default search action
Diederik M. Roijers
Person information
- affiliation: Vrije Universiteit Brussel, Belgium
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j20]Mathieu Reymond, Conor F. Hayes, Lander Willem, Roxana Radulescu, Steven Abrams, Diederik M. Roijers, Enda Howley, Patrick Mannion, Niel Hens, Ann Nowé, Pieter Libin:
Exploring the Pareto front of multi-objective COVID-19 mitigation policies using reinforcement learning. Expert Syst. Appl. 249: 123686 (2024) - [c59]Mathieu Reymond, Eugenio Bargiacchi, Diederik M. Roijers, Ann Nowé:
Interactively Learning the User's Utility for Best-Arm Identification in Multi-Objective Multi-Armed Bandits. AAMAS 2024: 1611-1620 - [c58]Peter Vamplew, Cameron Foale, Conor F. Hayes, Patrick Mannion, Enda Howley, Richard Dazeley, Scott Johnson, Johan Källström, Gabriel de Oliveira Ramos, Roxana Radulescu, Willem Röpke, Diederik M. Roijers:
Utility-Based Reinforcement Learning: Unifying Single-objective and Multi-objective Reinforcement Learning. AAMAS 2024: 2717-2721 - [c57]Raphaël Avalos, Florent Delgrange, Ann Nowé, Guillermo A. Pérez, Diederik M. Roijers:
The Wasserstein Believer: Learning Belief Updates for Partially Observable Environments through Reliable Latent Space Models. ICLR 2024 - [i41]Peter Vamplew, Cameron Foale, Conor F. Hayes, Patrick Mannion, Enda Howley, Richard Dazeley, Scott Johnson, Johan Källström, Gabriel de Oliveira Ramos, Roxana Radulescu, Willem Röpke, Diederik M. Roijers:
Utility-Based Reinforcement Learning: Unifying Single-objective and Multi-objective Reinforcement Learning. CoRR abs/2402.02665 (2024) - [i40]Willem Röpke, Mathieu Reymond, Patrick Mannion, Diederik M. Roijers, Ann Nowé, Roxana Radulescu:
Divide and Conquer: Provably Unveiling the Pareto Front with Multi-Objective Reinforcement Learning. CoRR abs/2402.07182 (2024) - [i39]Jesse van Remmerden, Maurice Kenter, Diederik M. Roijers, Charalampos Andriotis, Yingqian Zhang, Zaharah Bukhsh:
Deep Multi-Objective Reinforcement Learning for Utility-Based Infrastructural Maintenance Optimization. CoRR abs/2406.06184 (2024) - [i38]Florian Felten, Umut Ucak, Hicham Azmani, Gao Peng, Willem Röpke, Hendrik Baier, Patrick Mannion, Diederik M. Roijers, Jordan K. Terry, El-Ghazali Talbi, Grégoire Danoy, Ann Nowé, Roxana Radulescu:
MOMAland: A Set of Benchmarks for Multi-Objective Multi-Agent Reinforcement Learning. CoRR abs/2407.16312 (2024) - [i37]Raphaël Avalos, Eugenio Bargiacchi, Ann Nowé, Diederik M. Roijers, Frans A. Oliehoek:
Online Planning in POMDPs with State-Requests. CoRR abs/2407.18812 (2024) - 2023
- [j19]Mathieu Reymond, Conor F. Hayes, Denis Steckelmacher, Diederik M. Roijers, Ann Nowé:
Actor-critic multi-objective reinforcement learning for non-linear utility functions. Auton. Agents Multi Agent Syst. 37(2): 23 (2023) - [j18]Conor F. Hayes, Mathieu Reymond, Diederik M. Roijers, Enda Howley, Patrick Mannion:
Monte Carlo tree search algorithms for risk-aware and multi-objective reinforcement learning. Auton. Agents Multi Agent Syst. 37(2): 26 (2023) - [j17]Raphaël Avalos, Mathieu Reymond, Ann Nowé, Diederik M. Roijers:
Local Advantage Networks for Multi-Agent Reinforcement Learning in Dec-POMDPs. Trans. Mach. Learn. Res. 2023 (2023) - [c56]Willem Röpke, Carla Groenland, Roxana Radulescu, Ann Nowé, Diederik M. Roijers:
Bridging the Gap Between Single and Multi Objective Games. AAMAS 2023: 224-232 - [c55]Willem Röpke, Diederik M. Roijers, Ann Nowé, Roxana Radulescu:
A Study of Nash Equilibria in Multi-Objective Normal-Form Games. AAMAS 2023: 269-271 - [c54]Peter Vamplew, Benjamin J. Smith, Johan Källström, Gabriel de Oliveira Ramos, Roxana Radulescu, Diederik M. Roijers, Conor F. Hayes, Friedrik Hentz, Patrick Mannion, Pieter J. K. Libin, Richard Dazeley, Cameron Foale:
Scalar Reward is Not Enough. AAMAS 2023: 839-841 - [c53]Conor F. Hayes, Roxana Radulescu, Eugenio Bargiacchi, Johan Källström, Matthew Macfarlane, Mathieu Reymond, Timothy Verstraeten, Luisa M. Zintgraf, Richard Dazeley, Fredrik Heintz, Enda Howley, Athirai A. Irissappane, Patrick Mannion, Ann Nowé, Gabriel de Oliveira Ramos, Marcello Restelli, Peter Vamplew, Diederik M. Roijers:
A Brief Guide to Multi-Objective Reinforcement Learning and Planning. AAMAS 2023: 1988-1990 - [c52]Lucas Nunes Alegre, Ana L. C. Bazzan, Diederik M. Roijers, Ann Nowé, Bruno C. da Silva:
Sample-Efficient Multi-Objective Learning via Generalized Policy Improvement Prioritization. AAMAS 2023: 2003-2012 - [c51]Willem Röpke, Conor F. Hayes, Patrick Mannion, Enda Howley, Ann Nowé, Diederik M. Roijers:
Distributional Multi-Objective Decision Making. IJCAI 2023: 5711-5719 - [c50]Zuzanna Osika, Jazmin Zatarain Salazar, Diederik M. Roijers, Frans A. Oliehoek, Pradeep K. Murukannaiah:
What Lies beyond the Pareto Front? A Survey on Decision-Support Methods for Multi-Objective Optimization. IJCAI 2023: 6741-6749 - [i36]Willem Röpke, Carla Groenland, Roxana Radulescu, Ann Nowé, Diederik M. Roijers:
Bridging the Gap Between Single and Multi Objective Games. CoRR abs/2301.05755 (2023) - [i35]Lucas Nunes Alegre, Ana L. C. Bazzan, Diederik M. Roijers, Ann Nowé, Bruno C. da Silva:
Sample-Efficient Multi-Objective Learning via Generalized Policy Improvement Prioritization. CoRR abs/2301.07784 (2023) - [i34]Raphaël Avalos, Florent Delgrange, Ann Nowé, Guillermo A. Pérez, Diederik M. Roijers:
The Wasserstein Believer: Learning Belief Updates for Partially Observable Environments through Reliable Latent Space Models. CoRR abs/2303.03284 (2023) - [i33]Willem Röpke, Conor F. Hayes, Patrick Mannion, Enda Howley, Ann Nowé, Diederik M. Roijers:
Distributional Multi-Objective Decision Making. CoRR abs/2305.05560 (2023) - [i32]Zuzanna Osika, Jazmin Zatarain Salazar, Diederik M. Roijers, Frans A. Oliehoek, Pradeep K. Murukannaiah:
What Lies beyond the Pareto Front? A Survey on Decision-Support Methods for Multi-Objective Optimization. CoRR abs/2311.11288 (2023) - 2022
- [j16]Conor F. Hayes, Roxana Radulescu, Eugenio Bargiacchi, Johan Källström, Matthew Macfarlane, Mathieu Reymond, Timothy Verstraeten, Luisa M. Zintgraf, Richard Dazeley, Fredrik Heintz, Enda Howley, Athirai A. Irissappane, Patrick Mannion, Ann Nowé, Gabriel de Oliveira Ramos, Marcello Restelli, Peter Vamplew, Diederik M. Roijers:
A practical guide to multi-objective reinforcement learning and planning. Auton. Agents Multi Agent Syst. 36(1): 26 (2022) - [j15]Peter Vamplew, Benjamin J. Smith, Johan Källström, Gabriel de Oliveira Ramos, Roxana Radulescu, Diederik M. Roijers, Conor F. Hayes, Fredrik Heintz, Patrick Mannion, Pieter J. K. Libin, Richard Dazeley, Cameron Foale:
Scalar reward is not enough: a response to Silver, Singh, Precup and Sutton (2021). Auton. Agents Multi Agent Syst. 36(2): 41 (2022) - [j14]Willem Röpke, Diederik M. Roijers, Ann Nowé, Roxana Radulescu:
On nash equilibria in normal-form games with vectorial payoffs. Auton. Agents Multi Agent Syst. 36(2): 53 (2022) - [j13]Roxana Radulescu, Timothy Verstraeten, Yijie Zhang, Patrick Mannion, Diederik M. Roijers, Ann Nowé:
Opponent learning awareness and modelling in multi-objective normal form games. Neural Comput. Appl. 34(3): 1759-1781 (2022) - [j12]Gongjin Lan, Jakub M. Tomczak, Diederik M. Roijers, A. E. Eiben:
Time efficiency in optimization with a bayesian-Evolutionary algorithm. Swarm Evol. Comput. 69: 100970 (2022) - [c49]Raphaël Avalos, Mathieu Reymond, Ann Nowé, Diederik M. Roijers:
Local Advantage Networks for Cooperative Multi-Agent Reinforcement Learning. AAMAS 2022: 1524-1526 - [c48]Conor F. Hayes, Diederik M. Roijers, Enda Howley, Patrick Mannion:
Decision-Theoretic Planning for the Expected Scalarised Returns. AAMAS 2022: 1621-1623 - [c47]Shang Wang, Mathieu Reymond, Athirai A. Irissappane, Diederik M. Roijers:
Near On-Policy Experience Sampling in Multi-Objective Reinforcement Learning. AAMAS 2022: 1756-1758 - [i31]Mathieu Reymond, Conor F. Hayes, Lander Willem, Roxana Radulescu, Steven Abrams, Diederik M. Roijers, Enda Howley, Patrick Mannion, Niel Hens, Ann Nowé, Pieter Libin:
Exploring the Pareto front of multi-objective COVID-19 mitigation policies using reinforcement learning. CoRR abs/2204.05027 (2022) - [i30]Conor F. Hayes, Timothy Verstraeten, Diederik M. Roijers, Enda Howley, Patrick Mannion:
Multi-Objective Coordination Graphs for the Expected Scalarised Returns with Generative Flow Models. CoRR abs/2207.00368 (2022) - [i29]Cláudia Fonseca Pinhão, Chris Eijgenstein, Iva Gornishka, Shayla Jansen, Diederik M. Roijers, Daan Bloembergen:
Determining Accessible Sidewalk Width by Extracting Obstacle Information from Point Clouds. CoRR abs/2211.04108 (2022) - [i28]Conor F. Hayes, Mathieu Reymond, Diederik M. Roijers, Enda Howley, Patrick Mannion:
Monte Carlo Tree Search Algorithms for Risk-Aware and Multi-Objective Reinforcement Learning. CoRR abs/2211.13032 (2022) - 2021
- [j11]Gongjin Lan, Matteo De Carlo, Fuda van Diggelen, Jakub M. Tomczak, Diederik M. Roijers, A. E. Eiben:
Learning directed locomotion in modular robots with evolvable morphologies. Appl. Soft Comput. 111: 107688 (2021) - [j10]Jie Jiang, Qiuqiang Kong, Mark D. Plumbley, Nigel Gilbert, Mark Hoogendoorn, Diederik M. Roijers:
Deep Learning-Based Energy Disaggregation and On/Off Detection of Household Appliances. ACM Trans. Knowl. Discov. Data 15(3): 50:1-50:21 (2021) - [c46]Eugenio Bargiacchi, Timothy Verstraeten, Diederik M. Roijers:
Cooperative Prioritized Sweeping. AAMAS 2021: 160-168 - [c45]Timothy Verstraeten, Pieter-Jan Daems, Eugenio Bargiacchi, Diederik M. Roijers, Pieter J. K. Libin, Jan Helsen:
Scalable Optimization for Wind Farm Control using Coordination Graphs. AAMAS 2021: 1362-1370 - [c44]Conor F. Hayes, Mathieu Reymond, Diederik M. Roijers, Enda Howley, Patrick Mannion:
Distributional Monte Carlo Tree Search for Risk-Aware and Multi-Objective Reinforcement Learning. AAMAS 2021: 1530-1532 - [i27]Timothy Verstraeten, Pieter-Jan Daems, Eugenio Bargiacchi, Diederik M. Roijers, Pieter J. K. Libin, Jan Helsen:
Scalable Optimization for Wind Farm Control using Coordination Graphs. CoRR abs/2101.07844 (2021) - [i26]Conor F. Hayes, Mathieu Reymond, Diederik M. Roijers, Enda Howley, Patrick Mannion:
Risk Aware and Multi-Objective Decision Making with Distributional Monte Carlo Tree Search. CoRR abs/2102.00966 (2021) - [i25]Conor F. Hayes, Roxana Radulescu, Eugenio Bargiacchi, Johan Källström, Matthew Macfarlane, Mathieu Reymond, Timothy Verstraeten, Luisa M. Zintgraf, Richard Dazeley, Fredrik Heintz, Enda Howley, Athirai A. Irissappane, Patrick Mannion, Ann Nowé, Gabriel de Oliveira Ramos, Marcello Restelli, Peter Vamplew, Diederik M. Roijers:
A Practical Guide to Multi-Objective Reinforcement Learning and Planning. CoRR abs/2103.09568 (2021) - [i24]Conor F. Hayes, Timothy Verstraeten, Diederik M. Roijers, Enda Howley, Patrick Mannion:
Expected Scalarised Returns Dominance: A New Solution Concept for Multi-Objective Decision Making. CoRR abs/2106.01048 (2021) - [i23]Willem Röpke, Diederik M. Roijers, Ann Nowé, Roxana Radulescu:
Preference Communication in Multi-Objective Normal-Form Games. CoRR abs/2111.09191 (2021) - [i22]Willem Röpke, Diederik M. Roijers, Ann Nowé, Roxana Radulescu:
On Nash Equilibria in Normal-Form Games With Vectorial Payoffs. CoRR abs/2112.06500 (2021) - [i21]Raphaël Avalos, Mathieu Reymond, Ann Nowé, Diederik M. Roijers:
Local Advantage Networks for Cooperative Multi-Agent Reinforcement Learning. CoRR abs/2112.12458 (2021) - [i20]Peter Vamplew, Benjamin J. Smith, Johan Källström, Gabriel de Oliveira Ramos, Roxana Radulescu, Diederik M. Roijers, Conor F. Hayes, Fredrik Heintz, Patrick Mannion, Pieter J. K. Libin, Richard Dazeley, Cameron Foale:
Scalar reward is not enough: A response to Silver, Singh, Precup and Sutton (2021). CoRR abs/2112.15422 (2021) - 2020
- [j9]Roxana Radulescu, Patrick Mannion, Diederik M. Roijers, Ann Nowé:
Multi-objective multi-agent decision making: a utility-based analysis and survey. Auton. Agents Multi Agent Syst. 34(1): 10 (2020) - [j8]Eugenio Bargiacchi, Diederik M. Roijers, Ann Nowé:
AI-Toolbox: A C++ library for Reinforcement Learning and Planning (with Python Bindings). J. Mach. Learn. Res. 21: 102:1-102:12 (2020) - [j7]Roxana Radulescu, Patrick Mannion, Yijie Zhang, Diederik M. Roijers, Ann Nowé:
A utility-based analysis of equilibria in multi-objective normal-form games. Knowl. Eng. Rev. 35: e32 (2020) - [j6]Shiyu Zhang, Sander Bakkes, Diederik M. Roijers, Pieter Spronck:
Avatars of a Feather Flock Together: Gender Homophily in Online Video Games Revealed via Exponential Random Graph Modeling. IEEE Trans. Games 12(1): 86-100 (2020) - [j5]Felipe Leno da Silva, Cyntia Eico Hayama Nishida, Diederik M. Roijers, Anna Helena Reali Costa:
Coordination of Electric Vehicle Charging Through Multiagent Reinforcement Learning. IEEE Trans. Smart Grid 11(3): 2347-2356 (2020) - [c43]Xiaodong Nian, Athirai Aravazhi Irissappane, Diederik M. Roijers:
DCRAC: Deep Conditioned Recurrent Actor-Critic for Multi-Objective Partially Observable Environments. AAMAS 2020: 931-938 - [c42]Timothy Verstraeten, Eugenio Bargiacchi, Pieter J. K. Libin, Diederik M. Roijers, Ann Nowé:
Thompson Sampling for Factored Multi-Agent Bandits. AAMAS 2020: 2029-2031 - [c41]Yijie Zhang, Roxana Radulescu, Patrick Mannion, Diederik M. Roijers, Ann Nowé:
Opponent Modelling for Reinforcement Learning in Multi-Objective Normal Form Games. AAMAS 2020: 2080-2082 - [c40]Roxana Radulescu, Patrick Mannion, Diederik M. Roijers, Ann Nowé:
Multi-Objective Multi-Agent Decision Making: A Utility-based Analysis and Survey. AAMAS 2020: 2158-2160 - [c39]Wan-Jui Lee, Helia Jamshidi, Diederik M. Roijers:
Deep Reinforcement Learning for Solving Train Unit Shunting Problem with Interval Timing. EDCC Workshops 2020: 99-110 - [c38]Diederik M. Roijers, Luisa M. Zintgraf, Pieter Libin, Mathieu Reymond, Eugenio Bargiacchi, Ann Nowé:
Interactive Multi-objective Reinforcement Learning in Multi-armed Bandits with Gaussian Process Utility Models. ECML/PKDD (3) 2020: 463-478 - [i19]Eugenio Bargiacchi, Timothy Verstraeten, Diederik M. Roijers, Ann Nowé:
Model-based Multi-Agent Reinforcement Learning with Cooperative Prioritized Sweeping. CoRR abs/2001.07527 (2020) - [i18]Gongjin Lan, Matteo De Carlo, Fuda van Diggelen, Jakub M. Tomczak, Diederik M. Roijers, A. E. Eiben:
Learning Directed Locomotion in Modular Robots with Evolvable Morphologies. CoRR abs/2001.07804 (2020) - [i17]Roxana Radulescu, Patrick Mannion, Yijie Zhang, Diederik M. Roijers, Ann Nowé:
A utility-based analysis of equilibria in multi-objective normal form games. CoRR abs/2001.08177 (2020) - [i16]Gongjin Lan, Jakub M. Tomczak, Diederik M. Roijers, A. E. Eiben:
Time Efficiency in Optimization with a Bayesian-Evolutionary Algorithm. CoRR abs/2005.04166 (2020) - [i15]Roxana Radulescu, Timothy Verstraeten, Yijie Zhang, Patrick Mannion, Diederik M. Roijers, Ann Nowé:
Opponent Learning Awareness and Modelling in Multi-Objective Normal Form Games. CoRR abs/2011.07290 (2020)
2010 – 2019
- 2019
- [c37]Mark de Blaauw, Diederik M. Roijers, Vesa Muhonen:
A Scalable Logo Recognition Model with Deep Meta-Learning. BNAIC/BENELEARN 2019 - [c36]Pieter Libin, Timothy Verstraeten, Diederik M. Roijers, Wenjia Wang, Kristof Theys, Ann Nowé:
Thompson Sampling for m-top Exploration. BNAIC/BENELEARN 2019 - [c35]Hélène Plisnier, Denis Steckelmacher, Diederik M. Roijers, Ann Nowé:
Transfer Reinforcement Learning across Environment Dynamics with Multiple Advisors. BNAIC/BENELEARN 2019 - [c34]Denis Steckelmacher, Hélène Plisnier, Diederik M. Roijers, Ann Nowé:
Sample-Efficient Model-Free Reinforcement Learning with Off-Policy Critics. BNAIC/BENELEARN 2019 - [c33]Axel Abels, Diederik M. Roijers, Tom Lenaerts, Ann Nowé, Denis Steckelmacher:
Dynamic Weights in Multi-Objective Deep Reinforcement Learning. ICML 2019: 11-20 - [c32]Pieter Libin, Timothy Verstraeten, Diederik M. Roijers, Wenjia Wang, Kristof Theys, Ann Nowé:
Bayesian Anytime m-top Exploration. ICTAI 2019: 1422-1428 - [c31]Denis Steckelmacher, Hélène Plisnier, Diederik M. Roijers, Ann Nowé:
Sample-Efficient Model-Free Reinforcement Learning with Off-Policy Critics. ECML/PKDD (3) 2019: 19-34 - [i14]Hélène Plisnier, Denis Steckelmacher, Diederik M. Roijers, Ann Nowé:
The Actor-Advisor: Policy Gradient With Off-Policy Advice. CoRR abs/1902.02556 (2019) - [i13]Denis Steckelmacher, Hélène Plisnier, Diederik M. Roijers, Ann Nowé:
Sample-Efficient Model-Free Reinforcement Learning with Off-Policy Critics. CoRR abs/1903.04193 (2019) - [i12]Hélène Plisnier, Denis Steckelmacher, Diederik M. Roijers, Ann Nowé:
Transfer Learning Across Simulated Robots With Different Sensors. CoRR abs/1907.07958 (2019) - [i11]Roxana Radulescu, Patrick Mannion, Diederik M. Roijers, Ann Nowé:
Multi-Objective Multi-Agent Decision Making: A Utility-based Analysis and Survey. CoRR abs/1909.02964 (2019) - [i10]Timothy Verstraeten, Eugenio Bargiacchi, Pieter J. K. Libin, Diederik M. Roijers, Ann Nowé:
Thompson Sampling for Factored Multi-Agent Bandits. CoRR abs/1911.10120 (2019) - 2018
- [j4]Stéphane Doncieux, David Filliat, Natalia Díaz Rodríguez, Timothy M. Hospedales, Richard J. Duro, Alexandre Coninx, Diederik M. Roijers, Benoît Girard, Nicolas Perrin, Olivier Sigaud:
Open-Ended Learning: A Conceptual Framework Based on Representational Redescription. Frontiers Neurorobotics 12: 59 (2018) - [c30]Denis Steckelmacher, Diederik M. Roijers, Anna Harutyunyan, Peter Vrancx, Hélène Plisnier, Ann Nowé:
Reinforcement Learning in POMDPs With Memoryless Options and Option-Observation Initiation Sets. AAAI 2018: 4099-4106 - [c29]Diederik M. Roijers, Erwin Walraven, Matthijs T. J. Spaan:
Bootstrapping LPs in Value Iteration for Multi-Objective and Partially Observable MDPs. ICAPS 2018: 218-226 - [c28]Luisa M. Zintgraf, Diederik M. Roijers, Sjoerd Linders, Catholijn M. Jonker, Ann Nowé:
Ordered Preference Elicitation Strategies for Supporting Multi-Objective Decision Making. AAMAS 2018: 1477-1485 - [c27]Roxana Radulescu, Manon Legrand, Kyriakos Efthymiadis, Diederik M. Roijers, Ann Nowé:
Deep Multi-agent Reinforcement Learning in a Homogeneous Open Population. BNCAI 2018: 90-105 - [c26]Gongjin Lan, Jesús Benito-Picazo, Diederik M. Roijers, Enrique Domínguez, A. E. Eiben:
Real-Time Robot Vision on Low-Performance Computing Hardware. ICARCV 2018: 1959-1965 - [c25]Jie Jiang, Mark Hoogendoorn, Qiuqiang Kong, Diederik M. Roijers, Nigel Gilbert:
Predicting Appliance Usage Status In Home Like Environments. DSP 2018: 1-5 - [c24]Eugenio Bargiacchi, Timothy Verstraeten, Diederik M. Roijers, Ann Nowé, Hado van Hasselt:
Learning to Coordinate with Coordination Graphs in Repeated Single-Stage Multi-Agent Decision Problems. ICML 2018: 491-499 - [c23]Milan Jelisavcic, Diederik M. Roijers, A. E. Eiben:
Analysing the Relative Importance of Robot Brains and Bodies. ALIFE 2018: 327-334 - [c22]Pieter J. K. Libin, Timothy Verstraeten, Diederik M. Roijers, Jelena Grujic, Kristof Theys, Philippe Lemey, Ann Nowé:
Bayesian Best-Arm Identification for Selecting Influenza Mitigation Strategies. ECML/PKDD (3) 2018: 456-471 - [c21]Gongjin Lan, Milan Jelisavcic, Diederik M. Roijers, Evert Haasdijk, A. E. Eiben:
Directed Locomotion for Modular Robots with Evolvable Morphologies. PPSN (1) 2018: 476-487 - [i9]Luisa M. Zintgraf, Diederik M. Roijers, Sjoerd Linders, Catholijn M. Jonker, Ann Nowé:
Ordered Preference Elicitation Strategies for Supporting Multi-Objective Decision Making. CoRR abs/1802.07606 (2018) - [i8]Hélène Plisnier, Denis Steckelmacher, Tim Brys, Diederik M. Roijers, Ann Nowé:
Directed Policy Gradient for Safe Reinforcement Learning with Human Advice. CoRR abs/1808.04096 (2018) - [i7]Axel Abels, Diederik M. Roijers, Tom Lenaerts, Ann Nowé, Denis Steckelmacher:
Dynamic Weights in Multi-Objective Deep Reinforcement Learning. CoRR abs/1809.07803 (2018) - 2017
- [b1]Diederik M. Roijers, Shimon Whiteson:
Multi-Objective Decision Making. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan & Claypool Publishers 2017, ISBN 978-3-031-00448-3 - [c20]Diederik M. Roijers, Luisa M. Zintgraf, Ann Nowé:
Interactive Thompson Sampling for Multi-objective Multi-armed Bandits. ADT 2017: 18-34 - [c19]Ayumi Igarashi, Diederik M. Roijers:
Multi-criteria Coalition Formation Games. ADT 2017: 197-213 - [c18]Pieter Libin, Timothy Verstraeten, Kristof Theys, Diederik M. Roijers, Peter Vrancx, Ann Nowé:
Efficient Evaluation of Influenza Mitigation Strategies Using Preventive Bandits. AAMAS Workshops (Visionary Papers) 2017: 67-85 - [i6]Denis Steckelmacher, Diederik M. Roijers, Anna Harutyunyan, Peter Vrancx, Ann Nowé:
Reinforcement Learning in POMDPs with Memoryless Options and Option-Observation Initiation Sets. CoRR abs/1708.06551 (2017) - [i5]Pieter Libin, Timothy Verstraeten, Diederik M. Roijers, Jelena Grujic, Kristof Theys, Philippe Lemey, Ann Nowé:
Bayesian Best-Arm Identification for Selecting Influenza Mitigation Strategies. CoRR abs/1711.06299 (2017) - 2016
- [j3]Diederik M. Roijers:
Multi-objective decision-theoretic planning: abstract. AI Matters 2(4): 11-12 (2016) - [c17]Joris Scharpff, Diederik M. Roijers, Frans A. Oliehoek, Matthijs T. J. Spaan, Mathijs Michiel de Weerdt:
Solving Transition-Independent Multi-Agent MDPs with Sparse Interactions. AAAI 2016: 3174-3180 - [c16]Maarten de Waard, Diederik M. Roijers, Sander C. J. Bakkes:
Monte Carlo Tree Search with options for general video game playing. CIG 2016: 1-8 - [c15]Auke J. Wiggers, Frans A. Oliehoek, Diederik M. Roijers:
Structure in the Value Function of Two-Player Zero-Sum Games of Incomplete Information. ECAI 2016: 1628-1629 - [c14]Joost van Doorn, Daan Odijk, Diederik M. Roijers, Maarten de Rijke:
Balancing Relevance Criteria through Multi-Objective Optimization. SIGIR 2016: 769-772 - [i4]Auke J. Wiggers, Frans A. Oliehoek, Diederik M. Roijers:
Structure in the Value Function of Two-Player Zero-Sum Games of Incomplete Information. CoRR abs/1606.06888 (2016) - [i3]Hossam Mossalam, Yannis M. Assael, Diederik M. Roijers, Shimon Whiteson:
Multi-Objective Deep Reinforcement Learning. CoRR abs/1610.02707 (2016) - 2015
- [j2]Diederik Marijn Roijers, Shimon Whiteson, Frans A. Oliehoek:
Computing Convex Coverage Sets for Faster Multi-objective Coordination. J. Artif. Intell. Res. 52: 399-443 (2015) - [c13]Chiel Kooijman, Maarten de Waard, Maarten Inja, Diederik M. Roijers, Shimon Whiteson:
Pareto Local Search for MOMDP Planning. ESANN 2015 - [c12]Mircea Traichioiu, Sander Bakkes, Diederik M. Roijers:
Grammar-based Procedural Content Generation from Designer-provided Difficulty Curves. FDG 2015 - [c11]Diederik Marijn Roijers, Shimon Whiteson, Frans A. Oliehoek:
Point-Based Planning for Multi-Objective POMDPs. IJCAI 2015: 1666-1672 - [c10]Diederik Marijn Roijers:
Efficient Methods for Multi-Objective Decision-Theoretic Planning. IJCAI 2015: 4389-4390 - [i2]Joris Scharpff, Diederik M. Roijers, Frans A. Oliehoek, Matthijs T. J. Spaan, Mathijs de Weerdt:
Solving Transition-Independent Multi-agent MDPs with Sparse Interactions (Extended version). CoRR abs/1511.09047 (2015) - 2014
- [c9]Paris Mavromoustakos Blom, Sander Bakkes, Chek Tien Tan, Shimon Whiteson, Diederik M. Roijers, Roberto Valenti, Theo Gevers:
Towards Personalised Gaming via Facial Expression Recognition. AIIDE 2014 - [c8]Diederik Marijn Roijers, Joris Scharpff, Matthijs T. J. Spaan, Frans A. Oliehoek, Mathijs de Weerdt, Shimon Whiteson:
Bounded Approximations for Linear Multi-Objective Planning Under Uncertainty. ICAPS 2014 - [c7]Diederik M. Roijers, Shimon Whiteson, Frans A. Oliehoek:
Linear support for multi-objective coordination graphs. AAMAS 2014: 1297-1304 - [c6]Diederik M. Roijers:
Convex coverage set methods for multi-objective collaborative decision making. AAMAS 2014: 1727-1728 - [c5]Alex Rietveld, Sander Bakkes, Diederik M. Roijers:
Circuit-adaptive challenge balancing in racing games. GEM 2014: 1-8 - [c4]Maarten Inja, Chiel Kooijman, Maarten de Waard, Diederik M. Roijers, Shimon Whiteson:
Queued Pareto Local Search for Multi-Objective Optimization. PPSN 2014: 589-599 - [i1]Diederik Marijn Roijers, Peter Vamplew, Shimon Whiteson, Richard Dazeley:
A Survey of Multi-Objective Sequential Decision-Making. CoRR abs/1402.0590 (2014) - 2013
- [j1]Diederik M. Roijers, Peter Vamplew, Shimon Whiteson, Richard Dazeley:
A Survey of Multi-Objective Sequential Decision-Making. J. Artif. Intell. Res. 48: 67-113 (2013) - [c3]Diederik M. Roijers, Shimon Whiteson, Frans A. Oliehoek:
Computing Convex Coverage Sets for Multi-objective Coordination Graphs. ADT 2013: 309-323 - [c2]Diederik M. Roijers, Shimon Whiteson, Frans A. Oliehoek:
Multi-objective variable elimination for collaborative graphical games. AAMAS 2013: 1209-1210 - 2012
- [c1]Diederik M. Roijers, Johan Jeuring, Ad Feelders:
Probability estimation and a competence model for rule based e-tutoring systems. LAK 2012: 255-258
Coauthor Index
aka: Pieter J. K. Libin
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:11 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint