequences. HAIS 2022: 443-454 - [c274]Kyoung-Won Park, Sung-Bae Cho:
A Vision Transformer Enhanced with Patch Encoding for Malware Classification. IDEAL 2022: 289-299 - [c273]Tae-Heon Kim, Hyung-Jun Moon, Sung-Bae Cho:
Gradient Regularization with Multivariate Distribution of Previous Knowledge for Continual Learning. IDEAL 2022: 359-368 - [e7]Herwig Unger, Young-Kuk Kim, Eenjun Hwang, Sung-Bae Cho, Stephan Pareigis, Kyandoghere Kyamakya, Young-Guk Ha, Jinho Kim, Atsuyuki Morishima, Christian Wagner, Hyuk-Yoon Kwon, Yang-Sae Moon, Carson K. Leung:
IEEE International Conference on Big Data and Smart Computing, BigComp 2022, Daegu, Korea, Republic of, January 17-20, 2022. IEEE 2022, ISBN 978-1-6654-2197-3 [contents] - [i5]Seoyoung Hong, Minju Jo, Seungji Kook, Jaeeun Jung, Hyowon Wi, Noseong Park, Sung-Bae Cho:
TimeKit: A Time-series Forecasting-based Upgrade Kit for Collaborative Filtering. CoRR abs/2211.04266 (2022) - [i4]Jeongwhan Choi, Seoyoung Hong, Noseong Park, Sung-Bae Cho:
Perturbation-Recovery Method for Recommendation. CoRR abs/2211.09324 (2022) - [i3]Jeongwhan Choi, Seoyoung Hong, Noseong Park, Sung-Bae Cho:
GREAD: Graph Neural Reaction-Diffusion Equations. CoRR abs/2211.14208 (2022) - 2021
- [j175]Gye-Bong Jang, Jin-Young Kim, Sung-Bae Cho:
Cross-Domain Fault Diagnosis of Rotating Machinery Using Discriminative Feature Attention Network. IEEE Access 9: 99781-99793 (2021) - [j174]Antonio J. Tallón-Ballesteros, Sung-Bae Cho:
Extracting salient information from discarded features via attribute selection and pruning. Appl. Soft Comput. 101: 107041 (2021) - [j173]Jin-Young Kim, Sung-Bae Cho:
A systematic analysis and guidelines of graph neural networks for practical applications. Expert Syst. Appl. 184: 115466 (2021) - [j172]Jin-Young Kim, Sung-Bae Cho:
Explainable prediction of electric energy demand using a deep autoencoder with interpretable latent space. Expert Syst. Appl. 186: 115842 (2021) - [j171]Jin-Young Kim, Sung-Bae Cho:
Deep CNN transferred from VAE and GAN for classifying irritating noise in automobile. Neurocomputing 452: 395-403 (2021) - [j170]Tae-Young Kim, Sung-Bae Cho:
Optimizing CNN-LSTM neural networks with PSO for anomalous query access control. Neurocomputing 456: 666-677 (2021) - [j169]Kyung-Joong Kim, Sung-Bae Cho:
Inference of Other's Minds with Limited Information in Evolutionary Robotics. Int. J. Soc. Robotics 13(4): 661-676 (2021) - [j168]Parimal Kumar Giri, Sagar S. De, Satchidananda Dehuri, Sung-Bae Cho:
Biogeography based optimization for mining rules to assess credit risk. Intell. Syst. Account. Finance Manag. 28(1): 35-51 (2021) - [j167]Gye-Bong Jang, Sung-Bae Cho:
Feature Space Transformation for Fault Diagnosis of Rotating Machinery under Different Working Conditions. Sensors 21(4): 1417 (2021) - [c272]Seok-Jun Bu, Hyung-Jun Moon, Sung-Bae Cho:
Adversarial Signal Augmentation for CNN-LSTM to Classify Impact Noise in Automobiles. BigComp 2021: 60-64 - [c271]Kyoung-Won Park, Seok-Jun Bu, Sung-Bae Cho:
Evolutionary Optimization of Neuro-Symbolic Integration for Phishing URL Detection. HAIS 2021: 88-100 - [c270]Seok-Jun Bu, Sung-Bae Cho:
Integrating Deep Learning with First-Order Logic Programmed Constraints for Zero-Day Phishing Attack Detection. ICASSP 2021: 2685-2689 - [c269]Kyoung-Won Park, Seok-Jun Bu, Sung-Bae Cho:
Learning Dynamic Connectivity with Residual-Attention Network for Autism Classification in 4D fMRI Brain Images. IDEAL 2021: 387-396 - [c268]Hyung-Jun Moon, Seok-Jun Bu, Sung-Bae Cho:
Directional Graph Transformer-Based Control Flow Embedding for Malware Classification. IDEAL 2021: 426-436 - [c267]Hyung-Jun Moon, Seok-Jun Bu, Sung-Bae Cho:
Mutagenic Prediction for Chemical Compound Discovery with Partitioned Graph Convolution Network. SOCO 2021: 578-587 - [c266]Gye-Bong Jang, Sung-Bae Cho:
Anomaly Detection for Health Monitoring of Heavy Equipment Using Hierarchical Prediction with Correlative Feature Learning. SOCO 2021: 598-608 - [e6]Hujun Yin, David Camacho, Peter Tiño, Richard Allmendinger, Antonio J. Tallón-Ballesteros, Ke Tang, Sung-Bae Cho, Paulo Novais, Susana Nascimento:
Intelligent Data Engineering and Automated Learning - IDEAL 2021 - 22nd International Conference, IDEAL 2021, Manchester, UK, November 25-27, 2021, Proceedings. Lecture Notes in Computer Science 13113, Springer 2021, ISBN 978-3-030-91607-7 [contents] - 2020
- [j166]Bhabani Shankar Prasad Mishra, Om Pandey, Satchidananda Dehuri, Sung-Bae Cho:
Unsupervised Functional Link Artificial Neural Networks for Cluster Analysis. IEEE Access 8: 169215-169228 (2020) - [j165]Partha Pratim Sarangi, Bhabani Shankar Prasad Mishra, Satchidananda Dehuri, Sung-Bae Cho:
An evaluation of ear biometric system based on enhanced Jaya algorithm and SURF descriptors. Evol. Intell. 13(3): 443-461 (2020) - [j164]Seul-Gi Choi, Sung-Bae Cho:
Evolutionary Reinforcement Learning for Adaptively Detecting Database Intrusions. Log. J. IGPL 28(4): 449-460 (2020) - [j163]Esteban Jove, Patricia Blanco-Rodríguez, José Luís Casteleiro-Roca, Héctor Quintián, Francisco Javier Moreno Arboleda, José Antonio López-Vázquez, Benigno Antonio Rodríguez-Gómez, María del Carmen Meizoso-López, Andrés José Piñón Pazos, Francisco Javier de Cos Juez, Sung-Bae Cho, José Luís Calvo-Rolle:
Missing data imputation over academic records of electrical engineering students. Log. J. IGPL 28(4): 487-501 (2020) - [j162]Wonsup Shin, Seok-Jun Bu, Sung-Bae Cho:
3D-Convolutional Neural Network with Generative Adversarial Network and Autoencoder for Robust Anomaly Detection in Video Surveillance. Int. J. Neural Syst. 30(6): 2050034:1-2050034:15 (2020) - [j161]Seul-Gi Choi, Sung-Bae Cho:
Bayesian networks + reinforcement learning: Controlling group emotion from sensory stimuli. Neurocomputing 391: 355-364 (2020) - [j160]Sagar S. De, Satchidananda Dehuri, Sung-Bae Cho:
Research contributions published on betweenness centrality algorithm: modelling to analysis in the context of social networking. Int. J. Soc. Netw. Min. 3(1): 1-34 (2020) - [j159]Seok-Jun Bu, Sung-Bae Cho:
A convolutional neural-based learning classifier system for detecting database intrusion via insider attack. Inf. Sci. 512: 123-136 (2020) - [j158]Trilok Nath Pandey, Alok Kumar Jagadev, Satchidananda Dehuri, Sung-Bae Cho:
A novel committee machine and reviews of neural network and statistical models for currency exchange rate prediction: An experimental analysis. J. King Saud Univ. Comput. Inf. Sci. 32(9): 987-999 (2020) - [c265]Jin-Young Kim, Sung-Bae Cho:
Fair Representation for Safe Artificial Intelligence via Adversarial Learning of Unbiased Information Bottleneck. SafeAI@AAAI 2020: 105-112 - [c264]Gwang-Myong Go, Seok-Jun Bu, Sung-Bae Cho:
Detecting Intrusion via Insider Attack in Database Transactions by Learning Disentangled Representation with Deep Metric Neural Network. CISIS 2020: 460-469 - [c263]Kyunghyun Lim, Jin-Young Kim, Sung-Bae Cho:
Generative Adversarial Network with Guided Generator for Non-stationary Noise Cancelation. HAIS 2020: 3-12 - [c262]Seok-Jun Bu, Namu Park, Gue-Hwan Nam, Jae-Yong Seo, Sung-Bae Cho:
A Monte Carlo Search-Based Triplet Sampling Method for Learning Disentangled Representation of Impulsive Noise on Steering Gear. ICASSP 2020: 3057-3061 - [c261]Jin-Young Kim, Sung-Bae Cho:
Electric Energy Demand Forecasting with Explainable Time-series Modeling. ICDM (Workshops) 2020: 711-716 - [c260]Hyung-Jun Moon, Seok-Jun Bu, Sung-Bae Cho:
Learning Disentangled Representation of Residential Power Demand Peak via Convolutional-Recurrent Triplet Network. ICDM (Workshops) 2020: 757-761 - [c259]Gwang-Myong Go, Seok-Jun Bu, Sung-Bae Cho:
A Deep Metric Neural Network with Disentangled Representation for Detecting Smartphone Glass Defects. IDEAL (2) 2020: 485-494 - [c258]Seok-Jun Bu, Sung-Bae Cho:
Automated Learning of In-vehicle Noise Representation with Triplet-Loss Embedded Convolutional Beamforming Network. IDEAL (2) 2020: 507-515 - [c257]Jin-Young Kim, Sung-Bae Cho:
Interpretable Deep Learning with Hybrid Autoencoders to Predict Electric Energy Consumption. SOCO 2020: 133-143
2010 – 2019
- 2019
- [j157]Kee-Hoon Kim, Sung-Bae Cho:
An efficient concentrative photovoltaic solar system with Bayesian selection of optimal solar tracking algorithms. Appl. Soft Comput. 83 (2019) - [j156]Aleum Kim, Sung-Bae Cho:
An ensemble semi-supervised learning method for predicting defaults in social lending. Eng. Appl. Artif. Intell. 81: 193-199 (2019) - [j155]Ji-Yoon Kim, Sung-Bae Cho:
Predicting repayment of borrows in peer-to-peer social lending with deep dense convolutional network. Expert Syst. J. Knowl. Eng. 36(4) (2019) - [j154]Ch. Sanjeev Kumar Dash, Ajit Kumar Behera, Sarat Chandra Nayak, Satchidananda Dehuri, Sung-Bae Cho:
An Integrated CRO and FLANN Based Classifier for a Non-Imputed and Inconsistent Dataset. Int. J. Artif. Intell. Tools 28(3): 1950013:1-1950013:32 (2019) - [j153]Sung-Bae Cho, Jae-Min Yu:
Hierarchical modular Bayesian networks for low-power context-aware smartphone. Neurocomputing 326-327: 100-109 (2019) - [j152]Sang-Muk Jo, Sung-Bae Cho:
A personalized context-aware soft keyboard adapted by random forest trained with additional data of same cluster. Neurocomputing 353: 17-27 (2019) - [j151]Ji-Yoon Kim, Sung-Bae Cho:
Exploiting deep convolutional neural networks for a neural-based learning classifier system. Neurocomputing 354: 61-70 (2019) - [c256]Seok-Jun Bu, Sung-Bae Cho:
Classifying In-vehicle Noise from Multi-channel Sound Spectrum by Deep Beamforming Networks. IEEE BigData 2019: 3545-3552 - [c255]Jin-Young Kim, Kyunghyun Lim, Sung-Bae Cho:
Personalized POI Embedding for Successive POI Recommendation with Large-scale Smart Card Data. IEEE BigData 2019: 3583-3589 - [c254]Jin-Young Kim, Sung-Bae Cho:
Evolutionary Optimization of Hyperparameters in Deep Learning Models. CEC 2019: 831-837 - [c253]Tae-Young Kim, Sung-Bae Cho:
Particle Swarm Optimization-based CNN-LSTM Networks for Forecasting Energy Consumption. CEC 2019: 1510-1516 - [c252]Ggyebong Jang, Sung-Bae Cho:
Optimal Trajectory Path Generation for Jointed Structure of Excavator using Genetic Algorithm. CEC 2019: 1953-1959 - [c251]Tae-Young Kim, Sung-Bae Cho:
Particle Swarm Optimization-Based CNN-LSTM Networks for Anomalous Query Access Control in RBAC-Administered Model. HAIS 2019: 123-132 - [c250]Seok-Jun Bu, Sung-Bae Cho:
Genetic Algorithm-Based Deep Learning Ensemble for Detecting Database Intrusion via Insider Attack. HAIS 2019: 145-156 - [c249]Tae-Young Kim, Sung-Bae Cho:
CNN-LSTM Neural Networks for Anomalous Database Intrusion Detection in RBAC-Administered Model. ICONIP (4) 2019: 131-139 - [c248]Jin-Young Kim, Sung-Bae Cho:
Conditioned Generative Model via Latent Semantic Controlling for Learning Deep Representation of Data. IDEAL (1) 2019: 319-327 - [c247]Kyunghyun Lim, Jin-Young Kim, Sung-Bae Cho:
Non-stationary Noise Cancellation Using Deep Autoencoder Based on Adversarial Learning. IDEAL (1) 2019: 367-374 - [c246]Gwang-Myong Go, Seok-Jun Bu, Sung-Bae Cho:
A Deep Learning-Based Surface Defect Inspection System for Smartphone Glass. IDEAL (1) 2019: 375-385 - [c245]Jin-Young Kim, Sung-Bae Cho:
Unsupervised Novelty Detection in Video with Adversarial Autoencoder Based on Non-Euclidean Space. SITIS 2019: 22-27 - [c244]Wonsup Shin, Sung-Bae Cho:
Cycle-Consistent InfoGAN for Speech Enhancement in Various Background Noises. SITIS 2019: 203-208 - [c243]Jin-Young Kim, Sung-Bae Cho:
Classifying Excavator Operations with Fusion Network of Multi-modal Deep Learning Models. SOCO 2019: 25-34 - [i2]Wonsup Shin, Seok-Jun Bu, Sung-Bae Cho:
Automatic Financial Trading Agent for Low-risk Portfolio Management using Deep Reinforcement Learning. CoRR abs/1909.03278 (2019) - [i1]Wonsup Shin, Tae-Young Kim, Sung-Bae Cho:
Lifelog Patterns Analyzation using Graph Embedding based on Deep Neural Network. CoRR abs/1909.04252 (2019) - 2018
- [j150]Tae-Young Kim, Sung-Bae Cho:
Web traffic anomaly detection using C-LSTM neural networks. Expert Syst. Appl. 106: 66-76 (2018) - [j149]Trilok Nath Pandey, Alok Kumar Jagadev, Satchidananda Dehuri, Sung-Bae Cho:
A review and empirical analysis of neural networks based exchange rate prediction. Intell. Decis. Technol. 12(4): 423-439 (2018) - [j148]Harihar Kalia, Satchidananda Dehuri, Ashish Ghosh, Sung-Bae Cho:
Surrogate-Assisted Multi-objective Genetic Algorithms for Fuzzy Rule-Based Classification. Int. J. Fuzzy Syst. 20(6): 1938-1955 (2018) - [j147]Jae-Min Yu, Sung-Bae Cho:
An evolutionary agent-based framework for modeling and analysis of labor market. Neurocomputing 271: 84-94 (2018) - [j146]Jin-Young Kim, Seok-Jun Bu, Sung-Bae Cho:
Zero-day malware detection using transferred generative adversarial networks based on deep autoencoders. Inf. Sci. 460-461: 83-102 (2018) - [j145]Seul-Gi Choi, Sung-Bae Cho:
Sensor Information Fusion by Integrated AI to Control Public Emotion in a Cyber-Physical Environment. Sensors 18(11): 3767 (2018) - [j144]Jayanta Kumar Pal, Shubhra Sankar Ray, Sung-Bae Cho, Sankar K. Pal:
Fuzzy-Rough Entropy Measure and Histogram Based Patient Selection for miRNA Ranking in Cancer. IEEE ACM Trans. Comput. Biol. Bioinform. 15(2): 659-672 (2018) - [c242]Suin Seo, Sung-Bae Cho:
Applying accuracy-based LCS to detecting anomalous database access. GECCO (Companion) 2018: 1442-1448 - [c241]