default search action
Yu Cheng 0001
Person information
- affiliation (since 2023): Chinese University of Hong Kong, Department of Computer Science and Engineering, Shatin, Hong Kong
- affiliation (2023): Rice University, Houston, TX, USA
- affiliation (2018-2023): Microsoft Research, Redmond, WA, USA
- affiliation (former): IBM T. J. Watson Center, Yorktown Heights, NY, USA
- affiliation (PhD 2015): Northwestern University, Evanston, IL, USA
Other persons with the same name
- Yu Cheng — disambiguation page
- Yu Cheng 0002 — Brown University, Providence, RI, USA (and 3 more)
- Yu Cheng 0003 — Illinois Institute of Technology, Department of Electrical and Computer Engineering Technology, Chicago, IL, USA (and 2 more)
- Yu Cheng 0004 — Beihang University, School of Instrumentation Science and Opto-Electronics Engineering, Beijing, China
- Yu Cheng 0005 — Ant Financial Services Group, Hangzhou, China (and 1 more)
- Yu Cheng 0006 — Michigan State University, Department of Electrical and Computer Engineering, East Lansing, MI, USA (and 1 more)
- Yu Cheng 0007 — University of California, Merced, USA
- Yu Cheng 0009 — National University of Singapore, Yale-NUS College
- Yu Cheng 0010 — Guangdong University of Technology, School of information Engineering, Guangzhou, China
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j20]Yan Gao, Qingquan Lin, Shuang Ye, Yu Cheng, Tao Zhang, Bin Liang, Weining Lu:
Outlier detection in temporal and spatial sequences via correlation analysis based on graph neural networks. Displays 84: 102775 (2024) - [j19]Ziyu Jiang, Guoqing Zheng, Yu Cheng, Ahmed Hassan Awadallah, Zhangyang Wang:
CR-MoE: Consistent Routed Mixture-of-Experts for Scaling Contrastive Learning. Trans. Mach. Learn. Res. 2024 (2024) - [j18]Daizong Liu, Xiaoye Qu, Jianfeng Dong, Pan Zhou, Zichuan Xu, Haozhao Wang, Xing Di, Weining Lu, Yu Cheng:
Transform-Equivariant Consistency Learning for Temporal Sentence Grounding. ACM Trans. Multim. Comput. Commun. Appl. 20(4): 106:1-106:19 (2024) - [c121]Daizong Liu, Xiang Fang, Xiaoye Qu, Jianfeng Dong, He Yan, Yang Yang, Pan Zhou, Yu Cheng:
Unsupervised Domain Adaptative Temporal Sentence Localization with Mutual Information Maximization. AAAI 2024: 3567-3575 - [c120]Chenghao Fan, Wei Wei, Xiaoye Qu, Zhenyi Lu, Wenfeng Xie, Yu Cheng, Dangyang Chen:
Enhancing Low-Resource Relation Representations through Multi-View Decoupling. AAAI 2024: 17968-17976 - [c119]Zhenyi Lu, Jie Tian, Wei Wei, Xiaoye Qu, Yu Cheng, Wenfeng Xie, Dangyang Chen:
Mitigating Boundary Ambiguity and Inherent Bias for Text Classification in the Era of Large Language Models. ACL (Findings) 2024: 7841-7864 - [c118]Rikui Huang, Wei Wei, Xiaoye Qu, Shengzhe Zhang, Dangyang Chen, Yu Cheng:
Confidence is not Timeless: Modeling Temporal Validity for Rule-based Temporal Knowledge Graph Forecasting. ACL (1) 2024: 10783-10794 - [c117]Zhaochen Su, Juntao Li, Jun Zhang, Tong Zhu, Xiaoye Qu, Pan Zhou, Yan Bowen, Yu Cheng, Min Zhang:
Living in the Moment: Can Large Language Models Grasp Co-Temporal Reasoning? ACL (1) 2024: 13014-13033 - [c116]Daizong Liu, Xiaoye Qu, Xiang Fang, Jianfeng Dong, Pan Zhou, Guoshun Nan, Keke Tang, Wanlong Fang, Yu Cheng:
Towards Robust Temporal Activity Localization Learning with Noisy Labels. LREC/COLING 2024: 16630-16642 - [c115]Jihai Zhang, Xiang Lan, Xiaoye Qu, Yu Cheng, Mengling Feng, Bryan Hooi:
Learning the Unlearned: Mitigating Feature Suppression in Contrastive Learning. ECCV (83) 2024: 35-52 - [c114]Xiang Fang, Zeyu Xiong, Wanlong Fang, Xiaoye Qu, Chen Chen, Jianfeng Dong, Keke Tang, Pan Zhou, Yu Cheng, Daizong Liu:
Rethinking Weakly-Supervised Video Temporal Grounding From a Game Perspective. ECCV (45) 2024: 290-311 - [c113]Jiashuo Sun, Jihai Zhang, Yucheng Zhou, Zhaochen Su, Xiaoye Qu, Yu Cheng:
SURf: Teaching Large Vision-Language Models to Selectively Utilize Retrieved Information. EMNLP 2024: 7611-7629 - [c112]Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan, Jingqi Tong, Conghui He, Yu Cheng:
LLaMA-MoE: Building Mixture-of-Experts from LLaMA with Continual Pre-Training. EMNLP 2024: 15913-15923 - [c111]Pingzhi Li, Zhenyu Zhang, Prateek Yadav, Yi-Lin Sung, Yu Cheng, Mohit Bansal, Tianlong Chen:
Merge, Then Compress: Demystify Efficient SMoE with Hints from Its Routing Policy. ICLR 2024 - [c110]Xinyu Zhao, Xuxi Chen, Yu Cheng, Tianlong Chen:
Sparse MoE with Language Guided Routing for Multilingual Machine Translation. ICLR 2024 - [c109]Xiang Fang, Wanlong Fang, Daizong Liu, Xiaoye Qu, Jianfeng Dong, Pan Zhou, Renfu Li, Zichuan Xu, Lixing Chen, Panpan Zheng, Yu Cheng:
Not All Inputs Are Valid: Towards Open-Set Video Moment Retrieval using Language. ACM Multimedia 2024: 28-37 - [c108]Wendi Li, Wei Wei, Kaihe Xu, Wenfeng Xie, Dangyang Chen, Yu Cheng:
Reinforcement Learning with Token-level Feedback for Controllable Text Generation. NAACL-HLT (Findings) 2024: 1704-1719 - [c107]Xing Di, Yiyu Zheng, Xiaoming Liu, Yu Cheng:
ProS: Facial Omni-Representation Learning via Prototype-based Self-Distillation. WACV 2024: 6075-6086 - [i104]Jihai Zhang, Xiang Lan, Xiaoye Qu, Yu Cheng, Mengling Feng, Bryan Hooi:
Learning the Unlearned: Mitigating Feature Suppression in Contrastive Learning. CoRR abs/2402.11816 (2024) - [i103]Wendi Li, Wei Wei, Kaihe Xu, Wenfeng Xie, Dangyang Chen, Yu Cheng:
Reinforcement Learning with Token-level Feedback for Controllable Text Generation. CoRR abs/2403.11558 (2024) - [i102]Zhenyi Lu, Jie Tian, Wei Wei, Xiaoye Qu, Yu Cheng, Wenfeng Xie, Dangyang Chen:
Mitigating Boundary Ambiguity and Inherent Bias for Text Classification in the Era of Large Language Models. CoRR abs/2406.07001 (2024) - [i101]Pingzhi Li, Xiaolong Jin, Yu Cheng, Tianlong Chen:
Examining Post-Training Quantization for Mixture-of-Experts: A Benchmark. CoRR abs/2406.08155 (2024) - [i100]Zhaochen Su, Juntao Li, Jun Zhang, Tong Zhu, Xiaoye Qu, Pan Zhou, Yan Bowen, Yu Cheng, Min Zhang:
Living in the Moment: Can Large Language Models Grasp Co-Temporal Reasoning? CoRR abs/2406.09072 (2024) - [i99]Tong Zhu, Daize Dong, Xiaoye Qu, Jiacheng Ruan, Wenliang Chen, Yu Cheng:
Dynamic Data Mixing Maximizes Instruction Tuning for Mixture-of-Experts. CoRR abs/2406.11256 (2024) - [i98]Guanjie Chen, Xinyu Zhao, Tianlong Chen, Yu Cheng:
MoE-RBench: Towards Building Reliable Language Models with Sparse Mixture-of-Experts. CoRR abs/2406.11353 (2024) - [i97]Zhaochen Su, Jun Zhang, Tong Zhu, Xiaoye Qu, Juntao Li, Min Zhang, Yu Cheng:
Timo: Towards Better Temporal Reasoning for Language Models. CoRR abs/2406.14192 (2024) - [i96]Zhenyi Lu, Chenghao Fan, Wei Wei, Xiaoye Qu, Dangyang Chen, Yu Cheng:
Twin-Merging: Dynamic Integration of Modular Expertise in Model Merging. CoRR abs/2406.15479 (2024) - [i95]Chenghao Fan, Zhenyi Lu, Wei Wei, Jie Tian, Xiaoye Qu, Dangyang Chen, Yu Cheng:
On Giant's Shoulders: Effortless Weak to Strong by Dynamic Logits Fusion. CoRR abs/2406.15480 (2024) - [i94]Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan, Jingqi Tong, Conghui He, Yu Cheng:
LLaMA-MoE: Building Mixture-of-Experts from LLaMA with Continual Pre-training. CoRR abs/2406.16554 (2024) - [i93]Daizong Liu, Mingyu Yang, Xiaoye Qu, Pan Zhou, Yu Cheng, Wei Hu:
A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends. CoRR abs/2407.07403 (2024) - [i92]Zhen Tan, Daize Dong, Xinyu Zhao, Jie Peng, Yu Cheng, Tianlong Chen:
DLO: Dynamic Layer Operation for Efficient Vertical Scaling of LLMs. CoRR abs/2407.11030 (2024) - [i91]Xiaoye Qu, Mingyang Song, Wei Wei, Jianfeng Dong, Yu Cheng:
Mitigating Multilingual Hallucination in Large Vision-Language Models. CoRR abs/2408.00550 (2024) - [i90]Zhaochen Su, Jun Zhang, Xiaoye Qu, Tong Zhu, Yanshu Li, Jiashuo Sun, Juntao Li, Min Zhang, Yu Cheng:
ConflictBank: A Benchmark for Evaluating the Influence of Knowledge Conflicts in LLM. CoRR abs/2408.12076 (2024) - [i89]Xiaoye Qu, Jiashuo Sun, Wei Wei, Yu Cheng:
Look, Compare, Decide: Alleviating Hallucination in Large Vision-Language Models via Multi-View Multi-Path Reasoning. CoRR abs/2408.17150 (2024) - [i88]Jiashuo Sun, Jihai Zhang, Yucheng Zhou, Zhaochen Su, Xiaoye Qu, Yu Cheng:
SURf: Teaching Large Vision-Language Models to Selectively Utilize Retrieved Information. CoRR abs/2409.14083 (2024) - [i87]Jihai Zhang, Xiaoye Qu, Tong Zhu, Yu Cheng:
CLIP-MoE: Towards Building Mixture of Experts for CLIP with Diversified Multiplet Upcycling. CoRR abs/2409.19291 (2024) - [i86]Xiaoye Qu, Daize Dong, Xuyang Hu, Tong Zhu, Weigao Sun, Yu Cheng:
LLaMA-MoE v2: Exploring Sparsity of LLaMA from Perspective of Mixture-of-Experts with Post-Training. CoRR abs/2411.15708 (2024) - [i85]Guanjie Chen, Xinyu Zhao, Yucheng Zhou, Tianlong Chen, Yu Cheng:
Accelerating Vision Diffusion Transformers with Skip Branches. CoRR abs/2411.17616 (2024) - 2023
- [c106]Wan-Cyuan Fan, Yen-Chun Chen, Dongdong Chen, Yu Cheng, Lu Yuan, Yu-Chiang Frank Wang:
Frido: Feature Pyramid Diffusion for Complex Scene Image Synthesis. AAAI 2023: 579-587 - [c105]Daizong Liu, Xiang Fang, Pan Zhou, Xing Di, Weining Lu, Yu Cheng:
Hypotheses Tree Building for One-Shot Temporal Sentence Localization. AAAI 2023: 1640-1648 - [c104]Xuxi Chen, Tianlong Chen, Weizhu Chen, Ahmed Hassan Awadallah, Zhangyang Wang, Yu Cheng:
DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models. ACL (1) 2023: 8208-8222 - [c103]Zenghui Yuan, Pan Zhou, Kai Zou, Yu Cheng:
You Are Catching My Attention: Are Vision Transformers Bad Learners under Backdoor Attacks? CVPR 2023: 24605-24615 - [c102]Mengnan Du, Subhabrata Mukherjee, Yu Cheng, Milad Shokouhi, Xia Hu, Ahmed Hassan Awadallah:
Robustness Challenges in Model Distillation and Pruning for Natural Language Understanding. EACL 2023: 1758-1770 - [c101]Xiang Fang, Daizong Liu, Wanlong Fang, Pan Zhou, Yu Cheng, Keke Tang, Kai Zou:
Annotations Are Not All You Need: A Cross-modal Knowledge Transfer Network for Unsupervised Temporal Sentence Grounding. EMNLP (Findings) 2023: 8721-8733 - [c100]Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, Tuo Zhao:
Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning. ICLR 2023 - [c99]Daizong Liu, Xiaoye Qu, Jianfeng Dong, Guoshun Nan, Pan Zhou, Zichuan Xu, Lixing Chen, He Yan, Yu Cheng:
Filling the Information Gap between Video and Query for Language-Driven Moment Retrieval. ACM Multimedia 2023: 4190-4199 - [c98]Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie, Mintong Kang, Chenhui Zhang, Chejian Xu, Zidi Xiong, Ritik Dutta, Rylan Schaeffer, Sang T. Truong, Simran Arora, Mantas Mazeika, Dan Hendrycks, Zinan Lin, Yu Cheng, Sanmi Koyejo, Dawn Song, Bo Li:
DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models. NeurIPS 2023 - [i84]Jiahao Zhu, Daizong Liu, Pan Zhou, Xing Di, Yu Cheng, Song Yang, Wenzheng Xu, Zichuan Xu, Yao Wan, Lichao Sun, Zeyu Xiong:
Rethinking the Video Sampling and Reasoning Strategies for Temporal Sentence Grounding. CoRR abs/2301.00514 (2023) - [i83]Daizong Liu, Xiang Fang, Pan Zhou, Xing Di, Weining Lu, Yu Cheng:
Hypotheses Tree Building for One-Shot Temporal Sentence Localization. CoRR abs/2301.01871 (2023) - [i82]Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, Tuo Zhao:
Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning. CoRR abs/2303.10512 (2023) - [i81]Daizong Liu, Xiaoye Qu, Jianfeng Dong, Pan Zhou, Zichuan Xu, Haozhao Wang, Xing Di, Weining Lu, Yu Cheng:
Transform-Equivariant Consistency Learning for Temporal Sentence Grounding. CoRR abs/2305.04123 (2023) - [i80]Woojeong Jin, Subhabrata Mukherjee, Yu Cheng, Yelong Shen, Weizhu Chen, Ahmed Hassan Awadallah, Damien Jose, Xiang Ren:
GRILL: Grounded Vision-language Pre-training via Aligning Text and Image Regions. CoRR abs/2305.14676 (2023) - [i79]Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie, Mintong Kang, Chenhui Zhang, Chejian Xu, Zidi Xiong, Ritik Dutta, Rylan Schaeffer, Sang T. Truong, Simran Arora, Mantas Mazeika, Dan Hendrycks, Zinan Lin, Yu Cheng, Sanmi Koyejo, Dawn Song, Bo Li:
DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models. CoRR abs/2306.11698 (2023) - [i78]Pingzhi Li, Zhenyu Zhang, Prateek Yadav, Yi-Lin Sung, Yu Cheng, Mohit Bansal, Tianlong Chen:
Merge, Then Compress: Demystify Efficient SMoE with Hints from Its Routing Policy. CoRR abs/2310.01334 (2023) - [i77]Xing Di, Yiyu Zheng, Xiaoming Liu, Yu Cheng:
ProS: Facial Omni-Representation Learning via Prototype-based Self-Distillation. CoRR abs/2311.01929 (2023) - [i76]Chenghao Fan, Wei Wei, Xiaoye Qu, Zhenyi Lu, Wenfeng Xie, Yu Cheng, Dangyang Chen:
Improving Low-resource Prompt-based Relation Representation with Multi-view Decoupling Learning. CoRR abs/2312.17267 (2023) - 2022
- [j17]Duo Wang, Qianxia Ma, Qingyuan Zheng, Yu Cheng, Tao Zhang:
Improved local-feature-based few-shot learning with Sinkhorn metrics. Int. J. Mach. Learn. Cybern. 13(4): 1099-1114 (2022) - [j16]Tianlong Chen, Yu Cheng, Zhe Gan, Jianfeng Wang, Lijuan Wang, Jingjing Liu, Zhangyang Wang:
Adversarial Feature Augmentation and Normalization for Visual Recognition. Trans. Mach. Learn. Res. 2022 (2022) - [c97]Zhe Gan, Yen-Chun Chen, Linjie Li, Tianlong Chen, Yu Cheng, Shuohang Wang, Jingjing Liu, Lijuan Wang, Zicheng Liu:
Playing Lottery Tickets with Vision and Language. AAAI 2022: 652-660 - [c96]Daizong Liu, Xiaoye Qu, Xing Di, Yu Cheng, Zichuan Xu, Pan Zhou:
Memory-Guided Semantic Learning Network for Temporal Sentence Grounding. AAAI 2022: 1665-1673 - [c95]Daizong Liu, Xiaoye Qu, Yinzhen Wang, Xing Di, Kai Zou, Yu Cheng, Zichuan Xu, Pan Zhou:
Unsupervised Temporal Video Grounding with Deep Semantic Clustering. AAAI 2022: 1683-1691 - [c94]Jinghui Chen, Yu Cheng, Zhe Gan, Quanquan Gu, Jingjing Liu:
Efficient Robust Training via Backward Smoothing. AAAI 2022: 6222-6230 - [c93]Woojeong Jin, Yu Cheng, Yelong Shen, Weizhu Chen, Xiang Ren:
A Good Prompt Is Worth Millions of Parameters: Low-resource Prompt-based Learning for Vision-Language Models. ACL (1) 2022: 2763-2775 - [c92]Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang:
The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy. CVPR 2022: 12010-12020 - [c91]Haoxuan You, Luowei Zhou, Bin Xiao, Noel Codella, Yu Cheng, Ruochen Xu, Shih-Fu Chang, Lu Yuan:
Learning Visual Representation from Modality-Shared Contrastive Language-Image Pre-training. ECCV (27) 2022: 69-87 - [c90]Hanxue Liang, Hehe Fan, Zhiwen Fan, Yi Wang, Tianlong Chen, Yu Cheng, Zhangyang Wang:
Point Cloud Domain Adaptation via Masked Local 3D Structure Prediction. ECCV (3) 2022: 156-172 - [c89]Ziyu Jiang, Tianlong Chen, Xuxi Chen, Yu Cheng, Luowei Zhou, Lu Yuan, Ahmed Awadallah, Zhangyang Wang:
DnA: Improving Few-Shot Transfer Learning with Low-Rank Decomposition and Alignment. ECCV (20) 2022: 239-256 - [c88]Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Chen, Ahmed Awadallah, Zhangyang Wang:
Scalable Learning to Optimize: A Learned Optimizer Can Train Big Models. ECCV (23) 2022: 389-405 - [c87]Jiahao Zhu, Daizong Liu, Pan Zhou, Xing Di, Yu Cheng, Song Yang, Wenzheng Xu, Zichuan Xu, Yao Wan, Lichao Sun, Zeyu Xiong:
Rethinking the Video Sampling and Reasoning Strategies for Temporal Sentence Grounding. EMNLP (Findings) 2022: 590-600 - [c86]Yuhua Sun, Tailai Zhang, Xingjun Ma, Pan Zhou, Jian Lou, Zichuan Xu, Xing Di, Yu Cheng, Lichao Sun:
Backdoor Attacks on Crowd Counting. ACM Multimedia 2022: 5351-5360 - [c85]Boxin Wang, Chejian Xu, Xiangyu Liu, Yu Cheng, Bo Li:
SemAttack: Natural Textual Attacks via Different Semantic Spaces. NAACL-HLT (Findings) 2022: 176-205 - [c84]Hanxue Liang, Zhiwen Fan, Rishov Sarkar, Ziyu Jiang, Tianlong Chen, Kai Zou, Yu Cheng, Cong Hao, Zhangyang Wang:
M³ViT: Mixture-of-Experts Vision Transformer for Efficient Multi-task Learning with Model-Accelerator Co-design. NeurIPS 2022 - [i75]Daizong Liu, Xiaoye Qu, Xing Di, Yu Cheng, Zichuan Xu, Pan Zhou:
Memory-Guided Semantic Learning Network for Temporal Sentence Grounding. CoRR abs/2201.00454 (2022) - [i74]Daizong Liu, Xiaoye Qu, Yinzhen Wang, Xing Di, Kai Zou, Yu Cheng, Zichuan Xu, Pan Zhou:
Unsupervised Temporal Video Grounding with Deep Semantic Clustering. CoRR abs/2201.05307 (2022) - [i73]Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang:
The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy. CoRR abs/2203.06345 (2022) - [i72]Boxin Wang, Chejian Xu, Xiangyu Liu, Yu Cheng, Bo Li:
SemAttack: Natural Textual Attacks via Different Semantic Spaces. CoRR abs/2205.01287 (2022) - [i71]Yuhua Sun, Tailai Zhang, Xingjun Ma, Pan Zhou, Jian Lou, Zichuan Xu, Xing Di, Yu Cheng, Lichao Sun:
Backdoor Attacks on Crowd Counting. CoRR abs/2207.05641 (2022) - [i70]Haoxuan You, Luowei Zhou, Bin Xiao, Noel Codella, Yu Cheng, Ruochen Xu, Shih-Fu Chang, Lu Yuan:
Learning Visual Representation from Modality-Shared Contrastive Language-Image Pre-training. CoRR abs/2207.12661 (2022) - [i69]Wan-Cyuan Fan, Yen-Chun Chen, Dongdong Chen, Yu Cheng, Lu Yuan, Yu-Chiang Frank Wang:
Frido: Feature Pyramid Diffusion for Complex Scene Image Synthesis. CoRR abs/2208.13753 (2022) - [i68]Hanxue Liang, Zhiwen Fan, Rishov Sarkar, Ziyu Jiang, Tianlong Chen, Kai Zou, Yu Cheng, Cong Hao, Zhangyang Wang:
M3ViT: Mixture-of-Experts Vision Transformer for Efficient Multi-task Learning with Model-Accelerator Co-design. CoRR abs/2210.14793 (2022) - 2021
- [j15]Duo Wang, Ming Li, Nir Ben-Shlomo, C. Eduardo Corrales, Yu Cheng, Tao Zhang, Jagadeesan Jayender:
A novel dual-network architecture for mixed-supervised medical image segmentation. Comput. Medical Imaging Graph. 89: 101841 (2021) - [j14]Yifan Jiang, Xinyu Gong, Ding Liu, Yu Cheng, Chen Fang, Xiaohui Shen, Jianchao Yang, Pan Zhou, Zhangyang Wang:
EnlightenGAN: Deep Light Enhancement Without Paired Supervision. IEEE Trans. Image Process. 30: 2340-2349 (2021) - [j13]Haoran You, Yu Cheng, Tianheng Cheng, Chun-Liang Li, Pan Zhou:
Bayesian Cycle-Consistent Generative Adversarial Networks via Marginalizing Latent Sampling. IEEE Trans. Neural Networks Learn. Syst. 32(10): 4389-4403 (2021) - [c83]Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan, Zhangyang Wang, Jingjing Liu:
EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets. ACL/IJCNLP (1) 2021: 2195-2207 - [c82]Shuohang Wang, Luowei Zhou, Zhe Gan, Yen-Chun Chen, Yuwei Fang, Siqi Sun, Yu Cheng, Jingjing Liu:
Cluster-Former: Clustering-based Sparse Transformer for Question Answering. ACL/IJCNLP (Findings) 2021: 3958-3968 - [c81]Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu, Jingjing Liu:
UC2: Universal Cross-Lingual Cross-Modal Vision-and-Language Pre-Training. CVPR 2021: 4155-4165 - [c80]Daizong Liu, Xiaoye Qu, Jianfeng Dong, Pan Zhou, Yu Cheng, Wei Wei, Zichuan Xu, Yulai Xie:
Context-Aware Biaffine Localizing Network for Temporal Sentence Grounding. CVPR 2021: 11235-11244 - [c79]Boxin Wang, Shuohang Wang, Yu Cheng, Zhe Gan, Ruoxi Jia, Bo Li, Jingjing Liu:
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective. ICLR 2021 - [c78]Shuyang Dai, Zhe Gan, Yu Cheng, Chenyang Tao, Lawrence Carin, Jingjing Liu:
APo-VAE: Text Generation in Hyperbolic Space. NAACL-HLT 2021: 416-431 - [c77]Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang:
Chasing Sparsity in Vision Transformers: An End-to-End Exploration. NeurIPS 2021: 19974-19988 - [c76]Tianlong Chen, Yu Cheng, Zhe Gan, Jingjing Liu, Zhangyang Wang:
Data-Efficient GAN Training Beyond (Just) Augmentations: A Lottery Ticket Perspective. NeurIPS 2021: 20941-20955 - [c75]Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan, Jingjing Liu, Zhangyang Wang:
The Elastic Lottery Ticket Hypothesis. NeurIPS 2021: 26609-26621 - [c74]Linjie Li, Jie Lei, Zhe Gan, Licheng Yu, Yen-Chun Chen, Rohit Pillai, Yu Cheng, Luowei Zhou, Xin Wang, William Yang Wang, Tamara L. Berg, Mohit Bansal, Jingjing Liu, Lijuan Wang, Zicheng Liu:
VALUE: A Multi-Task Benchmark for Video-and-Language Understanding Evaluation. NeurIPS Datasets and Benchmarks 2021 - [c73]Boxin Wang, Chejian Xu, Shuohang Wang, Zhe Gan, Yu Cheng, Jianfeng Gao, Ahmed Hassan Awadallah, Bo Li:
Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models. NeurIPS Datasets and Benchmarks 2021 - [c72]Chen Zhu, Yu Cheng, Zhe Gan, Furong Huang, Jingjing Liu, Tom Goldstein:
MaxVA: Fast Adaptation of Step Sizes by Maximizing Observed Variance of Gradients. ECML/PKDD (3) 2021: 628-643 - [c71]Wenhu Chen, Zhe Gan, Linjie Li, Yu Cheng, William Yang Wang, Jingjing Liu:
Meta Module Network for Compositional Visual Reasoning. WACV 2021: 655-664 - [i67]Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan, Zhangyang Wang, Jingjing Liu:
EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets. CoRR abs/2101.00063 (2021) - [i66]Tianlong Chen, Yu Cheng, Zhe Gan, Jingjing Liu, Zhangyang Wang:
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly. CoRR abs/2103.00397 (2021) - [i65]Daizong Liu, Xiaoye Qu, Jianfeng Dong, Pan Zhou, Yu Cheng, Wei Wei, Zichuan Xu, Yulai Xie:
Context-aware Biaffine Localizing Network for Temporal Sentence Grounding. CoRR abs/2103.11555 (2021) - [i64]Tianlong Chen, Yu Cheng, Zhe Gan, Jianfeng Wang, Lijuan Wang, Zhangyang Wang, Jingjing Liu:
Adversarial Feature Augmentation and Normalization for Visual Recognition. CoRR abs/2103.12171 (2021) - [i63]Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan, Jingjing Liu, Zhangyang Wang:
The Elastic Lottery Ticket Hypothesis. CoRR abs/2103.16547 (2021) - [i62]Luowei Zhou, Jingjing Liu, Yu Cheng, Zhe Gan, Lei Zhang:
CUPID: Adaptive Curation of Pre-training Data for Video-and-Language Representation Learning. CoRR abs/2104.00285 (2021) - [i61]Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu, Jingjing Liu:
UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training. CoRR abs/2104.00332 (2021) - [i60]Zhe Gan, Yen-Chun Chen, Linjie Li, Tianlong Chen, Yu Cheng, Shuohang Wang, Jingjing Liu:
Playing Lottery Tickets with Vision and Language. CoRR abs/2104.11832 (2021) - [i59]Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang:
Chasing Sparsity in Vision Transformers: An End-to-End Exploration. CoRR abs/2106.04533 (2021) - [i58]Linjie Li, Jie Lei, Zhe Gan, Licheng Yu, Yen-Chun Chen, Rohit Pillai, Yu Cheng, Luowei Zhou, Xin Eric Wang, William Yang Wang, Tamara Lee Berg, Mohit Bansal, Jingjing Liu, Lijuan Wang, Zicheng Liu:
VALUE: A Multi-Task Benchmark for Video-and-Language Understanding Evaluation. CoRR abs/2106.04632 (2021) - [i57]Mengnan Du, Subhabrata Mukherjee, Yu Cheng, Milad Shokouhi, Xia Hu, Ahmed Hassan Awadallah:
What do Compressed Large Language Models Forget? Robustness Challenges in Model Compression. CoRR abs/2110.08419 (2021) - [i56]