default search action
Sanjoy Dasgupta
Person information
- affiliation: University of California, San Diego, Department of Computer Science and Engineering
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [c69]Sanjoy Dasgupta, Eduardo Sany Laber:
New Bounds on the Cohesion of Complete-link and Other Linkage Methods for Agglomerative Clustering. ICML 2024 - [e2]Sanjoy Dasgupta, Stephan Mandt, Yingzhen Li:
International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain. Proceedings of Machine Learning Research 238, PMLR 2024 [contents] - [i36]Sanjoy Dasgupta, Eduardo Sany Laber:
New bounds on the cohesion of complete-link and other linkage methods for agglomeration clustering. CoRR abs/2405.00937 (2024) - [i35]Steven An, Sanjoy Dasgupta:
Convergence Behavior of an Adversarial Weak Supervision Method. CoRR abs/2405.16013 (2024) - [i34]Sanjoy Dasgupta, Geelon So:
Online Consistency of the Nearest Neighbor Rule. CoRR abs/2410.23644 (2024) - 2023
- [j22]Yang Shen, Sanjoy Dasgupta, Saket Navlakha:
Reducing Catastrophic Forgetting With Associative Learning: A Lesson From Fruit Flies. Neural Comput. 35(11): 1797-1819 (2023) - [j21]Litao Qiao, Weijia Wang, Sanjoy Dasgupta, Bill Lin:
Rethinking Logic Minimization for Tabular Machine Learning. IEEE Trans. Artif. Intell. 4(5): 1129-1140 (2023) - [c68]Robi Bhattacharjee, Jacob Imola, Michal Moshkovitz, Sanjoy Dasgupta:
Online k-means Clustering on Arbitrary Data Streams. ALT 2023: 204-236 - [c67]Robi Bhattacharjee, Sanjoy Dasgupta, Kamalika Chaudhuri:
Data-Copying in Generative Models: A Formal Framework. ICML 2023: 2364-2396 - [i33]Robi Bhattacharjee, Sanjoy Dasgupta, Kamalika Chaudhuri:
Data-Copying in Generative Models: A Formal Framework. CoRR abs/2302.13181 (2023) - [i32]Sanjoy Dasgupta, Yoav Freund:
Active learning using region-based sampling. CoRR abs/2303.02721 (2023) - [i31]Sanjoy Dasgupta, Geelon So:
Online nearest neighbor classification. CoRR abs/2307.01170 (2023) - 2022
- [c66]Geelon So, Gaurav Mahajan, Sanjoy Dasgupta:
Convergence of online k-means. AISTATS 2022: 8534-8569 - [c65]Sanjoy Dasgupta, Nave Frost, Michal Moshkovitz:
Framework for Evaluating Faithfulness of Local Explanations. ICML 2022: 4794-4815 - [c64]Stephen O. Mussmann, Sanjoy Dasgupta:
Constants Matter: The Performance Gains of Active Learning. ICML 2022: 16123-16173 - [c63]Anthony Thomas, Sanjoy Dasgupta, Tajana Rosing:
A Theoretical Perspective on Hyperdimensional Computing (Extended Abstract). IJCAI 2022: 5772-5776 - [e1]Sanjoy Dasgupta, Nika Haghtalab:
International Conference on Algorithmic Learning Theory, 29 March - 1 April 2022, Paris, France. Proceedings of Machine Learning Research 167, PMLR 2022 [contents] - [i30]Sanjoy Dasgupta, Nave Frost, Michal Moshkovitz:
Framework for Evaluating Faithfulness of Local Explanations. CoRR abs/2202.00734 (2022) - [i29]Sanjoy Dasgupta, Gaurav Mahajan, Geelon So:
Convergence of online k-means. CoRR abs/2202.10640 (2022) - [i28]Anthony Thomas, Behnam Khaleghi, Gopi Krishna Jha, Sanjoy Dasgupta, Nageen Himayat, Ravi Iyer, Nilesh Jain, Tajana Rosing:
Streaming Encoding Algorithms for Scalable Hyperdimensional Computing. CoRR abs/2209.09868 (2022) - 2021
- [j20]Anthony Thomas, Sanjoy Dasgupta, Tajana Rosing:
A Theoretical Perspective on Hyperdimensional Computing. J. Artif. Intell. Res. 72: 215-249 (2021) - [i27]Yang Shen, Sanjoy Dasgupta, Saket Navlakha:
Algorithmic insights on continual learning from fruit flies. CoRR abs/2107.07617 (2021) - 2020
- [j19]Yang Shen, Sanjoy Dasgupta, Saket Navlakha:
Habituation as a neural algorithm for online odor discrimination. Proc. Natl. Acad. Sci. USA 117(22): 12402-12410 (2020) - [j18]Yang Shen, Sanjoy Dasgupta, Saket Navlakha:
Reply to Semelidou and Skoulakis: "Short-term" habituation has multiple distinct mechanisms. Proc. Natl. Acad. Sci. USA 117(34): 20373-20374 (2020) - [c62]Sanjoy Dasgupta, Sivan Sabato:
Robust Learning from Discriminative Feature Feedback. AISTATS 2020: 973-982 - [c61]Casey Meehan, Kamalika Chaudhuri, Sanjoy Dasgupta:
A Three Sample Hypothesis Test for Evaluating Generative Models. AISTATS 2020: 3546-3556 - [c60]Robi Bhattacharjee, Sanjoy Dasgupta:
What relations are reliably embeddable in Euclidean space? ALT 2020: 174-195 - [c59]Michal Moshkovitz, Sanjoy Dasgupta, Cyrus Rashtchian, Nave Frost:
Explainable k-Means and k-Medians Clustering. ICML 2020: 7055-7065 - [p1]Sanjoy Dasgupta, Samory Kpotufe:
Nearest Neighbor Classification and Search. Beyond the Worst-Case Analysis of Algorithms 2020: 403-423 - [i26]Sanjoy Dasgupta, Nave Frost, Michal Moshkovitz, Cyrus Rashtchian:
Explainable k-Means and k-Medians Clustering. CoRR abs/2002.12538 (2020) - [i25]Sanjoy Dasgupta, Sivan Sabato:
Robust Learning from Discriminative Feature Feedback. CoRR abs/2003.03946 (2020) - [i24]Casey Meehan, Kamalika Chaudhuri, Sanjoy Dasgupta:
A Non-Parametric Test to Detect Data-Copying in Generative Models. CoRR abs/2004.05675 (2020) - [i23]Sanjoy Dasgupta, Christopher Tosh:
Expressivity of expand-and-sparsify representations. CoRR abs/2006.03741 (2020) - [i22]Anthony Thomas, Sanjoy Dasgupta, Tajana Rosing:
Theoretical Foundations of Hyperdimensional Computing. CoRR abs/2010.07426 (2020)
2010 – 2019
- 2019
- [c58]Christopher Tosh, Sanjoy Dasgupta:
The Relative Complexity of Maximum Likelihood Estimation, MAP Estimation, and Sampling. COLT 2019: 2993-3035 - [c57]Sanjoy Dasgupta:
A Geometric Data Structure from Neuroscience (Invited Talk). SoCG 2019: 1:1-1:1 - [c56]Sanjoy Dasgupta, Daniel Hsu, Stefanos Poulis, Xiaojin Zhu:
Teaching a black-box learner. ICML 2019: 1547-1555 - [c55]Akshay Balsubramani, Sanjoy Dasgupta, Yoav Freund, Shay Moran:
An adaptive nearest neighbor rule for classification. NeurIPS 2019: 7577-7586 - [i21]Robi Bhattacharjee, Sanjoy Dasgupta:
What relations are reliably embeddable in Euclidean space? CoRR abs/1903.05347 (2019) - [i20]Akshay Balsubramani, Sanjoy Dasgupta, Yoav Freund, Shay Moran:
An adaptive nearest neighbor rule for classification. CoRR abs/1905.12717 (2019) - [i19]Sanjoy Dasgupta, Stefanos Poulis, Christopher Tosh:
Interactive Topic Modeling with Anchor Words. CoRR abs/1907.04919 (2019) - 2018
- [j17]Sanjoy Dasgupta, Timothy Sheehan, Charles F. Stevens, Saket Navlakha:
A neural data structure for novelty detection. Proc. Natl. Acad. Sci. USA 115(51): 13093-13098 (2018) - [j16]Usue Mori, Alexander Mendiburu, Sanjoy Dasgupta, José Antonio Lozano:
Early Classification of Time Series by Simultaneously Optimizing the Accuracy and Earliness. IEEE Trans. Neural Networks Learn. Syst. 29(10): 4569-4578 (2018) - [c54]Ehsan Kazemi, Lin Chen, Sanjoy Dasgupta, Amin Karbasi:
Comparison Based Learning from Weak Oracles. AISTATS 2018: 1849-1858 - [c53]Christopher Tosh, Sanjoy Dasgupta:
Interactive Structure Learning with Structural Query-by-Committee. NeurIPS 2018: 1129-1139 - [c52]Sanjoy Dasgupta, Akansha Dey, Nicholas Roberts, Sivan Sabato:
Learning from discriminative feature feedback. NeurIPS 2018: 3959-3967 - [i18]Ehsan Kazemi, Lin Chen, Sanjoy Dasgupta, Amin Karbasi:
Comparison Based Learning from Weak Oracles. CoRR abs/1802.06942 (2018) - [i17]Christopher Tosh, Sanjoy Dasgupta:
Structural query-by-committee. CoRR abs/1803.06586 (2018) - 2017
- [j15]Christopher Tosh, Sanjoy Dasgupta:
Maximum Likelihood Estimation for Mixtures of Spherical Gaussians is NP-hard. J. Mach. Learn. Res. 18: 175:1-175:11 (2017) - [c51]Stefanos Poulis, Sanjoy Dasgupta:
Learning with Feature Feedback: from Theory to Practice. AISTATS 2017: 1104-1113 - [c50]Christopher Tosh, Sanjoy Dasgupta:
Diameter-Based Active Learning. ICML 2017: 3444-3452 - [r2]Sanjoy Dasgupta:
Active Learning Theory. Encyclopedia of Machine Learning and Data Mining 2017: 14-19 - [i16]Christopher Tosh, Sanjoy Dasgupta:
Diameter-Based Active Learning. CoRR abs/1702.08553 (2017) - [i15]Sanjoy Dasgupta, Michael Luby:
Learning from partial correction. CoRR abs/1705.08076 (2017) - 2016
- [c49]Sharad Vikram, Sanjoy Dasgupta:
Interactive Bayesian Hierarchical Clustering. ICML 2016: 2081-2090 - [c48]Xinan Wang, Sanjoy Dasgupta:
An algorithm for L1 nearest neighbor search via monotonic embedding. NIPS 2016: 983-991 - [c47]Sanjoy Dasgupta:
A cost function for similarity-based hierarchical clustering. STOC 2016: 118-127 - [i14]Sharad Vikram, Sanjoy Dasgupta:
Interactive Bayesian Hierarchical Clustering. CoRR abs/1602.03258 (2016) - 2015
- [j14]Sanjoy Dasgupta, Kaushik Sinha:
Randomized Partition Trees for Nearest Neighbor Search. Algorithmica 72(1): 237-263 (2015) - [i13]Akshay Balsubramani, Sanjoy Dasgupta, Yoav Freund:
The Fast Convergence of Incremental PCA. CoRR abs/1501.03796 (2015) - [i12]Sanjoy Dasgupta:
A cost function for similarity-based hierarchical clustering. CoRR abs/1510.05043 (2015) - 2014
- [j13]Kamalika Chaudhuri, Sanjoy Dasgupta, Samory Kpotufe, Ulrike von Luxburg:
Consistent Procedures for Cluster Tree Estimation and Pruning. IEEE Trans. Inf. Theory 60(12): 7900-7912 (2014) - [c46]Christopher Tosh, Sanjoy Dasgupta:
Lower Bounds for the Gibbs Sampler over Mixtures of Gaussians. ICML 2014: 1467-1475 - [c45]Margareta Ackerman, Sanjoy Dasgupta:
Incremental Clustering: The Case for Extra Clusters. NIPS 2014: 307-315 - [c44]Sanjoy Dasgupta, Samory Kpotufe:
Optimal rates for k-NN density and mode estimation. NIPS 2014: 2555-2563 - [c43]Kamalika Chaudhuri, Sanjoy Dasgupta:
Rates of Convergence for Nearest Neighbor Classification. NIPS 2014: 3437-3445 - [i11]Margareta Ackerman, Sanjoy Dasgupta:
Incremental Clustering: The Case for Extra Clusters. CoRR abs/1406.6398 (2014) - [i10]Kamalika Chaudhuri, Sanjoy Dasgupta:
Rates of Convergence for Nearest Neighbor Classification. CoRR abs/1407.0067 (2014) - 2013
- [c42]Sanjoy Dasgupta, Kaushik Sinha:
Randomized partition trees for exact nearest neighbor search. COLT 2013: 317-337 - [c41]Yannis Katsis, Chaitanya K. Baru, Ted Chan, Sanjoy Dasgupta, Claudiu Farcas, William G. Griswold, Jeannie Huang, Lucila Ohno-Machado, Yannis Papakonstantinou, Fredric Raab, Kevin Patrick:
DELPHI: Data E-platform for personalized population health. Healthcom 2013: 115-119 - [c40]Matus Telgarsky, Sanjoy Dasgupta:
Moment-based Uniform Deviation Bounds for k-means and Friends. NIPS 2013: 2940-2948 - [c39]Akshay Balsubramani, Sanjoy Dasgupta, Yoav Freund:
The Fast Convergence of Incremental PCA. NIPS 2013: 3174-3182 - [i9]Sanjoy Dasgupta:
Experiments with Random Projection. CoRR abs/1301.3849 (2013) - [i8]Sanjoy Dasgupta, Leonard J. Schulman:
A Two-round Variant of EM for Gaussian Mixtures. CoRR abs/1301.3850 (2013) - [i7]Sanjoy Dasgupta:
Learning Polytrees. CoRR abs/1301.6688 (2013) - [i6]Sanjoy Dasgupta, Kaushik Sinha:
Randomized partition trees for exact nearest neighbor search. CoRR abs/1302.1948 (2013) - [i5]Matus Telgarsky, Sanjoy Dasgupta:
Moment-based Uniform Deviation Bounds for $k$-means and Friends. CoRR abs/1311.1903 (2013) - 2012
- [j12]Samory Kpotufe, Sanjoy Dasgupta:
A tree-based regressor that adapts to intrinsic dimension. J. Comput. Syst. Sci. 78(5): 1496-1515 (2012) - [c38]Matus Telgarsky, Sanjoy Dasgupta:
Agglomerative Bregman Clustering. ICML 2012 - [c37]Nima Nikzad, Nakul Verma, Celal Ziftci, Elizabeth S. Bales, Nichole Quick, Piero Zappi, Kevin Patrick, Sanjoy Dasgupta, Ingolf Krueger, Tajana Simunic Rosing, William G. Griswold:
CitiSense: improving geospatial environmental assessment of air quality using a wireless personal exposure monitoring system. Wireless Health 2012: 11:1-11:8 - [c36]Sanjoy Dasgupta:
Consistency of Nearest Neighbor Classification under Selective Sampling. COLT 2012: 18.1-18.15 - [i4]Nakul Verma, Samory Kpotufe, Sanjoy Dasgupta:
Which Spatial Partition Trees are Adaptive to Intrinsic Dimension? CoRR abs/1205.2609 (2012) - [i3]Sanjoy Dasgupta, Daniel J. Hsu, Nakul Verma:
A concentration theorem for projections. CoRR abs/1206.6813 (2012) - 2011
- [j11]Sanjoy Dasgupta:
Two faces of active learning. Theor. Comput. Sci. 412(19): 1767-1781 (2011) - [c35]Sanjoy Dasgupta:
Recent advances in active learning. MLSLP 2011 - 2010
- [j10]Sanjoy Dasgupta:
Strange effects in high dimension. Commun. ACM 53(2): 96 (2010) - [c34]Kamalika Chaudhuri, Sanjoy Dasgupta:
Rates of convergence for the cluster tree. NIPS 2010: 343-351 - [r1]Sanjoy Dasgupta:
Active Learning Theory. Encyclopedia of Machine Learning 2010: 14-19
2000 – 2009
- 2009
- [j9]Sanjoy Dasgupta, Adam Tauman Kalai, Claire Monteleoni:
Analysis of Perceptron-Based Active Learning. J. Mach. Learn. Res. 10: 281-299 (2009) - [j8]Sanjoy Dasgupta, Yoav Freund:
Random projection trees for vector quantization. IEEE Trans. Inf. Theory 55(7): 3229-3242 (2009) - [c33]Sanjoy Dasgupta:
The Two Faces of Active Learning. ALT 2009: 1 - [c32]Sanjoy Dasgupta:
The Two Faces of Active Learning. Discovery Science 2009: 35 - [c31]Sanjoy Dasgupta, John Langford:
Tutorial summary: Active learning. ICML 2009: 18 - [c30]Alina Beygelzimer, Sanjoy Dasgupta, John Langford:
Importance weighted active learning. ICML 2009: 49-56 - [c29]Nakul Verma, Samory Kpotufe, Sanjoy Dasgupta:
Which Spatial Partition Trees are Adaptive to Intrinsic Dimension? UAI 2009: 565-574 - [i2]Kamalika Chaudhuri, Sanjoy Dasgupta, Andrea Vattani:
Learning Mixtures of Gaussians using the k-means Algorithm. CoRR abs/0912.0086 (2009) - 2008
- [b1]Sanjoy Dasgupta, Christos H. Papadimitriou, Umesh V. Vazirani:
Algorithms. McGraw-Hill 2008, ISBN 978-0-07-352340-8, pp. I-X, 1-320 - [j7]Sanjoy Dasgupta:
Special issue on learning theory. J. Comput. Syst. Sci. 74(1): 1 (2008) - [c28]Sanjoy Dasgupta, Yoav Freund:
Random projection trees for vector quantization. Allerton 2008: 192-197 - [c27]Sanjoy Dasgupta, Daniel J. Hsu:
Hierarchical sampling for active learning. ICML 2008: 208-215 - [c26]Sanjoy Dasgupta, Daniel J. Hsu, Claire Monteleoni:
A General Agnostic Active Learning Algorithm. ISAIM 2008 - [c25]Sanjoy Dasgupta, Yoav Freund:
Random projection trees and low dimensional manifolds. STOC 2008: 537-546 - [i1]Alina Beygelzimer, Sanjoy Dasgupta, John Langford:
Importance Weighted Active Learning. CoRR abs/0812.4952 (2008) - 2007
- [j6]Sanjoy Dasgupta, Leonard J. Schulman:
A Probabilistic Analysis of EM for Mixtures of Separated, Spherical Gaussians. J. Mach. Learn. Res. 8: 203-226 (2007) - [c24]Sanjoy Dasgupta, Daniel J. Hsu:
On-Line Estimation with the Multivariate Gaussian Distribution. COLT 2007: 278-292 - [c23]Lawrence Cayton, Sanjoy Dasgupta:
A learning framework for nearest neighbor search. NIPS 2007: 233-240 - [c22]Sanjoy Dasgupta, Daniel J. Hsu, Claire Monteleoni:
A general agnostic active learning algorithm. NIPS 2007: 353-360 - [c21]Yoav Freund, Sanjoy Dasgupta, Mayank Kabra, Nakul Verma:
Learning the structure of manifolds using random projections. NIPS 2007: 473-480 - 2006
- [c20]Lawrence Cayton, Sanjoy Dasgupta:
Robust Euclidean embedding. ICML 2006: 169-176 - [c19]Sanjoy Dasgupta, Daniel J. Hsu, Nakul Verma:
A Concentration Theorem for Projections. UAI 2006 - 2005
- [j5]Sanjoy Dasgupta, Philip M. Long:
Performance guarantees for hierarchical clustering. J. Comput. Syst. Sci. 70(4): 555-569 (2005) - [j4]Tugkan Batu, Sanjoy Dasgupta, Ravi Kumar, Ronitt Rubinfeld:
The Complexity of Approximating the Entropy. SIAM J. Comput. 35(1): 132-150 (2005) - [c18]Sanjoy Dasgupta, Adam Tauman Kalai, Claire Monteleoni:
Analysis of Perceptron-Based Active Learning. COLT 2005: 249-263 - [c17]Sanjoy Dasgupta:
Coarse sample complexity bounds for active learning. NIPS 2005: 235-242 - 2004
- [c16]Sanjoy Dasgupta:
Analysis of a greedy active learning strategy. NIPS 2004: 337-344 - 2003
- [j3]Sanjoy Dasgupta, Wee Sun Lee, Philip M. Long:
A Theoretical Analysis of Query Selection for Collaborative Filtering. Mach. Learn. 51(3): 283-298 (2003) - [j2]Sanjoy Dasgupta, Anupam Gupta:
An elementary proof of a theorem of Johnson and Lindenstrauss. Random Struct. Algorithms 22(1): 60-65 (2003) - [c15]Sanjoy Dasgupta, Philip M. Long:
Boosting with Diverse Base Classifiers. COLT 2003: 273-287 - [c14]Sanjoy Dasgupta:
Subspace Detection: A Robust Statistics Formulation. COLT 2003: 734 - [c13]Sanjoy Dasgupta:
How Fast Is k-Means? COLT 2003: 735 - [c12]David Kauchak, Sanjoy Dasgupta:
An Iterative Improvement Procedure for Hierarchical Clustering. NIPS 2003: 481-488 - 2002
- [c11]Sanjoy Dasgupta, Elan Pavlov, Yoram Singer:
An Efficient PAC Algorithm for Reconstructing a Mixture of Lines. ALT 2002: 351-364 - [c10]Tugkan Batu, Sanjoy Dasgupta, Ravi Kumar, Ronitt Rubinfeld:
The Complexity of Approximating the Entropy. CCC 2002: 17 - [c9]Sanjoy Dasgupta:
Performance Guarantees for Hierarchical Clustering. COLT 2002: 351-363 - [c8]Tugkan Batu, Sanjoy Dasgupta, Ravi Kumar, Ronitt Rubinfeld:
The complexity of approximating entropy. STOC 2002: 678-687 - 2001
- [c7]Doina Precup, Richard S. Sutton, Sanjoy Dasgupta:
Off-Policy Temporal Difference Learning with Function Approximation. ICML 2001: 417-424 - [c6]