default search action
Pavan K. Turaga
Person information
- affiliation: Arizona State University, Tempe, AZ, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j35]Eun Som Jeon, Hongjun Choi, Ankita Shukla, Yuan Wang, Hyunglae Lee, Matthew P. Buman, Pavan K. Turaga:
Topological persistence guided knowledge distillation for wearable sensor data. Eng. Appl. Artif. Intell. 130: 107719 (2024) - [j34]Ankita Shukla, Rishi Dadhich, Rajhans Singh, Anirudh Rayas, Pouria Saidi, Gautam Dasarathy, Visar Berisha, Pavan K. Turaga:
Orthogonality and graph divergence losses promote disentanglement in generative models. Frontiers Comput. Sci. 6 (2024) - [c82]Baaz Jhaj, Ankita Shukla, Pavan K. Turaga, Michael N. Kozicki:
On the impact of pre-training datasets for matching dendritic identifiers using residual nets. AI-SIPM 2024: 2 - [i52]Jinyung Hong, Eun Som Jeon, Changhoon Kim, Keun Hee Park, Utkarsh Nath, Yezhou Yang, Pavan K. Turaga, Theodore P. Pavlic:
Learning Decomposable and Debiased Representations via Attribute-Centric Information Bottlenecks. CoRR abs/2403.14140 (2024) - [i51]Eun Som Jeon, Hongjun Choi, Ankita Shukla, Yuan Wang, Hyunglae Lee, Matthew P. Buman, Pavan K. Turaga:
Topological Persistence Guided Knowledge Distillation for Wearable Sensor Data. CoRR abs/2407.05315 (2024) - [i50]Eun Som Jeon, Rahul Khurana, Aishani Pathak, Pavan K. Turaga:
Leveraging Topological Guidance for Improved Knowledge Distillation. CoRR abs/2407.05316 (2024) - [i49]Utkarsh Nath, Rajeev Goel, Eun Som Jeon, Changhoon Kim, Kyle Min, Yezhou Yang, Yingzhen Yang, Pavan K. Turaga:
Deep Geometric Moments Promote Shape Consistency in Text-to-3D Generation. CoRR abs/2408.05938 (2024) - 2023
- [j33]Kowshik Thopalli, Rushil Anirudh, Pavan K. Turaga, Jayaraman J. Thiagarajan:
The Surprising Effectiveness of Deep Orthogonal Procrustes Alignment in Unsupervised Domain Adaptation. IEEE Access 11: 12858-12869 (2023) - [j32]Eun Som Jeon, Hongjun Choi, Ankita Shukla, Pavan K. Turaga:
Leveraging angular distributions for improved knowledge distillation. Neurocomputing 518: 466-481 (2023) - [j31]Rachael E. Jack, Vishal M. Patel, Pavan K. Turaga, Mayank Vatsa, Rama Chellappa, Alex Pentland, Richa Singh:
Best Paper Section IEEE International Conference on Automatic Face and Gesture Recognition 2021. IEEE Trans. Biom. Behav. Identity Sci. 5(3): 305-307 (2023) - [j30]Eun Som Jeon, Hongjun Choi, Ankita Shukla, Yuan Wang, Matthew P. Buman, Pavan K. Turaga:
Constrained Adaptive Distillation Based on Topological Persistence for Wearable Sensor Data. IEEE Trans. Instrum. Meas. 72: 1-14 (2023) - [c81]Tripti Shukla, Paridhi Maheshwari, Rajhans Singh, Ankita Shukla, Kuldeep Kulkarni, Pavan K. Turaga:
Scene Graph Driven Text-Prompt Generation for Image Inpainting. CVPR Workshops 2023: 759-768 - [c80]Rajhans Singh, Ankita Shukla, Pavan K. Turaga:
Polynomial Implicit Neural Representations For Large Diverse Datasets. CVPR 2023: 2041-2051 - [c79]Rajhans Singh, Ankita Shukla, Pavan K. Turaga:
Improving Shape Awareness and Interpretability in Deep Networks Using Geometric Moments. CVPR Workshops 2023: 4159-4168 - [c78]Eun Som Jeon, Suhas Lohit, Rushil Anirudh, Pavan K. Turaga:
Robust Time Series Recovery and Classification Using Test-Time Noise Simulator Networks. ICASSP 2023: 1-5 - [c77]Rakshith Subramanyam, Kowshik Thopalli, Spring Berman, Pavan K. Turaga, Jayaraman J. Thiagarajan:
Single-Shot Domain Adaptation via Target-Aware Generative Augmentations. ICASSP 2023: 1-5 - [c76]Kowshik Thopalli, Rakshith Subramanyam, Pavan K. Turaga, Jayaraman J. Thiagarajan:
Target-Aware Generative Augmentations for Single-Shot Adaptation. ICML 2023: 34105-34119 - [c75]Hongjun Choi, Eun Som Jeon, Ankita Shukla, Pavan K. Turaga:
Understanding the Role of Mixup in Knowledge Distillation: An Empirical Study. WACV 2023: 2318-2327 - [i48]Eun Som Jeon, Hongjun Choi, Ankita Shukla, Pavan K. Turaga:
Leveraging Angular Distributions for Improved Knowledge Distillation. CoRR abs/2302.14130 (2023) - [i47]Rajhans Singh, Ankita Shukla, Pavan K. Turaga:
Polynomial Implicit Neural Representations For Large Diverse Datasets. CoRR abs/2303.11424 (2023) - [i46]Shenyuan Liang, Pavan K. Turaga, Anuj Srivastava:
Learning Pose Image Manifolds Using Geometry-Preserving GANs and Elasticae. CoRR abs/2305.10513 (2023) - [i45]Kowshik Thopalli, Rakshith Subramanyam, Pavan K. Turaga, Jayaraman J. Thiagarajan:
Target-Aware Generative Augmentations for Single-Shot Adaptation. CoRR abs/2305.13284 (2023) - 2022
- [j29]Eun Som Jeon, Anirudh Som, Ankita Shukla, Kristina Hasanaj, Matthew P. Buman, Pavan K. Turaga:
Role of Data Augmentation Strategies in Knowledge Distillation for Wearable Sensor Data. IEEE Internet Things J. 9(14): 12848-12860 (2022) - [c74]Kowshik Thopalli, Pavan K. Turaga, Jayaraman J. Thiagarajan:
Domain Alignment Meets Fully Test-Time Adaptation. ACML 2022: 1006-1021 - [c73]Eun Som Jeon, Hongjun Choi, Ankita Shukla, Yuan Wang, Matthew P. Buman, Pavan K. Turaga:
Topological Knowledge Distillation for Wearable Sensor Data. IEEECONF 2022: 837-842 - [i44]Eun Som Jeon, Anirudh Som, Ankita Shukla, Kristina Hasanaj, Matthew P. Buman, Pavan K. Turaga:
Role of Data Augmentation Strategies in Knowledge Distillation for Wearable Sensor Data. CoRR abs/2201.00111 (2022) - [i43]Kowshik Thopalli, Jayaraman J. Thiagarajan, Rushil Anirudh, Pavan K. Turaga:
Revisiting Deep Subspace Alignment for Unsupervised Domain Adaptation. CoRR abs/2201.01806 (2022) - [i42]Rajhans Singh, Ankita Shukla, Pavan K. Turaga:
Deep Geometric Moment. CoRR abs/2205.11722 (2022) - [i41]Kowshik Thopalli, Pavan K. Turaga, Jayaraman J. Thiagarajan:
Domain Alignment Meets Fully Test-Time Adaptation. CoRR abs/2207.04185 (2022) - [i40]Rakshith Subramanyam, Kowshik Thopalli, Spring Berman, Pavan K. Turaga, Jayaraman J. Thiagarajan:
Single-Shot Domain Adaptation via Target-Aware Generative Augmentation. CoRR abs/2210.16692 (2022) - [i39]Hongjun Choi, Eun Som Jeon, Ankita Shukla, Pavan K. Turaga:
Understanding the Role of Mixup in Knowledge Distillation: An Empirical Study. CoRR abs/2211.03946 (2022) - 2021
- [j28]Visar Berisha, Chelsea Krantsevich, P. Richard Hahn, Shira Hahn, Gautam Dasarathy, Pavan K. Turaga, Julie Liss:
Digital medicine and the curse of dimensionality. npj Digit. Medicine 4 (2021) - [c72]Suhas Lohit, Rushil Anirudh, Pavan K. Turaga:
Recovering Trajectories of Unmarked Joints in 3D Human Actions Using Latent Space Optimization. WACV 2021: 2341-2350 - [c71]Rushil Anirudh, Suhas Lohit, Pavan K. Turaga:
Generative Patch Priors for Practical Compressive Image Recovery. WACV 2021: 2534-2544 - [i38]Ella Y. Wang, Anirudh Som, Ankita Shukla, Hongjun Choi, Pavan K. Turaga:
Interpretable COVID-19 Chest X-Ray Classification via Orthogonality Constraint. CoRR abs/2102.08360 (2021) - [i37]Ankita Shukla, Rushil Anirudh, Eugene Kur, Jayaraman J. Thiagarajan, Peer-Timo Bremer, Brian K. Spears, Tammy Ma, Pavan K. Turaga:
Geometric Priors for Scientific Generative Models in Inertial Confinement Fusion. CoRR abs/2111.12798 (2021) - [i36]John Kevin Cava, John W. Vant, Nicholas Ho, Ankita Shulka, Pavan K. Turaga, Ross Maciejewski, Abhishek Singharoy:
Towards Conditional Generation of Minimal Action Potential Pathways for Molecular Dynamics. CoRR abs/2111.14053 (2021) - [i35]Kowshik Thopalli, Sameeksha Katoch, Andreas Spanias, Pavan K. Turaga, Jayaraman J. Thiagarajan:
Improving Multi-Domain Generalization through Domain Re-labeling. CoRR abs/2112.09802 (2021) - 2020
- [b4]Sunil Rao, Sameeksha Katoch, Vivek Sivaraman Narayanaswamy, Gowtham Muniraju, Cihan Tepedelenlioglu, Andreas Spanias, Pavan K. Turaga, Raja Ayyanar, Devarajan Srinivasan:
Machine Learning for Solar Array Monitoring, Optimization, and Control. Synthesis Lectures on Power Electronics, Morgan & Claypool Publishers 2020, ISBN 978-3-031-01377-5 - [j27]Boulbaba Ben Amor, Anuj Srivastava, Pavan K. Turaga, Grisha Coleman:
A Framework for Interpretable Full-Body Kinematic Description Using Geometric and Functional Analysis. IEEE Trans. Biomed. Eng. 67(6): 1761-1774 (2020) - [c70]Dosun Shin, Matthew P. Buman, Pavan K. Turaga, Assegid Kidané, Todd Ingalls:
Design of the Future Workstation: Enhancing Health and Wellbeing on the Job. AHFE (13) 2020: 407-413 - [c69]Anirudh Som, Hongjun Choi, Karthikeyan Natesan Ramamurthy, Matthew P. Buman, Pavan K. Turaga:
PI-Net: A Deep Learning Approach to Extract Topological Persistence Images. CVPR Workshops 2020: 3639-3648 - [c68]Hongjun Choi, Anirudh Som, Pavan K. Turaga:
AMC-Loss: Angular Margin Contrastive Loss for Improved Explainability in Image Classification. CVPR Workshops 2020: 3659-3666 - [c67]Anirudh Som, Narayanan Krishnamurthi, Matthew P. Buman, Pavan K. Turaga:
Unsupervised Pre-trained Models from Healthy ADLs Improve Parkinson's Disease Classification of Gait Patterns. EMBC 2020: 784-788 - [c66]Afra Nawar, Farhan Rahman, Narayanan Krishnamurthi, Anirudh Som, Pavan K. Turaga:
Topological Descriptors for Parkinson's Disease Classification and Regression Analysis. EMBC 2020: 793-797 - [c65]Kaushik Koneripalli, Suhas Lohit, Rushil Anirudh, Pavan K. Turaga:
Rate-Invariant Autoencoding of Time-Series. ICASSP 2020: 3732-3736 - [c64]Dosun Shin, Matthew P. Buman, Pavan K. Turaga, Assegid Kidané, Todd Ingalls:
New Investment of Innovative Design of the Future Workstation: Advancing Sedentary Work Behavior. IHIET (Paris) 2020: 371-376 - [i34]Afra Nawar, Farhan Rahman, Narayanan Krishnamurthi, Anirudh Som, Pavan K. Turaga:
Topological Descriptors for Parkinson's Disease Classification and Regression Analysis. CoRR abs/2004.07384 (2020) - [i33]Kuldeep Kulkarni, Tejas Gokhale, Rajhans Singh, Pavan K. Turaga, Aswin C. Sankaranarayanan:
Halluci-Net: Scene Completion by Exploiting Object Co-occurrence Relationships. CoRR abs/2004.08614 (2020) - [i32]Hongjun Choi, Anirudh Som, Pavan K. Turaga:
AMC-Loss: Angular Margin Contrastive Loss for Improved Explainability in Image Classification. CoRR abs/2004.09805 (2020) - [i31]Anirudh Som, Narayanan Krishnamurthi, Matthew P. Buman, Pavan K. Turaga:
Unsupervised Pre-trained Models from Healthy ADLs Improve Parkinson's Disease Classification of Gait Patterns. CoRR abs/2005.02589 (2020) - [i30]Ankita Shukla, Pavan K. Turaga, Saket Anand:
GraCIAS: Grassmannian of Corrupted Images for Adversarial Security. CoRR abs/2005.02936 (2020) - [i29]Rushil Anirudh, Suhas Lohit, Pavan K. Turaga:
Generative Patch Priors for Practical Compressive Image Recovery. CoRR abs/2006.10873 (2020) - [i28]Hongjun Choi, Anirudh Som, Pavan K. Turaga:
Role of Orthogonality Constraints in Improving Properties of Deep Networks for Image Classification. CoRR abs/2009.10762 (2020) - [i27]Suhas Lohit, Rushil Anirudh, Pavan K. Turaga:
Recovering Trajectories of Unmarked Joints in 3D Human Actions Using Latent Space Optimization. CoRR abs/2012.02043 (2020)
2010 – 2019
- 2019
- [b3]Henry Braun, Pavan K. Turaga, Andreas Spanias, Sameeksha Katoch, Suren Jayasuriya, Cihan Tepedelenlioglu:
Reconstruction-Free Compressive Vision for Surveillance Applications. Synthesis Lectures on Signal Processing, Morgan & Claypool Publishers 2019, ISBN 978-3-031-01413-0 - [j26]Berkay Kanberoglu, Dhritiman Das, Priya Nair, Pavan K. Turaga, David H. Frakes:
An Optical Flow-Based Approach for Minimally Divergent Velocimetry Data Interpolation. Int. J. Biomed. Imaging 2019: 9435163:1-9435163:14 (2019) - [c63]Divya Mohan, Sameeksha Katoch, Suren Jayasuriya, Pavan K. Turaga, Andreas Spanias:
Adaptive Video Subsampling For Energy-Efficient Object Detection. ACSSC 2019: 103-107 - [c62]Suhas Lohit, Rajhans Singh, Kuldeep Kulkarni, Pavan K. Turaga:
Rank-Regularized Measurement Operators for Compressive Imaging. ACSSC 2019: 942-946 - [c61]Ankita Shukla, Sarthak Bhagat, Shagun Uppal, Saket Anand, Pavan K. Turaga:
PrOSe: Product of Orthogonal Spheres Parameterization for Disentangled Representation Learning. BMVC 2019: 88 - [c60]Suhas Lohit, Qiao Wang, Pavan K. Turaga:
Temporal Transformer Networks: Joint Learning of Invariant and Discriminative Time Warping. CVPR 2019: 12426-12435 - [c59]Divya Mohan, Sameeksha Katoch, Suren Jayasuriya, Pavan K. Turaga, Andreas Spanias:
An REU Experience in Machine Learning and Computational Cameras. FIE 2019: 1-5 - [c58]Kowshik Thopalli, Rushil Anirudh, Jayaraman J. Thiagarajan, Pavan K. Turaga:
Multiple Subspace Alignment Improves Domain Adaptation. ICASSP 2019: 3552-3556 - [c57]Juan Andrade, Pavan K. Turaga, Andreas Spanias:
Spatially-Varying Sharpness Map Estimation Based on the Quotient of Spectral Bands. ICIP 2019: 4020-4024 - [c56]Rajhans Singh, Pavan K. Turaga, Suren Jayasuriya, Ravi Garg, Martin W. Braun:
Non-Parametric Priors For Generative Adversarial Networks. ICML 2019: 5838-5847 - [c55]Juan Andrade, Sameeksha Katoch, Pavan K. Turaga, Andreas Spanias, Cihan Tepedelenlioglu, Kristen Jaskie:
Formation-aware Cloud Segmentation of Ground-based Images with Applications to PV Systems. IISA 2019: 1-7 - [i26]Ankita Shukla, Shagun Uppal, Sarthak Bhagat, Saket Anand, Pavan K. Turaga:
Geometry of Deep Generative Models for Disentangled Representations. CoRR abs/1902.06964 (2019) - [i25]Rajhans Singh, Pavan K. Turaga, Suren Jayasuriya, Ravi Garg, Martin W. Braun:
Non-Parametric Priors For Generative Adversarial Networks. CoRR abs/1905.07061 (2019) - [i24]Anirudh Som, Hongjun Choi, Karthikeyan Natesan Ramamurthy, Matthew P. Buman, Pavan K. Turaga:
PI-Net: A Deep Learning Approach to Extract Topological Persistence Images. CoRR abs/1906.01769 (2019) - [i23]Kowshik Thopalli, Jayaraman J. Thiagarajan, Rushil Anirudh, Pavan K. Turaga:
SALT: Subspace Alignment as an Auxiliary Learning Task for Domain Adaptation. CoRR abs/1906.04338 (2019) - [i22]Suhas Lohit, Qiao Wang, Pavan K. Turaga:
Temporal Transformer Networks: Joint Learning of Invariant and Discriminative Time Warping. CoRR abs/1906.05947 (2019) - [i21]Ankita Shukla, Sarthak Bhagat, Shagun Uppal, Saket Anand, Pavan K. Turaga:
Product of Orthogonal Spheres Parameterization for Disentangled Representation Learning. CoRR abs/1907.09554 (2019) - [i20]Sameeksha Katoch, Kowshik Thopalli, Jayaraman J. Thiagarajan, Pavan K. Turaga, Andreas Spanias:
Invenio: Discovering Hidden Relationships Between Tasks/Domains Using Structured Meta Learning. CoRR abs/1911.10600 (2019) - 2018
- [j25]Suhas Lohit, Kuldeep Kulkarni, Ronan Kerviche, Pavan K. Turaga, Amit Ashok:
Convolutional Neural Networks for Noniterative Reconstruction of Compressively Sensed Images. IEEE Trans. Computational Imaging 4(3): 326-340 (2018) - [j24]Stefano Berretti, Mohamed Daoudi, Pavan K. Turaga, Anup Basu:
Introduction to the Special Issue on Representation, Analysis, and Recognition of 3D Humans. ACM Trans. Multim. Comput. Commun. Appl. 14(1s): 15:1-15:2 (2018) - [j23]Stefano Berretti, Mohamed Daoudi, Pavan K. Turaga, Anup Basu:
Representation, Analysis, and Recognition of 3D Humans: A Survey. ACM Trans. Multim. Comput. Commun. Appl. 14(1s): 16:1-16:36 (2018) - [c54]Hongjun Choi, Qiao Wang, Meynard John Toledo, Pavan K. Turaga, Matthew P. Buman, Anuj Srivastava:
Temporal Alignment Improves Feature Quality: An Experiment on Activity Recognition With Accelerometer Data. CVPR Workshops 2018: 349-357 - [c53]Suhas Lohit, Ankan Bansal, Nitesh Shroff, Jaishanker K. Pillai, Pavan K. Turaga, Rama Chellappa:
Predicting Dynamical Evolution of Human Activities From a Single Image. CVPR Workshops 2018: 383-392 - [c52]Anirudh Som, Kowshik Thopalli, Karthikeyan Natesan Ramamurthy, Vinay Venkataraman, Ankita Shukla, Pavan K. Turaga:
Perturbation Robust Representations of Topological Persistence Diagrams. ECCV (7) 2018: 638-659 - [c51]Li-Chi Huang, Kuldeep Kulkarni, Anik Jha, Suhas Lohit, Suren Jayasuriya, Pavan K. Turaga:
CS-VQA: Visual Question Answering with Compressively Sensed Images. ICIP 2018: 1283-1287 - [c50]Sameeksha Katoch, Pavan K. Turaga, Andreas Spanias, Cihan Tepedelenlioglu:
Fast Non-Linear Methods for Dynamic Texture Prediction. ICIP 2018: 2107-2111 - [c49]Sameeksha Katoch, Gowtham Muniraju, Sunil Rao, Andreas Spanias, Pavan K. Turaga, Cihan Tepedelenlioglu, Mahesh K. Banavar, Devarajan Srinivasan:
Shading prediction, fault detection, and consensus estimation for solar array control. ICPS 2018: 217-222 - [c48]Ankita Shukla, Shagun Uppal, Sarthak Bhagat, Saket Anand, Pavan K. Turaga:
Geometry of Deep Generative Models for Disentangled Representations. ICVGIP 2018: 68:1-68:8 - [c47]Piyum Fernando, Jennifer Weiler, Stacey Kuznetsov, Pavan K. Turaga:
Tracking, Animating, and 3D Printing Elements of the Fine Arts Freehand Drawing Process. TEI 2018: 555-561 - [i19]Mayank Gupta, Arjun Jauhari, Kuldeep Kulkarni, Suren Jayasuriya, Alyosha C. Molnar, Pavan K. Turaga:
Compressive Light Field Reconstructions using Deep Learning. CoRR abs/1802.01722 (2018) - [i18]Li-Chi Huang, Kuldeep Kulkarni, Anik Jha, Suhas Lohit, Suren Jayasuriya, Pavan K. Turaga:
CS-VQA: Visual Question Answering with Compressively Sensed Images. CoRR abs/1806.03379 (2018) - [i17]Anirudh Som, Kowshik Thopalli, Karthikeyan Natesan Ramamurthy, Vinay Venkataraman, Ankita Shukla, Pavan K. Turaga:
Perturbation Robust Representations of Topological Persistence Diagrams. CoRR abs/1807.10400 (2018) - [i16]Suhas Lohit, Rajhans Singh, Kuldeep Kulkarni, Pavan K. Turaga:
Rate-Adaptive Neural Networks for Spatial Multiplexers. CoRR abs/1809.02850 (2018) - [i15]Kowshik Thopalli, Rushil Anirudh, Jayaraman J. Thiagarajan, Pavan K. Turaga:
Multiple Subspace Alignment Improves Domain Adaptation. CoRR abs/1811.04491 (2018) - [i14]Berkay Kanberoglu, Dhritiman Das, Priya Nair, Pavan K. Turaga, David H. Frakes:
An Optical Flow-Based Approach for Minimally-Divergent Velocimetry Data Interpolation. CoRR abs/1812.08882 (2018) - 2017
- [j22]Gowtham Muniraju, Sunil Rao, Sameeksha Katoch, Andreas Spanias, Cihan Tepedelenlioglu, Pavan K. Turaga, Mahesh K. Banavar, Devarajan Srinivasan:
A Cyber-Physical Photovoltaic Array Monitoring and Control System. Int. J. Monit. Surveillance Technol. Res. 5(3): 33-56 (2017) - [j21]Rushil Anirudh, Pavan K. Turaga, Jingyong Su, Anuj Srivastava:
Elastic Functional Coding of Riemannian Trajectories. IEEE Trans. Pattern Anal. Mach. Intell. 39(5): 922-936 (2017) - [c46]Qiao Wang, Chaitanya Potaraju, Pavan K. Turaga:
Measuring Glide-Reflection Symmetry in Human Movements Using Elastic Shape Analysis. CVPR Workshops 2017: 709-716 - [c45]Mayank Gupta, Arjun Jauhari, Kuldeep Kulkarni, Suren Jayasuriya, Alyosha C. Molnar, Pavan K. Turaga:
Compressive Light Field Reconstructions Using Deep Learning. CVPR Workshops 2017: 1277-1286 - [c44]Anirudh Som, Narayanan Krishnamurthi, Vinay Venkataraman, Karthikeyan Natesan Ramamurthy, Pavan K. Turaga:
Multiscale evolution of attractor-shape descriptors for assessing Parkinson's disease severity. GlobalSIP 2017: 938-942 - [c43]Suhas Lohit, Pavan K. Turaga:
Learning Invariant Riemannian Geometric Representations Using Deep Nets. ICCV Workshops 2017: 1329-1338 - [c42]Sunil Rao, Sameeksha Katoch, Pavan K. Turaga, Andreas Spanias, Cihan Tepedelenlioglu, Raja Ayyanar, Henry Braun, Jongmin Lee, Uday Shankar Shanthamallu, Mahesh K. Banavar, Devarajan Srinivasan:
A cyber-physical system approach for photovoltaic array monitoring and control. IISA 2017: 1-6 - [p5]Rushil Anirudh, Pavan K. Turaga, Anuj Srivastava:
Optimization Problems Associated with Manifold-Valued Curves with Applications in Computer Vision. Handbook of Convex Optimization Methods in Imaging Science 2017: 207-228 - [i13]Suhas Lohit, Kuldeep Kulkarni, Ronan Kerviche, Pavan K. Turaga, Amit Ashok:
Convolutional Neural Networks for Non-iterative Reconstruction of Compressively Sensed Images. CoRR abs/1708.04669 (2017) - [i12]Suhas Lohit, Pavan K. Turaga:
Learning Invariant Riemannian Geometric Representations Using Deep Nets. CoRR abs/1708.09485 (2017) - 2016
- [j20]Rushil Anirudh, Pavan K. Turaga:
Geometry-Based Symbolic Approximation for Fast Sequence Matching on Manifolds. Int. J. Comput. Vis. 116(2): 161-173 (2016) - [j19]Kuldeep Kulkarni, Pavan K. Turaga:
Reconstruction-Free Action Inference from Compressive Imagers. IEEE Trans. Pattern Anal. Mach. Intell. 38(4): 772-784 (2016) - [j18]Vinay Venkataraman, Pavan K. Turaga:
Shape Distributions of Nonlinear Dynamical Systems for Video-Based Inference. IEEE Trans. Pattern Anal. Mach. Intell. 38(12): 2531-2543 (2016) - [j17]Aswin C. Sankaranarayanan, Matthew A. Herman, Pavan K. Turaga, Kevin F. Kelly:
Enhanced Compressive Imaging Using Model-Based Acquisition: Smarter sampling by incorporating domain knowledge. IEEE Signal Process. Mag. 33(5): 81-94 (2016) - [j16]Vinay Venkataraman, Pavan K. Turaga, Michael Baran, Nicole Lehrer, Tingfang Du, Long Cheng, Thanassis Rikakis, Steven L. Wolf:
Component-Level Tuning of Kinematic Features From Composite Therapist Impressions of Movement Quality. IEEE J. Biomed. Health Informatics 20(1): 143-152 (2016) - [c41]Vinay Venkataraman, Jonathan Lenchner, Shari Trewin, Maryam Ashoori, Shang Guo, Mishal Dholakia, Pavan K. Turaga:
Ceding Control: Empowering Remote Participants in Meetings involving Smart Conference Rooms. AAAI Workshop: Symbiotic Cognitive Systems 2016 - [c40]Henry Braun, Pavan K. Turaga, Andreas Spanias, Cihan Tepedelenlioglu:
Direct classification from compressively sensed images via deep Boltzmann machine. ACSSC 2016: 454-457 - [c39]Kuldeep Kulkarni, Suhas Lohit, Pavan K. Turaga, Ronan Kerviche, Amit Ashok:
ReconNet: Non-Iterative Reconstruction of Images from Compressively Sensed Measurements. CVPR 2016: 449-458 - [c38]Anirudh Som, Rushil Anirudh, Qiao Wang, Pavan K. Turaga:
Riemannian Geometric Approaches for Measuring Movement Quality. CVPR Workshops 2016: 1005 - [c37]Rushil Anirudh, Vinay Venkataraman, Karthikeyan Natesan Ramamurthy, Pavan K. Turaga:
A Riemannian Framework for Statistical Analysis of Topological Persistence Diagrams. CVPR Workshops 2016: 1023-1031 - [c36]Qiao Wang, Suhas Lohit, Meynard John Toledo, Matthew P. Buman, Pavan K. Turaga:
A statistical estimation framework for energy expenditure of physical activities from a wrist-worn accelerometer. EMBC 2016: 2631-2635 - [c35]Anirudh Som, Narayanan Krishnamurthi, Vinay Venkataraman, Pavan K. Turaga