


Остановите войну!
for scientists:


default search action
Vasant G. Honavar
Person information

- affiliation: Pennsylvania State University, University Park, Pennsylvania, USA
- affiliation: Iowa State University, Ames, Iowa, USA
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2022
- [j58]Michael G. Kallitsis
, Rupesh Prajapati, Vasant G. Honavar
, Dinghao Wu, John Yen:
Detecting and Interpreting Changes in Scanning Behavior in Large Network Telescopes. IEEE Trans. Inf. Forensics Secur. 17: 3611-3625 (2022) - 2021
- [c171]Junjie Liang, Yanting Wu, Dongkuan Xu, Vasant G. Honavar
:
Longitudinal Deep Kernel Gaussian Process Regression. AAAI 2021: 8556-8564 - [c170]Rupesh Prajapati, Vasant G. Honavar
, Dinghao Wu, John Yen, Michalis Kallitsis
:
Shedding light into the darknet: scanning characterization and detection of temporal changes. CoNEXT 2021: 469-470 - [c169]Junjie Liang, Wenbo Guo, Tongbo Luo, Vasant G. Honavar
, Gang Wang, Xinyu Xing:
FARE: Enabling Fine-grained Attack Categorization under Low-quality Labeled Data. NDSS 2021 - [c168]Tsung-Yu Hsieh, Yiwei Sun, Suhang Wang, Vasant G. Honavar
:
Functional Autoencoders for Functional Data Representation Learning. SDM 2021: 666-674 - [c167]Tsung-Yu Hsieh, Suhang Wang, Yiwei Sun, Vasant G. Honavar:
Explainable Multivariate Time Series Classification: A Deep Neural Network Which Learns to Attend to Important Variables As Well As Time Intervals. WSDM 2021: 607-615 - [c166]Tsung-Yu Hsieh, Yiwei Sun, Xianfeng Tang, Suhang Wang, Vasant G. Honavar
:
SrVARM: State Regularized Vector Autoregressive Model for Joint Learning of Hidden State Transitions and State-Dependent Inter-Variable Dependencies from Multi-variate Time Series. WWW 2021: 2270-2280 - [i27]Michalis Kallitsis, Vasant G. Honavar, Rupesh Prajapati, Dinghao Wu, John Yen:
Zooming Into the Darknet: Characterizing Internet Background Radiation and its Structural Changes. CoRR abs/2108.00079 (2021) - 2020
- [j57]Cunliang Geng
, Yong Jung, Nicolas Renaud, Vasant G. Honavar
, Alexandre M. J. J. Bonvin
, Li C. Xue
:
iScore: a novel graph kernel-based function for scoring protein-protein docking models. Bioinform. 36(1): 112-121 (2020) - [j56]Manish Parashar
, Anthony Simonet
, Ivan Rodero
, Forough Ghahramani, Grace Agnew, Ron Jantz, Vasant G. Honavar
:
The Virtual Data Collaboratory: A Regional Cyberinfrastructure for Collaborative Data-Driven Research. Comput. Sci. Eng. 22(3): 79-92 (2020) - [j55]Nicolas Renaud, Yong Jung, Vasant G. Honavar
, Cunliang Geng
, Alexandre M. J. J. Bonvin
, Li C. Xue:
iScore: An MPI supported software for ranking protein-protein docking models based on a random walk graph kernel and support vector machines. SoftwareX 11: 100462 (2020) - [c165]Junjie Liang, Dongkuan Xu, Yiwei Sun, Vasant G. Honavar:
LMLFM: Longitudinal Multi-Level Factorization Machine. AAAI 2020: 4811-4818 - [c164]Aria Khademi, Vasant G. Honavar:
Algorithmic Bias in Recidivism Prediction: A Causal Perspective (Student Abstract). AAAI 2020: 13839-13840 - [c163]Thanh Le, Vasant G. Honavar
:
Dynamical Gaussian Process Latent Variable Model for Representation Learning from Longitudinal Data. FODS 2020: 183-188 - [c162]Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, Vasant G. Honavar
:
Adversarial Attacks on Graph Neural Networks via Node Injections: A Hierarchical Reinforcement Learning Approach. WWW 2020: 673-683 - [i26]Junjie Liang, Yanting Wu, Dongkuan Xu, Vasant G. Honavar:
Longitudinal Deep Kernel Gaussian Process Regression. CoRR abs/2005.11770 (2020) - [i25]Aria Khademi, Vasant G. Honavar:
A Causal Lens for Peeking into Black Box Predictive Models: Predictive Model Interpretation via Causal Attribution. CoRR abs/2008.00357 (2020) - [i24]Christopher Seto, Aria Khademi, Corina Graif, Vasant G. Honavar:
Commuting Network Spillovers and COVID-19 Deaths Across US Counties. CoRR abs/2010.01101 (2020) - [i23]Tsung-Yu Hsieh, Suhang Wang, Yiwei Sun, Vasant G. Honavar:
Explainable Multivariate Time Series Classification: A Deep Neural Network Which Learns To Attend To Important Variables As Well As Informative Time Intervals. CoRR abs/2011.11631 (2020)
2010 – 2019
- 2019
- [c161]Saravanan Kandasamy, Arnab Bhattacharyya, Vasant G. Honavar:
Minimum Intervention Cover of a Causal Graph. AAAI 2019: 2876-2885 - [c160]Tsung-Yu Hsieh, Yiwei Sun, Suhang Wang, Vasant G. Honavar
:
Adaptive Structural Co-regularization for Unsupervised Multi-view Feature Selection. ICBK 2019: 87-96 - [c159]Yiwei Sun, Suhang Wang, Tsung-Yu Hsieh, Xianfeng Tang, Vasant G. Honavar
:
MEGAN: A Generative Adversarial Network for Multi-View Network Embedding. IJCAI 2019: 3527-3533 - [c158]Sanghack Lee, Vasant G. Honavar:
Towards Robust Relational Causal Discovery. UAI 2019: 345-355 - [c157]Yimin Zhou, Yiwei Sun, Vasant G. Honavar
:
Improving Image Captioning by Leveraging Knowledge Graphs. WACV 2019: 283-293 - [c156]Aria Khademi, Sanghack Lee, David Foley, Vasant G. Honavar
:
Fairness in Algorithmic Decision Making: An Excursion Through the Lens of Causality. WWW 2019: 2907-2914 - [i22]Yimin Zhou, Yiwei Sun, Vasant G. Honavar:
Improving Image Captioning by Leveraging Knowledge Graphs. CoRR abs/1901.08942 (2019) - [i21]Aria Khademi, Sanghack Lee, David Foley, Vasant G. Honavar:
Fairness in Algorithmic Decision Making: An Excursion Through the Lens of Causality. CoRR abs/1903.11719 (2019) - [i20]Yiwei Sun, Suhang Wang, Tsung-Yu Hsieh, Xianfeng Tang, Vasant G. Honavar:
MEGAN: A Generative Adversarial Network for Multi-View Network Embedding. CoRR abs/1909.01084 (2019) - [i19]Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, Vasant G. Honavar:
Node Injection Attacks on Graphs via Reinforcement Learning. CoRR abs/1909.06543 (2019) - [i18]Thanh Le, Vasant G. Honavar:
The Dynamical Gaussian Process Latent Variable Model in the Longitudinal Scenario. CoRR abs/1909.11630 (2019) - [i17]Junjie Liang, Dongkuan Xu, Yiwei Sun, Vasant G. Honavar:
LMLFM: Longitudinal Multi-Level Factorization Machine. CoRR abs/1911.04062 (2019) - [i16]Aria Khademi, Vasant G. Honavar:
Algorithmic Bias in Recidivism Prediction: A Causal Perspective. CoRR abs/1911.10640 (2019) - [i15]Sanghack Lee, Vasant G. Honavar:
Towards Robust Relational Causal Discovery. CoRR abs/1912.02390 (2019) - 2018
- [j54]Jinlong Hu
, Junjie Liang
, Yuezhen Kuang, Vasant G. Honavar
:
A user similarity-based Top-N recommendation approach for mobile in-application advertising. Expert Syst. Appl. 111: 51-60 (2018) - [c155]Mostafa M. Abbas, Thanh Le, Halima Bensmail, Vasant G. Honavar
, Yasser El-Manzalawy:
Microbiomarkers Discovery in Inflammatory Bowel Diseases using Network-Based Feature Selection. BCB 2018: 172-177 - [c154]Aria Khademi, Yasser El-Manzalawy, Orfeu M. Buxton
, Vasant G. Honavar
:
Toward personalized sleep-wake prediction from actigraphy. BHI 2018: 414-417 - [c153]Junjie Liang, Jinlong Hu
, Shoubin Dong, Vasant G. Honavar
:
Top-N-Rank: A Scalable List-wise Ranking Method for Recommender Systems. IEEE BigData 2018: 1052-1058 - [c152]Yiwei Sun, Ngot Bui, Tsung-Yu Hsieh, Vasant G. Honavar
:
Multi-view Network Embedding via Graph Factorization Clustering and Co-regularized Multi-view Agreement. ICDM Workshops 2018: 1006-1013 - [c151]Tsung-Yu Hsieh, Yasser El-Manzalawy, Yiwei Sun, Vasant G. Honavar
:
Compositional Stochastic Average Gradient for Machine Learning and Related Applications. IDEAL (1) 2018: 740-752 - [c150]Shlomit Gur, Vasant G. Honavar
:
PATENet: Pairwise Alignment of Time Evolving Networks. MLDM (1) 2018: 85-98 - [e9]Robert Dyer, Vasant G. Honavar, Gary T. Leavens, Hoan Anh Nguyen, Tien N. Nguyen, Hridesh Rajan:
Proceedings of the 1st ACM SIGSOFT International Workshop on Automated Specification Inference, WASPI@ESEC/SIGSOFT FSE, Lake Buena Vista, FL, USA, November 9, 2018. ACM 2018, ISBN 978-1-4503-6057-9 [contents] - [r3]Cornelia Caragea, Vasant G. Honavar
:
Machine Learning in Computational Biology. Encyclopedia of Database Systems (2nd ed.) 2018 - [i14]Tsung-Yu Hsieh, Yasser El-Manzalawy, Yiwei Sun, Vasant G. Honavar:
Compositional Stochastic Average Gradient for Machine Learning and Related Applications. CoRR abs/1809.01225 (2018) - [i13]Yiwei Sun, Ngot Bui, Tsung-Yu Hsieh, Vasant G. Honavar:
Multi-View Network Embedding Via Graph Factorization Clustering and Co-Regularized Multi-View Agreement. CoRR abs/1811.02616 (2018) - [i12]Junjie Liang, Jinlong Hu, Shoubin Dong, Vasant G. Honavar:
Top-N-Rank: A Scalable List-wise Ranking Method for Recommender Systems. CoRR abs/1812.04109 (2018) - 2017
- [j53]Li C. Xue, João P. G. L. M. Rodrigues, Drena Dobbs
, Vasant G. Honavar
, Alexandre M. J. J. Bonvin
:
Template-based protein-protein docking exploiting pairwise interfacial residue restraints. Briefings Bioinform. 18(3): 458-466 (2017) - [c149]Yasser El-Manzalawy, Orfeu M. Buxton
, Vasant G. Honavar
:
Sleep/wake state prediction and sleep parameter estimation using unsupervised classification via clustering. BIBM 2017: 718-723 - [c148]Sanghack Lee, Vasant G. Honavar:
Self-Discrepancy Conditional Independence Test. UAI 2017 - [c147]Sanghack Lee, Vasant G. Honavar:
Towards Conditional Independence Test for Relational Data. UAI 2017 - [i11]Solon Barocas, Elizabeth Bradley, Vasant G. Honavar, Foster J. Provost:
Big Data, Data Science, and Civil Rights. CoRR abs/1706.03102 (2017) - [i10]Vasant G. Honavar, Katherine A. Yelick, Klara Nahrstedt, Holly E. Rushmeier, Jennifer Rexford, Mark D. Hill, Elizabeth Bradley, Elizabeth D. Mynatt:
Advanced Cyberinfrastructure for Science, Engineering, and Public Policy. CoRR abs/1707.00599 (2017) - [i9]Gregory D. Hager, Randal E. Bryant, Eric Horvitz, Maja J. Mataric, Vasant G. Honavar:
Advances in Artificial Intelligence Require Progress Across all of Computer Science. CoRR abs/1707.04352 (2017) - 2016
- [b1]Ganesh Ram Santhanam, Samik Basu, Vasant G. Honavar
:
Representing and Reasoning with Qualitative Preferences: Tools and Applications. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan & Claypool Publishers 2016 - [j52]Ngot Bui
, John Yen, Vasant G. Honavar
:
Temporal Causality Analysis of Sentiment Change in a Cancer Survivor Network. IEEE Trans. Comput. Soc. Syst. 3(2): 75-87 (2016) - [c146]Sanghack Lee, Vasant G. Honavar:
On Learning Causal Models from Relational Data. AAAI 2016: 3263-3270 - [c145]Ngot Bui, Thanh Le, Vasant G. Honavar
:
Labeling actors in multi-view social networks by integrating information from within and across multiple views. IEEE BigData 2016: 616-625 - [c144]Drena Dobbs, Steven E. Brenner, Vasant G. Honavar, Robert L. Jernigan, Alain Laederach, Quaid Morris:
Session Introduction. PSB 2016: 429-432 - [c143]Sanghack Lee, Vasant G. Honavar:
A Characterization of Markov Equivalence Classes of Relational Causal Models under Path Semantics. UAI 2016 - [i8]Vasant G. Honavar, Mark D. Hill, Katherine A. Yelick:
Accelerating Science: A Computing Research Agenda. CoRR abs/1604.02006 (2016) - 2015
- [c142]Harris T. Lin
, Ngot Bui, Vasant G. Honavar
:
Learning classifiers from remote RDF data stores augmented with RDFS subclass hierarchies. IEEE BigData 2015: 1807-1813 - [c141]Vasant G. Honavar:
Discovery Informatics in Biological and Biomedical Sciences: Research Challenges and Opportunities. Pacific Symposium on Biocomputing 2015: 482 - [c140]Ngot Bui, John Yen, Vasant G. Honavar
:
Temporal Causality of Social Support in an Online Community for Cancer Survivors. SBP 2015: 13-23 - [c139]Sanghack Lee, Vasant G. Honavar:
Lifted Representation of Relational Causal Models Revisited: Implications for Reasoning and Structure Learning. ACI@UAI 2015: 56-65 - [i7]Ganesh Ram Santhanam, Samik Basu, Vasant G. Honavar:
CRISNER: A Practically Efficient Reasoner for Qualitative Preferences. CoRR abs/1507.08559 (2015) - [i6]Sanghack Lee, Vasant G. Honavar:
Lifted Representation of Relational Causal Models Revisited: Implications for Reasoning and Structure Learning. CoRR abs/1508.02103 (2015) - 2014
- [j51]Jia Tao, Giora Slutzki, Vasant G. Honavar
:
A Conceptual Framework for Secrecy-preserving Reasoning in Knowledge Bases. ACM Trans. Comput. Log. 16(1): 3:1-3:32 (2014) - [c138]Kannan Sankar
, Rasna R. Walia
, Carla M. Mann, Robert L. Jernigan, Vasant G. Honavar
, Drena Dobbs
:
An analysis of conformational changes upon RNA-protein binding. BCB 2014: 592-593 - [c137]Ngot Bui, Vasant G. Honavar
:
Labeling Actors in Social Networks Using a Heterogeneous Graph Kernel. SBP 2014: 27-34 - [e8]Jimmy Lin, Jian Pei, Xiaohua Hu, Wo Chang, Raghunath Nambiar, Charu C. Aggarwal, Nick Cercone, Vasant G. Honavar, Jun Huan, Bamshad Mobasher, Saumyadipta Pyne:
2014 IEEE International Conference on Big Data (IEEE BigData 2014), Washington, DC, USA, October 27-30, 2014. IEEE Computer Society 2014, ISBN 978-1-4799-5665-4 [contents] - [i5]Facundo Bromberg, Dimitris Margaritis, Vasant G. Honavar:
Efficient Markov Network Structure Discovery Using Independence Tests. CoRR abs/1401.3478 (2014) - [i4]Ganesh Ram Santhanam, Samik Basu, Vasant G. Honavar:
Representing and Reasoning with Qualitative Preferences for Compositional Systems. CoRR abs/1401.3899 (2014) - 2013
- [c136]Sanghack Lee, Vasant G. Honavar:
m-Transportability: Transportability of a Causal Effect from Multiple Environments. AAAI 2013 - [c135]Ganesh Ram Santhanam
, Samik Basu, Vasant G. Honavar:
Verifying Preferential Equivalence and Subsumption via Model Checking. ADT 2013: 324-335 - [c134]Ngot Bui, Vasant G. Honavar
:
On the utility of abstraction in labeling actors in social networks. ASONAM 2013: 692-698 - [c133]Harris T. Lin
, Vasant G. Honavar
:
Learning Classifiers from Chains of Multiple Interlinked RDF Data Stores. BigData Congress 2013: 94-101 - [c132]Harris T. Lin
, Sanghack Lee, Ngot Bui, Vasant G. Honavar
:
Learning Classifiers from Distributional Data. BigData Congress 2013: 302-309 - [c131]Letao Qi, Harris T. Lin
, Vasant G. Honavar
:
Clustering remote RDF data using SPARQL update queries. ICDE Workshops 2013: 236-242 - [c130]Elias Bareinboim, Sanghack Lee, Vasant G. Honavar, Judea Pearl:
Transportability from Multiple Environments with Limited Experiments. NIPS 2013: 136-144 - [c129]Sanghack Lee, Vasant G. Honavar:
Causal Transportability of Experiments on Controllable Subsets of Variables: z-Transportability. UAI 2013 - [c128]Ganesh Ram Santhanam
, Samik Basu, Vasant G. Honavar
:
Preference Based Service Adaptation Using Service Substitution. Web Intelligence 2013: 487-493 - [i3]Sanghack Lee, Vasant G. Honavar:
Causal Transportability of Experiments on Controllable Subsets of Variables: z-Transportability. CoRR abs/1309.6842 (2013) - 2012
- [j50]Rafael A. Jordan, Yasser El-Manzalawy, Drena Dobbs
, Vasant G. Honavar
:
Predicting protein-protein interface residues using local surface structural similarity. BMC Bioinform. 13: 41 (2012) - [j49]Rasna R. Walia
, Cornelia Caragea
, Benjamin A. Lewis, Fadi Towfic, Michael Terribilini, Yasser El-Manzalawy, Drena Dobbs
, Vasant G. Honavar
:
Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art. BMC Bioinform. 13: 89 (2012) - [j48]Fadi Towfic, Shakti Gupta, Vasant G. Honavar
, Shankar Subramaniam:
B-cell Ligand Processing Pathways Detected by Large-scale Comparative Analysis. Genom. Proteom. Bioinform. 10(3): 142-152 (2012) - [j47]Jia Tao, Giora Slutzki, Vasant G. Honavar
:
PSPACE Tableau Algorithms for Acyclic Modalized $\boldsymbol{\mathcal{ALC}}$. J. Autom. Reason. 49(4): 551-582 (2012) - [c127]Yasser El-Manzalawy, Drena Dobbs
, Vasant G. Honavar
:
Predicting protective bacterial antigens using random forest classifiers. BCB 2012: 426-433 - [c126]Vasant G. Honavar:
Learning predictive models from large distributed autonomous data sources. CIDU 2012: 1 - [c125]Kewei Tu, Vasant G. Honavar:
Unambiguity Regularization for Unsupervised Learning of Probabilistic Grammars. EMNLP-CoNLL 2012: 1324-1334 - [c124]Zachary J. Oster, Ganesh Ram Santhanam
, Samik Basu, Vasant G. Honavar
:
Model Checking of Qualitative Sensitivity Preferences to Minimize Credential Disclosure. FACS 2012: 205-223 - 2011
- [j46]Li C. Xue, Drena Dobbs
, Vasant G. Honavar
:
HomPPI: A Class of Sequence Homology Based Protein-Protein Interface Prediction Methods. BMC Bioinform. 12: 244 (2011) - [j45]Usha Muppirala, Vasant G. Honavar
, Drena Dobbs
:
Predicting RNA-Protein Interactions Using Only Sequence Information. BMC Bioinform. 12: 489 (2011) - [j44]Ganesh Ram Santhanam, Samik Basu, Vasant G. Honavar:
Representing and Reasoning with Qualitative Preferences for Compositional Systems. J. Artif. Intell. Res. 42: 211-274 (2011) - [j43]Benjamin A. Lewis, Rasna R. Walia
, Michael Terribilini, Jeff Ferguson, Charles Zheng
, Vasant G. Honavar
, Drena Dobbs
:
PRIDB: a protein-RNA interface database. Nucleic Acids Res. 39(Database-Issue): 277-282 (2011) - [j42]Yasser El-Manzalawy, Drena Dobbs
, Vasant G. Honavar
:
Predicting MHC-II Binding Affinity Using Multiple Instance Regression. IEEE ACM Trans. Comput. Biol. Bioinform. 8(4): 1067-1079 (2011) - [c123]Ganesh Ram Santhanam, Yuly Suvorov, Samik Basu, Vasant G. Honavar:
Verifying Intervention Policies to Counter Infection Propagation over Networks: A Model Checking Approach. AAAI 2011 - [c122]Ganesh Ram Santhanam, Samik Basu, Vasant G. Honavar:
Identifying Sustainable Designs Using Preferences over Sustainability Attributes. AAAI Spring Symposium: Artificial Intelligence and Sustainable Design 2011 - [c121]Li C. Xue, Rafael A. Jordan, Yasser El-Manzalawy, Drena Dobbs
, Vasant G. Honavar
:
Ranking docked models of protein-protein complexes using predicted partner-specific protein-protein interfaces: a preliminary study. BCB 2011: 441-445 - [c120]Li C. Xue, Rasna R. Walia
, Yasser El-Manzalawy, Drena Dobbs
, Vasant G. Honavar
:
Improving protein-RNA interface prediction by combining sequence homology based method with a naive Bayes classifier: preliminary results. BCB 2011: 556-558 - [c119]Adrian Silvescu, Vasant G. Honavar:
Abstraction Super-Structuring Normal Forms: Towards a Theory of Structural Induction. Algorithmic Probability and Friends 2011: 339-350 - [c118]Oksana Yakhnenko, Vasant G. Honavar
:
Multi-Instance Multi-Label Learning for Image Classification with Large Vocabularies. BMVC 2011: 1-12 - [c117]Kewei Tu, Vasant G. Honavar
:
On the Utility of Curricula in Unsupervised Learning of Probabilistic Grammars. IJCAI 2011: 1523-1528 - [c116]Kewei Tu, Xixiu Ouyang, Dingyi Han, Vasant G. Honavar:
Exemplar-based Robust Coherent Biclustering. SDM 2011: 884-895 - [c115]Harris T. Lin
, Neeraj Koul, Vasant G. Honavar
:
Learning Relational Bayesian Classifiers from RDF Data. ISWC (1) 2011: 389-404 - [i2]Adrian Silvescu, Vasant G. Honavar:
Abstraction Super-structuring Normal Forms: Towards a Theory of Structural Induction. CoRR abs/1107.0434 (2011) - 2010
- [j41]Fadi Towfic, Susan VanderPlas
, Casey A. Oliver, Oliver Couture, Christopher K. Tuggle, M. Heather West Greenlee, Vasant G. Honavar
:
Detection of gene orthology from gene co-expression and protein interaction networks. BMC Bioinform. 11(S-3): 7 (2010) - [j40]Cornelia Caragea
, Doina Caragea
, Adrian Silvescu, Vasant G. Honavar
:
Semi-supervised prediction of protein subcellular localization using abstraction augmented Markov models. BMC Bioinform. 11(S-8): S6 (2010) - [j39]Fadi Towfic, Cornelia Caragea
, David C. Gemperline, Drena Dobbs
, Vasant G. Honavar
:
Struct-NB: predicting protein-RNA binding sites using structural features. Int. J. Data Min. Bioinform. 4(1): 21-43 (2010) - [c114]Ganesh Ram Santhanam, Samik Basu, Vasant G. Honavar:
Dominance Testing via Model Checking. AAAI 2010 - [c113]Cornelia Caragea
, Adrian Silvescu, Doina Caragea
, Vasant G. Honavar
:
Semi-supervised sequence classification using abstraction augmented Markov models. BCB 2010: 257-264 - [c112]Yasser El-Manzalawy, Vasant G. Honavar
:
A framework for developing epitope prediction tools. BCB 2010: 660-662 - [c111]Neeraj Koul, Ngot Bui, Vasant G. Honavar
:
Scalable, updatable predictive models for sequence data. BIBM 2010: 681-685 - [c110]Cornelia Caragea
, Adrian Silvescu, Doina Caragea
, Vasant G. Honavar
:
Abstraction Augmented Markov Models. ICDM 2010: 68-77 - [c109]Sushain Pandit, Vasant G. Honavar
:
Ontology-guided Extraction of Complex Nested Relationships. ICTAI (2) 2010: 173-178 - [c108]Hongyu Sun, Samik Basu, Vasant G. Honavar
, Robyn R. Lutz
:
Automata-Based Verification of Security Requirements of Composite Web Services. ISSRE 2010: 348-357 - [c107]Ganesh Ram Santhanam, Samik Basu, Vasant G. Honavar:
Efficient Dominance Testing for Unconditional Preferences. KR 2010 - [c106]Bhavesh Sanghvi, Neeraj Koul, Vasant G. Honavar
:
Identifying and Eliminating Inconsistencies in Mappings across Hierarchical Ontologies. OTM Conferences (2) 2010: 999-1008 - [c105]