


Остановите войну!
for scientists:


default search action
Gunnar Rätsch
Person information

- affiliation: ETH Zurich, Switzerland
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j57]Olga Mineeva, Daniel Danciu, Bernhard Schölkopf, Ruth E. Ley, Gunnar Rätsch, Nicholas D. Youngblut
:
ResMiCo: Increasing the quality of metagenome-assembled genomes with deep learning. PLoS Comput. Biol. 19(5) (2023) - [c84]Alexander Immer, Tycho F. A. van der Ouderaa, Mark van der Wilk, Gunnar Rätsch, Bernhard Schölkopf:
Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels. ICML 2023: 14333-14352 - [c83]Hugo Yèche, Alizée Pace, Gunnar Rätsch, Rita Kuznetsova:
Temporal Label Smoothing for Early Event Prediction. ICML 2023: 39913-39938 - [i48]Kouroche Bouchiat, Alexander Immer, Hugo Yèche, Gunnar Rätsch, Vincent Fortuin:
Laplace-Approximated Neural Additive Models: Improving Interpretability with Bayesian Inference. CoRR abs/2305.16905 (2023) - [i47]Alizée Pace, Hugo Yèche, Bernhard Schölkopf, Gunnar Rätsch, Guy Tennenholtz:
Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding. CoRR abs/2306.01157 (2023) - [i46]Alexander Immer, Tycho F. A. van der Ouderaa, Mark van der Wilk, Gunnar Rätsch, Bernhard Schölkopf:
Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels. CoRR abs/2306.03968 (2023) - [i45]Manuel Burger, Gunnar Rätsch, Rita Kuznetsova:
Multi-modal Graph Learning over UMLS Knowledge Graphs. CoRR abs/2307.04461 (2023) - [i44]Alexandru Meterez, Amir Joudaki, Francesco Orabona, Alexander Immer, Gunnar Rätsch, Hadi Daneshmand:
Towards Training Without Depth Limits: Batch Normalization Without Gradient Explosion. CoRR abs/2310.02012 (2023) - [i43]Yurong Hu, Manuel Burger, Gunnar Rätsch, Rita Kuznetsova:
Language Model Training Paradigms for Clinical Feature Embeddings. CoRR abs/2311.00768 (2023) - [i42]Samyak Jain, Manuel Burger, Gunnar Rätsch, Rita Kuznetsova:
Knowledge Graph Representations to enhance Intensive Care Time-Series Predictions. CoRR abs/2311.07180 (2023) - [i41]Rita Kuznetsova, Alizée Pace, Manuel Burger, Hugo Yèche, Gunnar Rätsch:
On the Importance of Step-wise Embeddings for Heterogeneous Clinical Time-Series. CoRR abs/2311.08902 (2023) - 2022
- [j56]Hana Rozhonová, Daniel Danciu, Stefan Stark
, Gunnar Rätsch
, André Kahles
, Kjong-Van Lehmann
:
SECEDO: SNV-based subclone detection using ultra-low coverage single-cell DNA sequencing. Bioinform. 38(18): 4293-4300 (2022) - [j55]Kjong-Van Lehmann
, André Kahles
, Magdalena Murr, Gunnar Rätsch
:
RNA Instant Quality Check: Alignment-Free RNA-Degradation Detection. J. Comput. Biol. 29(8): 857-866 (2022) - [c82]Gideon Dresdner, Maria-Luiza Vladarean, Gunnar Rätsch, Francesco Locatello, Volkan Cevher
, Alp Yurtsever:
Faster One-Sample Stochastic Conditional Gradient Method for Composite Convex Minimization. AISTATS 2022: 8439-8457 - [c81]Vincent Fortuin
, Adrià Garriga-Alonso, Sebastian W. Ober, Florian Wenzel, Gunnar Rätsch, Richard E. Turner, Mark van der Wilk, Laurence Aitchison:
Bayesian Neural Network Priors Revisited. ICLR 2022 - [c80]Alexander Immer, Tycho F. A. van der Ouderaa, Gunnar Rätsch, Vincent Fortuin, Mark van der Wilk:
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations. NeurIPS 2022 - [c79]Mikhail Karasikov
, Harun Mustafa
, Gunnar Rätsch
, André Kahles
:
Lossless Indexing with Counting de Bruijn Graphs. RECOMB 2022: 374-376 - [i40]Alexander Immer, Tycho F. A. van der Ouderaa, Vincent Fortuin, Gunnar Rätsch, Mark van der Wilk:
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations. CoRR abs/2202.10638 (2022) - [i39]Gideon Dresdner, Maria-Luiza Vladarean, Gunnar Rätsch, Francesco Locatello, Volkan Cevher, Alp Yurtsever:
Faster One-Sample Stochastic Conditional Gradient Method for Composite Convex Minimization. CoRR abs/2202.13212 (2022) - [i38]Hugo Yèche, Alizée Pace, Gunnar Rätsch, Rita Kuznetsova:
Temporal Label Smoothing for Early Prediction of Adverse Events. CoRR abs/2208.13764 (2022) - [i37]Severin Husmann, Hugo Yèche, Gunnar Rätsch, Rita Kuznetsova:
On the Importance of Clinical Notes in Multi-modal Learning for EHR Data. CoRR abs/2212.03044 (2022) - 2021
- [j54]Vincent Fortuin
, Gideon Dresdner, Heiko Strathmann
, Gunnar Rätsch:
Sparse Gaussian Processes on Discrete Domains. IEEE Access 9: 76750-76758 (2021) - [j53]Daniel Danciu, Mikhail Karasikov, Harun Mustafa
, André Kahles, Gunnar Rätsch:
Topology-based sparsification of graph annotations. Bioinform. 37(Supplement): 169-176 (2021) - [j52]Linda K. Sundermann
, Jeff Wintersinger
, Gunnar Rätsch, Jens Stoye
, Quaid Morris:
Reconstructing tumor evolutionary histories and clone trees in polynomial-time with SubMARine. PLoS Comput. Biol. 17(1) (2021) - [c78]Metod Jazbec, Matthew Ashman, Vincent Fortuin, Michael Pearce, Stephan Mandt, Gunnar Rätsch:
Scalable Gaussian Process Variational Autoencoders. AISTATS 2021: 3511-3519 - [c77]Laura Manduchi, Matthias Hüser, Martin Faltys, Julia E. Vogt, Gunnar Rätsch, Vincent Fortuin:
T-DPSOM: an interpretable clustering method for unsupervised learning of patient health states. CHIL 2021: 236-245 - [c76]Alexander Immer, Matthias Bauer, Vincent Fortuin, Gunnar Rätsch, Mohammad Emtiyaz Khan:
Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning. ICML 2021: 4563-4573 - [c75]Hugo Yèche, Gideon Dresdner, Francesco Locatello, Matthias Hüser, Gunnar Rätsch:
Neighborhood Contrastive Learning Applied to Online Patient Monitoring. ICML 2021: 11964-11974 - [c74]Gideon Dresdner, Saurav Shekhar, Fabian Pedregosa, Francesco Locatello, Gunnar Rätsch:
Boosting Variational Inference With Locally Adaptive Step-Sizes. IJCAI 2021: 2337-2343 - [c73]Hugo Yèche, Rita Kuznetsova, Marc Zimmermann, Matthias Hüser, Xinrui Lyu, Martin Faltys, Gunnar Rätsch:
HiRID-ICU-Benchmark - A Comprehensive Machine Learning Benchmark on High-resolution ICU Data. NeurIPS Datasets and Benchmarks 2021 - [c72]Jonathan Heitz, Joanna Ficek, Martin Faltys, Tobias M. Merz, Gunnar Rätsch, Matthias Hüser:
WRSE - a non-parametric weighted-resolution ensemble for predicting individual survival distributions in the ICU. SPACA 2021: 54-69 - [i36]Simon Bing, Vincent Fortuin, Gunnar Rätsch:
On Disentanglement in Gaussian Process Variational Autoencoders. CoRR abs/2102.05507 (2021) - [i35]Vincent Fortuin, Adrià Garriga-Alonso, Florian Wenzel, Gunnar Rätsch, Richard E. Turner, Mark van der Wilk, Laurence Aitchison:
Bayesian Neural Network Priors Revisited. CoRR abs/2102.06571 (2021) - [i34]Alexander Immer, Matthias Bauer, Vincent Fortuin, Gunnar Rätsch, Mohammad Emtiyaz Khan:
Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning. CoRR abs/2104.04975 (2021) - [i33]Matthias Hüser, Martin Faltys, Xinrui Lyu, Chris Barber, Stephanie L. Hyland, Tobias M. Merz, Gunnar Rätsch:
Early prediction of respiratory failure in the intensive care unit. CoRR abs/2105.05728 (2021) - [i32]Gideon Dresdner, Saurav Shekhar, Fabian Pedregosa, Francesco Locatello, Gunnar Rätsch:
Boosting Variational Inference With Locally Adaptive Step-Sizes. CoRR abs/2105.09240 (2021) - [i31]Hugo Yèche, Gideon Dresdner, Francesco Locatello, Matthias Hüser, Gunnar Rätsch:
Neighborhood Contrastive Learning Applied to Online Patient Monitoring. CoRR abs/2106.05142 (2021) - [i30]Hugo Yèche, Rita Kuznetsova, Marc Zimmermann, Matthias Hüser, Xinrui Lyu, Martin Faltys, Gunnar Rätsch:
HiRID-ICU-Benchmark - A Comprehensive Machine Learning Benchmark on High-resolution ICU Data. CoRR abs/2111.08536 (2021) - 2020
- [j51]Xinrui Lyu, Jean Garret, Gunnar Rätsch, Kjong-Van Lehmann
:
Mutational signature learning with supervised negative binomial non-negative matrix factorization. Bioinform. 36(Supplement-1): i154-i160 (2020) - [j50]Mikhail Karasikov, Harun Mustafa
, Amir Joudaki, Sara Javadzadeh-No, Gunnar Rätsch, André Kahles:
Sparse Binary Relation Representations for Genome Graph Annotation. J. Comput. Biol. 27(4): 626-639 (2020) - [j49]Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem:
A Sober Look at the Unsupervised Learning of Disentangled Representations and their Evaluation. J. Mach. Learn. Res. 21: 209:1-209:62 (2020) - [j48]Claudia Calabrese
, Natalie R. Davidson
, Deniz Demircioglu
, Nuno A. Fonseca
, Yao He, André Kahles, Kjong-Van Lehmann
, Fenglin Liu
, Yuichi Shiraishi, Cameron M. Soulette, Lara Urban
, Liliana Greger, Siliang Li, Dongbing Liu
, Marc D. Perry
, Qian Xiang, Fan Zhang, Junjun Zhang, Peter Bailey
, Serap Erkek
, Katherine A. Hoadley, Yong Hou, Matthew R. Huska, Helena Kilpinen
, Jan O. Korbel, Maximillian G. Marin, Julia Markowski, Tannistha Nandi, Qiang Pan-Hammarström
, Chandra Sekhar Pedamallu, Reiner Siebert, Stefan G. Stark, Hong Su, Patrick Tan, Sebastian M. Waszak
, Christina K. Yung, Shida Zhu, Philip Awadalla, Matthew Meyerson
, B. F. Francis Ouellette
, Kui Wu
, Huanming Yang
, Samirkumar B. Amin
, Aurélien Chateigner, Isidro Cortés-Ciriano
, Brian Craft, Milana Frenkel-Morgenstern
, Mary Goldman, Ekta Khurana, Fabien C. Lamaze
, Chang Li, Xiaobo Li
, Xinyue Li, Xingmin Liu, Morten Muhlig Nielsen, Akinyemi I. Ojesina, Peter J. Park, Jakob Skou Pedersen
, Bin Tean Teh, Jian Wang, Heng Xiong, Sergei Yakneen
, Chen Ye, Xiuqing Zhang, Liangtao Zheng, Jingchun Zhu, Chad Creighton, Jonathan Göke
, Roland F. Schwarz
, Oliver Stegle
, Zemin Zhang, Alvis Brazma
, Gunnar Rätsch, Angela N. Brooks:
Genomic basis for RNA alterations in cancer. Nat. 578(7793): 129-136 (2020) - [c71]Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem:
A Commentary on the Unsupervised Learning of Disentangled Representations. AAAI 2020: 13681-13684 - [c70]Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, Stephan Mandt:
GP-VAE: Deep Probabilistic Time Series Imputation. AISTATS 2020: 1651-1661 - [c69]Francesco Locatello, Michael Tschannen, Stefan Bauer, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem:
Disentangling Factors of Variations Using Few Labels. ICLR 2020 - [c68]Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, Michael Tschannen:
Weakly-Supervised Disentanglement Without Compromises. ICML 2020: 6348-6359 - [c67]Maciej Besta, Raghavendra Kanakagiri, Harun Mustafa
, Mikhail Karasikov, Gunnar Rätsch, Torsten Hoefler, Edgar Solomonik:
Communication-Efficient Jaccard similarity for High-Performance Distributed Genome Comparisons. IPDPS 2020: 1122-1132 - [c66]Adrian Egli, Manuel Battegay, Andrea C. Büchler
, Peter Bühlmann, Thierry Calandra, Philippe Eckert, Hansjakob Furrer, Gilbert Greub, Stephan M. Jakob, Laurent Kaiser, Stephen L. Leib
, Stephan Marsch, Nicolai Meinshausen, Jean-Luc Pagani, Jerome Pugin, Gunnar Rätsch, Jacques Schrenzel, Reto Schüpbach, Martin Siegemund, Nicola Zamboni
, Reinhard Zbinden, Annelies Zinkernagel
, Karsten M. Borgwardt
:
SPHN/PHRT: Forming a Swiss-Wide Infrastructure for Data-Driven Sepsis Research. MIE 2020: 1163-1167 - [c65]Pesho Ivanov
, Benjamin Bichsel
, Harun Mustafa
, André Kahles
, Gunnar Rätsch
, Martin T. Vechev
:
AStarix: Fast and Optimal Sequence-to-Graph Alignment. RECOMB 2020: 104-119 - [i29]Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, Michael Tschannen:
Weakly-Supervised Disentanglement Without Compromises. CoRR abs/2002.02886 (2020) - [i28]Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem:
A Commentary on the Unsupervised Learning of Disentangled Representations. CoRR abs/2007.14184 (2020) - [i27]Metod Jazbec, Vincent Fortuin, Michael Pearce, Stephan Mandt, Gunnar Rätsch:
Scalable Gaussian Process Variational Autoencoders. CoRR abs/2010.13472 (2020) - [i26]Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem:
A Sober Look at the Unsupervised Learning of Disentangled Representations and their Evaluation. CoRR abs/2010.14766 (2020) - [i25]Jonathan Heitz, Joanna Ficek, Martin Faltys, Tobias M. Merz, Gunnar Rätsch, Matthias Hüser:
WRSE - a non-parametric weighted-resolution ensemble for predicting individual survival distributions in the ICU. CoRR abs/2011.00865 (2020)
2010 – 2019
- 2019
- [j47]Harun Mustafa
, Ingo Schilken, Mikhail Karasikov
, Carsten Eickhoff, Gunnar Rätsch
, André Kahles
:
Dynamic compression schemes for graph coloring. Bioinform. 35(3): 407-414 (2019) - [c64]Vincent Fortuin
, Matthias Hüser, Francesco Locatello, Heiko Strathmann, Gunnar Rätsch:
SOM-VAE: Interpretable Discrete Representation Learning on Time Series. ICLR (Poster) 2019 - [c63]Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem:
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations. RML@ICLR 2019 - [c62]Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem:
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations. ICML 2019: 4114-4124 - [c61]Mikhail Karasikov
, Harun Mustafa
, Amir Joudaki
, Sara Javadzadeh-No
, Gunnar Rätsch
, André Kahles
:
Sparse Binary Relation Representations for Genome Graph Annotation. RECOMB 2019: 120-135 - [i24]Vincent Fortuin, Gunnar Rätsch:
Deep Mean Functions for Meta-Learning in Gaussian Processes. CoRR abs/1901.08098 (2019) - [i23]Stephanie L. Hyland, Martin Faltys, Matthias Hüser, Xinrui Lyu, Thomas Gumbsch, Cristóbal Esteban, Christian Bock, Max Horn, Michael Moor, Bastian Rieck
, Marc Zimmermann, Dean A. Bodenham, Karsten M. Borgwardt, Gunnar Rätsch, Tobias M. Merz:
Machine learning for early prediction of circulatory failure in the intensive care unit. CoRR abs/1904.07990 (2019) - [i22]Stefan G. Stark, Stephanie L. Hyland, Melanie Fernandes Pradier, Kjong-Van Lehmann, Andreas Wicki, Fernando Pérez-Cruz, Julia E. Vogt, Gunnar Rätsch:
Unsupervised Extraction of Phenotypes from Cancer Clinical Notes for Association Studies. CoRR abs/1904.12973 (2019) - [i21]Francesco Locatello, Michael Tschannen, Stefan Bauer, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem:
Disentangling Factors of Variation Using Few Labels. CoRR abs/1905.01258 (2019) - [i20]Vincent Fortuin, Gunnar Rätsch, Stephan Mandt:
Multivariate Time Series Imputation with Variational Autoencoders. CoRR abs/1907.04155 (2019) - [i19]Andreas Georgiou, Vincent Fortuin, Harun Mustafa
, Gunnar Rätsch:
Deep Multiple Instance Learning for Taxonomic Classification of Metagenomic read sets. CoRR abs/1909.13146 (2019) - [i18]Laura Manduchi, Matthias Hüser, Gunnar Rätsch, Vincent Fortuin:
Variational PSOM: Deep Probabilistic Clustering with Self-Organizing Maps. CoRR abs/1910.01590 (2019) - [i17]Maciej Besta, Raghavendra Kanakagiri, Harun Mustafa, Mikhail Karasikov, Gunnar Rätsch, Torsten Hoefler, Edgar Solomonik:
Communication-Efficient Jaccard Similarity for High-Performance Distributed Genome Comparisons. CoRR abs/1911.04200 (2019) - 2018
- [c60]Francesco Locatello, Rajiv Khanna, Joydeep Ghosh, Gunnar Rätsch:
Boosting Variational Inference: an Optimization Perspective. AISTATS 2018: 464-472 - [c59]Stephanie L. Hyland, Martin Faltys, Matthias Hüser, Xinrui Lyu, Cristóbal Esteban, Gunnar Rätsch, Tobias Merz:
A Machine Learning-based Early Warning System for Circulatory System Deterioration in Intensive Care Unit Patients. AMIA 2018 - [c58]Francesco Locatello, Damien Vincent, Ilya O. Tolstikhin, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf:
Clustering Meets Implicit Generative Models. ICLR (Workshop) 2018 - [c57]Francesco Locatello, Anant Raj, Sai Praneeth Karimireddy, Gunnar Rätsch, Bernhard Schölkopf, Sebastian U. Stich, Martin Jaggi:
On Matching Pursuit and Coordinate Descent. ICML 2018: 3204-3213 - [c56]Stephanie L. Hyland, Matthias Hüser, Xinrui Lyu, Martin Faltys, Tobias Merz, Gunnar Rätsch:
Predicting circulatory system deterioration in intensive care unit patients. AIH@IJCAI 2018: 87-92 - [c55]Francesco Locatello, Gideon Dresdner, Rajiv Khanna, Isabel Valera
, Gunnar Rätsch:
Boosting Black Box Variational Inference. NeurIPS 2018: 3405-3415 - [i16]Francesco Locatello, Anant Raj, Sai Praneeth Karimireddy, Gunnar Rätsch, Bernhard Schölkopf, Sebastian U. Stich, Martin Jaggi:
Revisiting First-Order Convex Optimization Over Linear Spaces. CoRR abs/1803.09539 (2018) - [i15]Francesco Locatello, Damien Vincent, Ilya O. Tolstikhin, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf:
Clustering Meets Implicit Generative Models. CoRR abs/1804.11130 (2018) - [i14]Francesco Locatello, Gideon Dresdner, Rajiv Khanna, Isabel Valera, Gunnar Rätsch:
Boosting Black Box Variational Inference. CoRR abs/1806.02185 (2018) - [i13]Vincent Fortuin, Matthias Hüser, Francesco Locatello, Heiko Strathmann, Gunnar Rätsch:
Deep Self-Organization: Interpretable Discrete Representation Learning on Time Series. CoRR abs/1806.02199 (2018) - [i12]Vincent Fortuin, Gideon Dresdner, Heiko Strathmann, Gunnar Rätsch:
Scalable Gaussian Processes on Discrete Domains. CoRR abs/1810.10368 (2018) - [i11]Xinrui Lyu, Matthias Hüser, Stephanie L. Hyland, George Zerveas
, Gunnar Rätsch:
Improving Clinical Predictions through Unsupervised Time Series Representation Learning. CoRR abs/1812.00490 (2018) - 2017
- [j46]Yi Zhong, Theofanis Karaletsos, Philipp Drewe, Vipin T. Sreedharan, David Kuo
, Kamini Singh, Hans-Guido Wendel, Gunnar Rätsch
:
RiboDiff: detecting changes of mRNA translation efficiency from ribosome footprints. Bioinform. 33(1): 139-141 (2017) - [c54]Stephanie L. Hyland, Gunnar Rätsch:
Learning Unitary Operators with Help From u(n). AAAI 2017: 2050-2058 - [c53]Francesco Locatello, Michael Tschannen, Gunnar Rätsch, Martin Jaggi:
Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees. NIPS 2017: 773-784 - [i10]Francesco Locatello, Michael Tschannen, Gunnar Rätsch, Martin Jaggi:
Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees. CoRR abs/1705.11041 (2017) - [i9]Cristóbal Esteban, Stephanie L. Hyland, Gunnar Rätsch:
Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs. CoRR abs/1706.02633 (2017) - [i8]Francesco Locatello, Rajiv Khanna, Joydeep Ghosh, Gunnar Rätsch:
Boosting Variational Inference: an Optimization Perspective. CoRR abs/1708.01733 (2017) - 2016
- [j45]André Kahles, Jonas Behr, Gunnar Rätsch
:
MMR: a tool for read multi-mapper resolution. Bioinform. 32(5): 770-772 (2016) - [j44]Kana Shimizu, Koji Nuida
, Gunnar Rätsch
:
Efficient privacy-preserving string search and an application in genomics. Bioinform. 32(11): 1652-1661 (2016) - [j43]André Kahles, Cheng Soon Ong, Yi Zhong, Gunnar Rätsch
:
SplAdder: identification, quantification and testing of alternative splicing events from RNA-Seq data. Bioinform. 32(12): 1840-1847 (2016) - [c52]Stephanie L. Hyland, Theofanis Karaletsos, Gunnar Rätsch:
A Generative Model of Words and Relationships from Multiple Sources. AAAI 2016: 2622-2629 - [c51]Theofanis Karaletsos, Serge J. Belongie, Gunnar Rätsch:
When crowds hold privileges: Bayesian unsupervised representation learning with oracle constraints. ICLR (Poster) 2016 - [i7]Stephanie L. Hyland, Theofanis Karaletsos, Gunnar Rätsch:
Knowledge Transfer with Medical Language Embeddings. CoRR abs/1602.03551 (2016) - [i6]Stephanie L. Hyland, Gunnar Rätsch:
Learning Unitary Operators with Help From u(n). CoRR abs/1607.04903 (2016) - 2015
- [j42]Yi Zhong, Philipp Drewe, Andrew L. Wolfe, Kamini Singh, Hans-Guido Wendel, Gunnar Rätsch
:
Protein translational control and its contribution to oncogenesis revealed by computational methods. BMC Bioinform. 16(S-2): A6 (2015) - [j41]Julia E. Vogt, Marius Kloft, Stefan Stark, Sudhir Raman, Sandhya Prabhakaran, Volker Roth
, Gunnar Rätsch
:
Probabilistic clustering of time-evolving distance data. Mach. Learn. 100(2-3): 635-654 (2015) - [c50]Marina M.-C. Vidovic, Nico Görnitz, Klaus-Robert Müller
, Gunnar Rätsch
, Marius Kloft:
Opening the Black Box: Revealing Interpretable Sequence Motifs in Kernel-Based Learning Algorithms. ECML/PKDD (2) 2015: 137-153 - [c49]Søren Brunak, Francisco M. de la Vega, Adam A. Margolin, Benjamin J. Raphael, Gunnar Rätsch, Joshua M. Stuart:
Session Introduction. Pacific Symposium on Biocomputing 2015: 8-9 - [c48]Kjong-Van Lehmann, André Kahles, Cyriac Kandoth, William Lee, Nikolaus Schultz, Oliver Stegle, Gunnar Rätsch:
Integrative Genome-wide Analysis of the Determinants of RNA Splicing in Kidney Renal Clear Cell Carcinoma. Pacific Symposium on Biocomputing 2015: 44-55 - [i5]Julia E. Vogt, Marius Kloft, Stefan Stark, Sudhir Raman, Sandhya Prabhakaran, Volker Roth, Gunnar Rätsch:
Probabilistic Clustering of Time-Evolving Distance Data. CoRR abs/1504.03701 (2015) - [i4]Christian Widmer, Marius Kloft, Vipin T. Sreedharan, Gunnar Rätsch:
Framework for Multi-task Multiple Kernel Learning and Applications in Genome Analysis. CoRR abs/1506.09153 (2015) - [i3]Stephanie L. Hyland, Theofanis Karaletsos, Gunnar Rätsch:
A Generative Model of Words and Relationships from Multiple Sources. CoRR abs/1510.00259 (2015) - [i2]Trevor Darrell, Marius Kloft, Massimiliano Pontil, Gunnar Rätsch, Erik Rodner:
Machine Learning with Interdependent and Non-identically Distributed Data (Dagstuhl Seminar 15152). Dagstuhl Reports 5(4): 18-55 (2015) - 2014
- [j40]Vipin T. Sreedharan, Sebastian J. Schultheiß
, Géraldine Jean, André Kahles, Regina Bohnert, Philipp Drewe, Pramod Mudrakarta, Nico Görnitz, Georg Zeller
, Gunnar Rätsch
:
Oqtans: the RNA-seq workbench in the cloud for complete and reproducible quantitative transcriptome analysis. Bioinform. 30(9): 1300-1301 (2014) - [j39]Vipin T. Sreedharan, Sebastian J. Schultheiß
, Géraldine Jean, André Kahles, Regina Bohnert, Philipp Drewe, Pramod Mudrakarta, Nico Görnitz, Georg Zeller, Gunnar Rätsch
:
Oqtans: a multifunctional workbench for RNA-seq data analysis. BMC Bioinform. 15(S-3): A7 (2014) - [j38]Christian Widmer, Marius Kloft, Xinghua Lou, Gunnar Rätsch:
Regularization-Based Multitask Learning With Applications to Genome Biology and Biological Imaging. Künstliche Intell. 28(1): 29-33 (2014) - [c47]Søren Brunak, Francisco M. de la Vega, Gunnar Rätsch, Joshua M. Stuart:
Session Introduction. Pacific Symposium on Biocomputing 2014: 1-2 - 2013
- [j37]Jonas Behr, André Kahles, Yi Zhong, Vipin T. Sreedharan, Philipp Drewe, Gunnar Rätsch
:
MITIE: Simultaneous RNA-Seq-based transcript identification and quantification in multiple samples. Bioinform. 29(20): 2529-2538 (2013) - [j36]Richard R. Stein
, Vanni Bucci
, Nora C. Toussaint
, Charlie G. Buffie, Gunnar Rätsch
, Eric G. Pamer, Chris Sander, João B. Xavier:
Ecological Modeling from Time-Series Inference: Insight into Dynamics and Stability of Intestinal Microbiota. PLoS Comput. Biol. 9(12) (2013) - [c46]Christian Widmer, Marius Kloft, Gunnar Rätsch
:
Multi-task Learning for Computational Biology: Overview and Outlook. Empirical Inference 2013: 117-127 - [c45]Katherine Redfield Chan, Xinghua Lou, Theofanis Karaletsos, Christopher Crosbie, Stuart M. Gardos
, David Artz, Gunnar Rätsch
:
An Empirical Analysis of Topic Modeling for Mining Cancer Clinical Notes. ICDM Workshops 2013: 56-63 - [i1]