default search action
Cheng Soon Ong
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c42]Russell Tsuchida, Cheng Soon Ong, Dino Sejdinovic:
Exact, Fast and Expressive Poisson Point Processes via Squared Neural Families. AAAI 2024: 20559-20566 - [i27]Russell Tsuchida, Cheng Soon Ong, Dino Sejdinovic:
Exact, Fast and Expressive Poisson Point Processes via Squared Neural Families. CoRR abs/2402.09608 (2024) - [i26]Sevvandi Kandanaarachchi, Cheng Soon Ong:
Graphons of Line Graphs. CoRR abs/2409.01656 (2024) - [i25]Daniel M. Steinberg, Rafael Oliveira, Cheng Soon Ong, Edwin V. Bonilla:
Variational Search Distributions. CoRR abs/2409.06142 (2024) - 2023
- [j21]Ransalu Senanayake, Daniel J. Fremont, Mykel J. Kochenderfer, Alessio R. Lomuscio, Dragos D. Margineantu, Cheng Soon Ong:
Guest Editorial: Special issue on robust machine learning. Mach. Learn. 112(8): 2787-2789 (2023) - [j20]Russell Tsuchida, Cheng Soon Ong:
Stochastic gradient updates yield deep equilibrium kernels. Trans. Mach. Learn. Res. 2023 (2023) - [c41]Russell Tsuchida, Cheng Soon Ong:
Deep equilibrium models as estimators for continuous latent variables. AISTATS 2023: 1646-1671 - [c40]Alasdair Tran, Alexander Patrick Mathews, Lexing Xie, Cheng Soon Ong:
Factorized Fourier Neural Operators. ICLR 2023 - [c39]Russell Tsuchida, Cheng Soon Ong, Dino Sejdinovic:
Squared Neural Families: A New Class of Tractable Density Models. NeurIPS 2023 - [i24]Russell Tsuchida, Cheng Soon Ong, Dino Sejdinovic:
Squared Neural Families: A New Class of Tractable Density Models. CoRR abs/2305.13552 (2023) - [i23]Suk Yee Yong, Cheng Soon Ong:
Uncertainty Quantification of the Virial Black Hole Mass with Conformal Prediction. CoRR abs/2307.04993 (2023) - 2022
- [c38]Mengyan Zhang, Russell Tsuchida, Cheng Soon Ong:
Gaussian Process Bandits with Aggregated Feedback. AAAI 2022: 9074-9081 - [c37]Russell Tsuchida, Suk Yee Yong, Mohammad Ali Armin, Lars Petersson, Cheng Soon Ong:
Declarative nets that are equilibrium models. ICLR 2022 - [d1]Qiao Wang, Sylvia Young, Aaron Harwood, Cheng Soon Ong:
Discriminative Concept Learning Network: Sample Source Code and Supplement (Project Archive). IEEE DataPort, 2022 - [i22]Mengyan Zhang, Thanh Nguyen-Tang, Fangzhao Wu, Zhenyu He, Xing Xie, Cheng Soon Ong:
Two-Stage Neural Contextual Bandits for Personalised News Recommendation. CoRR abs/2206.14648 (2022) - [i21]Russell Tsuchida, Cheng Soon Ong:
Deep equilibrium models as estimators for continuous latent variables. CoRR abs/2211.05943 (2022) - 2021
- [j19]Ziad Al Bkhetan, Gursharan Chana, Cheng Soon Ong, Benjamin Goudey, Kotagiri Ramamohanarao:
eQTLHap: a tool for comprehensive eQTL analysis considering haplotypic and genotypic effects. Briefings Bioinform. 22(5) (2021) - [c36]Mengyan Zhang, Cheng Soon Ong:
Quantile Bandits for Best Arms Identification. ICML 2021: 12513-12523 - [c35]Alasdair Tran, Alexander Patrick Mathews, Cheng Soon Ong, Lexing Xie:
Radflow: A Recurrent, Aggregated, and Decomposable Model for Networks of Time Series. WWW 2021: 730-742 - [i20]Alasdair Tran, Alexander Patrick Mathews, Cheng Soon Ong, Lexing Xie:
Radflow: A Recurrent, Aggregated, and Decomposable Model for Networks of Time Series. CoRR abs/2102.07289 (2021) - [i19]Alasdair Tran, Alexander Patrick Mathews, Lexing Xie, Cheng Soon Ong:
Factorized Fourier Neural Operators. CoRR abs/2111.13802 (2021) - [i18]Mengyan Zhang, Russell Tsuchida, Cheng Soon Ong:
Gaussian Process Bandits with Aggregated Feedback. CoRR abs/2112.13029 (2021) - 2020
- [i17]Mengyan Zhang, Cheng Soon Ong:
Quantile Bandits for Best Arms Identification with Concentration Inequalities. CoRR abs/2010.11568 (2020)
2010 – 2019
- 2019
- [c34]Daniel McNamara, Cheng Soon Ong, Robert C. Williamson:
Costs and Benefits of Fair Representation Learning. AIES 2019: 263-270 - [c33]Zac Cranko, Aditya Krishna Menon, Richard Nock, Cheng Soon Ong, Zhan Shi, Christian J. Walder:
Monge blunts Bayes: Hardness Results for Adversarial Training. ICML 2019: 1406-1415 - [c32]Amir Dezfouli, Hassan Ashtiani, Omar Ghattas, Richard Nock, Peter Dayan, Cheng Soon Ong:
Disentangled behavioural representations. NeurIPS 2019: 2251-2260 - [i16]Dawei Chen, Cheng Soon Ong, Aditya Krishna Menon:
Cold-start Playlist Recommendation with Multitask Learning. CoRR abs/1901.06125 (2019) - [i15]Christian J. Walder, Richard Nock, Cheng Soon Ong, Masashi Sugiyama:
New Tricks for Estimating Gradients of Expectations. CoRR abs/1901.11311 (2019) - 2018
- [j18]Alasdair Tran, Cheng Soon Ong, Christian Wolf:
Combining active learning suggestions. PeerJ Comput. Sci. 4: e157 (2018) - [j17]Gabriel Krummenacher, Cheng Soon Ong, Stefan Koller, Seijin Kobayashi, Joachim M. Buhmann:
Wheel Defect Detection With Machine Learning. IEEE Trans. Intell. Transp. Syst. 19(4): 1176-1187 (2018) - [c31]Marta Avalos, Richard Nock, Cheng Soon Ong, Julien Rouar, Ke Sun:
Representation Learning of Compositional Data. NeurIPS 2018: 6680-6690 - [i14]Finnian Lattimore, Cheng Soon Ong:
A Primer on Causal Analysis. CoRR abs/1806.01488 (2018) - [i13]Zac Cranko, Aditya Krishna Menon, Richard Nock, Cheng Soon Ong, Zhan Shi, Christian J. Walder:
Monge beats Bayes: Hardness Results for Adversarial Training. CoRR abs/1806.02977 (2018) - [i12]Dawei Chen, Cheng Soon Ong, Aditya Krishna Menon:
Cold-start playlist recommendation with multitask learning. PeerJ Prepr. 6: e27383 (2018) - 2017
- [j16]Kevin D. Murray, Christfried Webers, Cheng Soon Ong, Justin O. Borevitz, Norman Warthmann:
kWIP: The k-mer weighted inner product, a de novo estimator of genetic similarity. PLoS Comput. Biol. 13(9) (2017) - [c30]Aditya Krishna Menon, Dawei Chen, Lexing Xie, Cheng Soon Ong:
Revisiting revisits in trajectory recommendation. CitRec@RecSys 2017: 2:1-2:6 - [c29]Dawei Chen, Dongwoo Kim, Lexing Xie, Minjeong Shin, Aditya Krishna Menon, Cheng Soon Ong, Iman Avazpour, John Grundy:
PathRec: Visual Analysis of Travel Route Recommendations. RecSys 2017: 364-365 - [i11]Dawei Chen, Lexing Xie, Aditya Krishna Menon, Cheng Soon Ong:
Structured Recommendation. CoRR abs/1706.09067 (2017) - [i10]Dawei Chen, Dongwoo Kim, Lexing Xie, Minjeong Shin, Aditya Krishna Menon, Cheng Soon Ong, Iman Avazpour, John Grundy:
PathRec: Visual Analysis of Travel Route Recommendations. CoRR abs/1707.01627 (2017) - [i9]Aditya Krishna Menon, Dawei Chen, Lexing Xie, Cheng Soon Ong:
Revisiting revisits in trajectory recommendation. CoRR abs/1708.05165 (2017) - [i8]Daniel McNamara, Cheng Soon Ong, Robert C. Williamson:
Provably Fair Representations. CoRR abs/1710.04394 (2017) - 2016
- [j15]André Kahles, Cheng Soon Ong, Yi Zhong, Gunnar Rätsch:
SplAdder: identification, quantification and testing of alternative splicing events from RNA-Seq data. Bioinform. 32(12): 1840-1847 (2016) - [j14]Justin Bedo, Cheng Soon Ong:
Multivariate Spearman's rho for Aggregating Ranks Using Copulas. J. Mach. Learn. Res. 17: 201:1-201:30 (2016) - [j13]Gaëlle Loosli, Stéphane Canu, Cheng Soon Ong:
Learning SVM in Kreĭn Spaces. IEEE Trans. Pattern Anal. Mach. Intell. 38(6): 1204-1216 (2016) - [c28]Dawei Chen, Cheng Soon Ong, Lexing Xie:
Learning Points and Routes to Recommend Trajectories. CIKM 2016: 2227-2232 - [c27]Dongwoo Kim, Lexing Xie, Cheng Soon Ong:
Probabilistic Knowledge Graph Construction: Compositional and Incremental Approaches. CIKM 2016: 2257-2262 - [c26]Young Lee, Kar Wai Lim, Cheng Soon Ong:
Hawkes Processes with Stochastic Excitations. ICML 2016: 79-88 - [c25]Aditya Krishna Menon, Cheng Soon Ong:
Linking losses for density ratio and class-probability estimation. ICML 2016: 304-313 - [c24]Richard Nock, Aditya Krishna Menon, Cheng Soon Ong:
A scaled Bregman theorem with applications. NIPS 2016: 19-27 - [i7]Richard Nock, Aditya Krishna Menon, Cheng Soon Ong:
A scaled Bregman theorem with applications. CoRR abs/1607.00360 (2016) - [i6]Dongwoo Kim, Lexing Xie, Cheng Soon Ong:
Probabilistic Knowledge Graph Construction: Compositional and Incremental Approaches. CoRR abs/1608.05921 (2016) - [i5]Dawei Chen, Cheng Soon Ong, Lexing Xie:
Learning Points and Routes to Recommend Trajectories. CoRR abs/1608.07051 (2016) - [i4]Young Lee, Kar Wai Lim, Cheng Soon Ong:
Hawkes Processes with Stochastic Excitations. CoRR abs/1609.06831 (2016) - [i3]Daniel McNamara, Cheng Soon Ong, Robert C. Williamson:
A Modular Theory of Feature Learning. CoRR abs/1611.03125 (2016) - 2015
- [j12]Cheng Soon Ong, Wray L. Buntine, Tu Bao Ho, Masashi Sugiyama, Geoffrey I. Webb:
Introduction: special issue of selected papers of ACML 2013. Mach. Learn. 99(2): 165-167 (2015) - [c23]Aditya Krishna Menon, Brendan van Rooyen, Cheng Soon Ong, Bob Williamson:
Learning from Corrupted Binary Labels via Class-Probability Estimation. ICML 2015: 125-134 - [c22]Qiao Wang, Sylvia Young, Aaron Harwood, Cheng Soon Ong:
Discriminative concept learning network: Reveal high-level differential concepts from shallow architecture. IJCNN 2015: 1-9 - 2014
- [c21]Hayley M. Reynolds, Scott Williams, Alan M. Zhang, Cheng Soon Ong, David Rawlinson, Rajib Chakravorty, Catherine Mitchell, Annette Haworth:
Cell density in prostate histopathology images as a measure of tumor distribution. Digital Pathology 2014: 90410S - [i2]Joaquin Vanschoren, Mikio L. Braun, Cheng Soon Ong:
Open science in machine learning. CoRR abs/1402.6013 (2014) - [i1]Justin Bedo, Cheng Soon Ong:
Multivariate Spearman's rho for aggregating ranks using copulas. CoRR abs/1410.4391 (2014) - 2013
- [j11]Sharon Wulff, Cheng Soon Ong:
Analytic center cutting plane method for multiple kernel learning. Ann. Math. Artif. Intell. 69(3): 225-241 (2013) - [j10]Alberto Giovanni Busetto, Alain Hauser, Gabriel Krummenacher, Mikael Sunnåker, Sotiris Dimopoulos, Cheng Soon Ong, Jörg Stelling, Joachim M. Buhmann:
Near-optimal experimental design for model selection in systems biology. Bioinform. 29(20): 2625-2632 (2013) - [j9]Cheng Soon Ong, Le Thi Hoai An:
Learning sparse classifiers with difference of convex functions algorithms. Optim. Methods Softw. 28(4): 830-854 (2013) - [c20]Gabriel Krummenacher, Cheng Soon Ong, Joachim M. Buhmann:
Ellipsoidal Multiple Instance Learning. ICML (2) 2013: 73-81 - [c19]Fan Shi, Cheng Soon Ong, Christopher Leckie:
Applications of Class-Conditional Conformal Predictor in Multi-class Classification. ICMLA (1) 2013: 235-239 - [p1]Peter J. Schüffler, Thomas J. Fuchs, Cheng Soon Ong, Volker Roth, Joachim M. Buhmann:
Automated Analysis of Tissue Micro-Array Images on the Example of Renal Cell Carcinoma. Similarity-Based Pattern Analysis and Recognition 2013: 219-245 - [e1]Cheng Soon Ong, Tu Bao Ho:
Asian Conference on Machine Learning, ACML 2013, Canberra, ACT, Australia, November 13-15, 2013. JMLR Workshop and Conference Proceedings 29, JMLR.org 2013 [contents] - 2012
- [j8]Kay Henning Brodersen, Christoph Mathys, Justin R. Chumbley, Jean Daunizeau, Cheng Soon Ong, Joachim M. Buhmann, Klaas E. Stephan:
Bayesian mixed-effects inference on classification performance in hierarchical data sets. J. Mach. Learn. Res. 13: 3133-3176 (2012) - [c18]Patrick Pletscher, Cheng Soon Ong:
Part & Clamp: Efficient Structured Output Learning. AISTATS 2012: 877-885 - 2011
- [j7]Kay Henning Brodersen, Florent Haiss, Cheng Soon Ong, Fabienne Jung, Marc Tittgemeyer, Joachim M. Buhmann, Bruno Weber, Klaas E. Stephan:
Model-based feature construction for multivariate decoding. NeuroImage 56(2): 601-615 (2011) - [j6]Kay Henning Brodersen, Thomas M. Schofield, Alexander P. Leff, Cheng Soon Ong, Ekaterina I. Lomakina, Joachim M. Buhmann, Klaas E. Stephan:
Generative Embedding for Model-Based Classification of fMRI Data. PLoS Comput. Biol. 7(6) (2011) - [c17]Francesco Dinuzzo, Cheng Soon Ong, Peter V. Gehler, Gianluigi Pillonetto:
Learning Output Kernels with Block Coordinate Descent. ICML 2011: 49-56 - [c16]Andreas Krause, Cheng Soon Ong:
Contextual Gaussian Process Bandit Optimization. NIPS 2011: 2447-2455 - 2010
- [c15]Peter J. Schüffler, Thomas J. Fuchs, Cheng Soon Ong, Volker Roth, Joachim M. Buhmann:
Computational TMA Analysis and Cell Nucleus Classification of Renal Cell Carcinoma. DAGM-Symposium 2010: 202-211 - [c14]Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno Stephan, Joachim M. Buhmann:
The Balanced Accuracy and Its Posterior Distribution. ICPR 2010: 3121-3124 - [c13]Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno Stephan, Joachim M. Buhmann:
The Binormal Assumption on Precision-Recall Curves. ICPR 2010: 4263-4266 - [c12]Patrick Pletscher, Cheng Soon Ong, Joachim M. Buhmann:
Entropy and Margin Maximization for Structured Output Learning. ECML/PKDD (3) 2010: 83-98
2000 – 2009
- 2009
- [j5]Gabriele Beate Schweikert, Jonas Behr, Alexander Zien, Georg Zeller, Cheng Soon Ong, Sören Sonnenburg, Gunnar Rätsch:
mGene.web: a web service for accurate computational gene finding. Nucleic Acids Res. 37(Web-Server-Issue): 312-316 (2009) - [c11]Alberto Giovanni Busetto, Cheng Soon Ong, Joachim M. Buhmann:
Optimized expected information gain for nonlinear dynamical systems. ICML 2009: 97-104 - [c10]Patrick Pletscher, Cheng Soon Ong, Joachim M. Buhmann:
Spanning Tree Approximations for Conditional Random Fields. AISTATS 2009: 408-415 - 2008
- [j4]Asa Ben-Hur, Cheng Soon Ong, Sören Sonnenburg, Bernhard Schölkopf, Gunnar Rätsch:
Support Vector Machines and Kernels for Computational Biology. PLoS Comput. Biol. 4(10) (2008) - [c9]Cheng Soon Ong, Alexander Zien:
An Automated Combination of Kernels for Predicting Protein Subcellular Localization. WABI 2008: 186-197 - 2007
- [j3]Uta Schulze, Bettina Hepp, Cheng Soon Ong, Gunnar Rätsch:
PALMA: mRNA to genome alignments using large margin algorithms. Bioinform. 23(15): 1892-1900 (2007) - [j2]Sören Sonnenburg, Mikio L. Braun, Cheng Soon Ong, Samy Bengio, Léon Bottou, Geoffrey Holmes, Yann LeCun, Klaus-Robert Müller, Fernando Pereira, Carl Edward Rasmussen, Gunnar Rätsch, Bernhard Schölkopf, Alexander J. Smola, Pascal Vincent, Jason Weston, Robert C. Williamson:
The Need for Open Source Software in Machine Learning. J. Mach. Learn. Res. 8: 2443-2466 (2007) - [c8]Alexander Zien, Cheng Soon Ong:
Multiclass multiple kernel learning. ICML 2007: 1191-1198 - 2006
- [c7]Gunnar Rätsch, Bettina Hepp, Uta Schulze, Cheng Soon Ong:
PALMA: Perfect Alignments using Large Margin Algorithms. German Conference on Bioinformatics 2006: 104-113 - 2005
- [j1]Cheng Soon Ong, Alexander J. Smola, Robert C. Williamson:
Learning the Kernel with Hyperkernels. J. Mach. Learn. Res. 6: 1043-1071 (2005) - [c6]Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan, Alexander J. Smola, Hans-Peter Kriegel:
Protein function prediction via graph kernels. ISMB (Supplement of Bioinformatics) 2005: 47-56 - 2004
- [c5]Cheng Soon Ong, Xavier Mary, Stéphane Canu, Alexander J. Smola:
Learning with non-positive kernels. ICML 2004 - 2003
- [c4]Cheng Soon Ong, Alexander J. Smola:
Machine Learning with Hyperkernels. ICML 2003: 568-575 - 2002
- [c3]Cheng Soon Ong, Alexander J. Smola, Robert C. Williamson:
Hyperkernels. NIPS 2002: 478-485 - 2000
- [c2]Sock Yin Tai, Cheng Soon Ong, Noor Aida Abdullah:
On designing an automated Malaysian stemmer for the Malay language (poster session). IRAL 2000: 207-208
1990 – 1999
- 1999
- [c1]Leenesh Kumar Maisuria, Cheng Soon Ong, Wen Kin Lai:
A comparison of artificial neural networks and cluster analysis for typing biometrics authentication. IJCNN 1999: 3295-3299
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-28 21:24 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint