
Yusuke Nojima
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2020
- [j44]Chun-Hao Chen
, Hsiang Chou
, Tzung-Pei Hong
, Yusuke Nojima
:
Cluster-Based Membership Function Acquisition Approaches for Mining Fuzzy Temporal Association Rules. IEEE Access 8: 123996-124006 (2020) - [j43]Ying Xu
, Cuijuan Yang, Shaoliang Peng, Yusuke Nojima:
A hybrid two-stage financial stock forecasting algorithm based on clustering and ensemble learning. Appl. Intell. 50(11): 3852-3867 (2020) - [j42]Irene Díaz, Yusuke Nojima:
Fuzzy sets for decision making in emerging domains. Fuzzy Sets Syst. 395: 197-198 (2020) - [j41]Yiping Liu
, Hisao Ishibuchi
, Naoki Masuyama
, Yusuke Nojima
:
Adapting Reference Vectors and Scalarizing Functions by Growing Neural Gas to Handle Irregular Pareto Fronts. IEEE Trans. Evol. Comput. 24(3): 439-453 (2020) - [j40]Yiping Liu
, Hisao Ishibuchi
, Gary G. Yen
, Yusuke Nojima
, Naoki Masuyama
:
Handling Imbalance Between Convergence and Diversity in the Decision Space in Evolutionary Multimodal Multiobjective Optimization. IEEE Trans. Evol. Comput. 24(3): 551-565 (2020) - [j39]Suhang Gu
, Yusuke Nojima
, Hisao Ishibuchi
, Shitong Wang
:
A Novel Classification Method From the Perspective of Fuzzy Social Networks Based on Physical and Implicit Style Features of Data. IEEE Trans. Fuzzy Syst. 28(2): 361-375 (2020) - [c181]Yuna Yamada, Naoki Masuyama, Narito Amako, Yusuke Nojima, Chu Kiong Loo, Hisao Ishibuchi:
Divisive Hierarchical Clustering Based on Adaptive Resonance Theory. CcS 2020: 1-6 - [c180]Ryuichi Hashimoto, Toshiki Urita, Naoki Masuyama, Yusuke Nojima, Hisao Ishibuchi:
Effects of Local Mating in Inter-task Crossover on the Performance of Decomposition-based Evolutionary Multiobjective Multitask optimization Algorithms. CEC 2020: 1-8 - [c179]Yiping Liu, Hisao Ishibuchi, Gary G. Yen, Yusuke Nojima, Naoki Masuyama, Yuyan Han:
On the Normalization in Evolutionary Multi-Modal Multi-Objective Optimization. CEC 2020: 1-8 - [c178]Hisao Ishibuchi, Takashi Matsumoto, Naoki Masuyama, Yusuke Nojima:
Many-Objective Problems Are Not Always Difficult for Pareto Dominance-Based Evolutionary Algorithms. ECAI 2020: 291-298 - [c177]Yuichi Omozaki, Naoki Masuyama, Yusuke Nojima, Hisao Ishibuchi:
Multiobjective Fuzzy Genetics-Based Machine Learning for Multi-Label Classification. FUZZ-IEEE 2020: 1-8 - [c176]Koen van der Blom, Timo M. Deist, Tea Tusar, Mariapia Marchi, Yusuke Nojima, Akira Oyama, Vanessa Volz, Boris Naujoks:
Towards realistic optimization benchmarks: a questionnaire on the properties of real-world problems. GECCO Companion 2020: 293-294 - [c175]Hisao Ishibuchi, Takashi Matsumoto, Naoki Masuyama, Yusuke Nojima:
Effects of dominance resistant solutions on the performance of evolutionary multi-objective and many-objective algorithms. GECCO 2020: 507-515 - [c174]Narito Amako, Naoki Masuyama, Chu Kiong Loo, Yusuke Nojima, Yiping Liu, Hisao Ishibuchi:
Multilayer Clustering Based on Adaptive Resonance Theory for Noisy Environments. IJCNN 2020: 1-8 - [c173]Naoki Masuyama, Yusuke Nojima, Chu Kiong Loo, Hisao Ishibuchi:
Multi-label Classification Based on Adaptive Resonance Theory. SSCI 2020: 1913-1920 - [i4]Koen van der Blom, Timo M. Deist, Tea Tusar, Mariapia Marchi, Yusuke Nojima, Akira Oyama, Vanessa Volz, Boris Naujoks:
Towards Realistic Optimization Benchmarks: A Questionnaire on the Properties of Real-World Problems. CoRR abs/2004.06395 (2020) - [i3]Koen van der Blom, Timo M. Deist, Vanessa Volz, Mariapia Marchi, Yusuke Nojima, Boris Naujoks, Akira Oyama, Tea Tusar:
Identifying Properties of Real-World Optimisation Problems through a Questionnaire. CoRR abs/2011.05547 (2020)
2010 – 2019
- 2019
- [j38]Naoki Masuyama
, Chu Kiong Loo
, Hisao Ishibuchi, Naoyuki Kubota
, Yusuke Nojima, Yiping Liu:
Topological Clustering via Adaptive Resonance Theory With Information Theoretic Learning. IEEE Access 7: 76920-76936 (2019) - [j37]Zhaohong Deng
, Jie Lu, Dongrui Wu, Kup-Sze Choi
, Shiliang Sun
, Yusuke Nojima
:
Guest Editorial: Special Issue on New Advances in Deep-Transfer Learning. IEEE Trans. Emerg. Top. Comput. Intell. 3(5): 357-359 (2019) - [c172]Chang-Shing Lee, Mei-Hui Wang, Li-Chuang Chen, Yusuke Nojima, Tzong-Xiang Huang, Jinseok Woo, Naoyuki Kubota
, Eri Sato-Shimokawara, Toru Yamaguchi:
A GFML-based Robot Agent for Human and Machine Cooperative Learning on Game of Go. CEC 2019: 793-799 - [c171]Yiping Liu, Hisao Ishibuchi, Yusuke Nojima, Naoki Masuyama, Yuyan Han:
Searching for Local Pareto Optimal Solutions: A Case Study on Polygon-Based Problems. CEC 2019: 896-903 - [c170]Takashi Matsumoto, Naoki Masuyama, Yusuke Nojima, Hisao Ishibuchi:
A Multiobjective Test Suite with Hexagon Pareto Fronts and Various Feasible Regions. CEC 2019: 2058-2065 - [c169]Hisao Ishibuchi, Ryo Imada, Naoki Masuyama, Yusuke Nojima:
Two-Layered Weight Vector Specification in Decomposition-Based Multi-Objective Algorithms for Many-Objective Optimization Problems. CEC 2019: 2434-2441 - [c168]Hisao Ishibuchi, Ryo Imada, Naoki Masuyama, Yusuke Nojima:
Comparison of Hypervolume, IGD and IGD+ from the Viewpoint of Optimal Distributions of Solutions. EMO 2019: 332-345 - [c167]Yusuke Nojima, Takafumi Fukase, Yiping Liu, Naoki Masuyama, Hisao Ishibuchi:
Constrained multiobjective distance minimization problems. GECCO 2019: 586-594 - [c166]Hisao Ishibuchi, Takashi Matsumoto, Naoki Masuyama, Yusuke Nojima:
Optimal Distributions of Solutions for Hypervolume Maximization on Triangular and Inverted Triangular Pareto Fronts of Four-Objective Problems. SSCI 2019: 1857-1864 - [c165]Naoki Masuyama, Narito Amako, Yusuke Nojima, Yiping Liu, Chu Kiong Loo, Hisao Ishibuchi:
Fast Topological Adaptive Resonance Theory Based on Correntropy Induced Metric. SSCI 2019: 2215-2221 - [c164]Ryuichi Hashimoto, Naoki Masuyama, Yusuke Nojima, Hisao Ishibuchi:
Effect of Solution Information Sharing between Tasks on the Search Ability of Evolutionary Multiobjective Multitasking Algorithms. SSCI 2019: 2671-2678 - [i2]Chang-Shing Lee, Mei-Hui Wang, Li-Chuang Chen, Yusuke Nojima, Tzong-Xiang Huang, Jinseok Woo, Naoyuki Kubota, Eri Sato-Shimokawara, Toru Yamaguchi:
A GFML-based Robot Agent for Human and Machine Cooperative Learning on Game of Go. CoRR abs/1901.07191 (2019) - 2018
- [j36]Hisao Ishibuchi, Ryo Imada, Yu Setoguchi, Yusuke Nojima:
How to Specify a Reference Point in Hypervolume Calculation for Fair Performance Comparison. Evol. Comput. 26(3) (2018) - [j35]Heiner Zille
, Hisao Ishibuchi
, Sanaz Mostaghim
, Yusuke Nojima
:
A Framework for Large-Scale Multiobjective Optimization Based on Problem Transformation. IEEE Trans. Evol. Comput. 22(2): 260-275 (2018) - [j34]Hisao Ishibuchi
, Ryo Imada, Yu Setoguchi, Yusuke Nojima
:
Reference Point Specification in Inverted Generational Distance for Triangular Linear Pareto Front. IEEE Trans. Evol. Comput. 22(6): 961-975 (2018) - [c163]Hisao Ishibuchi, Ryo Imada, Naoki Masuyama, Yusuke Nojima:
Dynamic Specification of a Reference Point for Hypervolume Calculation in SMS-EMOA. CEC 2018: 1-8 - [c162]Hisao Ishibuchi, Takefumi Fukase, Naoki Masuyama, Yusuke Nojima:
Dual-grid model of MOEA/D for evolutionary constrained multiobjective optimization. GECCO 2018: 665-672 - [c161]Ryuichi Hashimoto, Hisao Ishibuchi, Naoki Masuyama, Yusuke Nojima:
Analysis of evolutionary multi-tasking as an island model. GECCO (Companion) 2018: 1894-1897 - [c160]Yiping Liu, Hisao Ishibuchi, Yusuke Nojima, Naoki Masuyama, Ke Shang:
A Double-Niched Evolutionary Algorithm and Its Behavior on Polygon-Based Problems. PPSN (1) 2018: 262-273 - [c159]Yiping Liu, Hisao Ishibuchi, Yusuke Nojima, Naoki Masuyama, Ke Shang:
Improving 1by1EA to Handle Various Shapes of Pareto Fronts. PPSN (1) 2018: 311-322 - [c158]Hisao Ishibuchi, Ryo Imada, Naoki Masuyama, Yusuke Nojima:
Use of Two Reference Points in Hypervolume-Based Evolutionary Multiobjective Optimization Algorithms. PPSN (1) 2018: 384-396 - [c157]Naoki Masuyama, Yuki Tanigaki, Yusuke Nojima, Hisao Ishibuchi:
Multiobjective Evolutionary Data Mining for Performance Improvement of Evolutionary Multiobjective Optimization. SMC 2018: 745-750 - [c156]Takashi Matsumoto, Naoki Masuyama, Yusuke Nojima, Hisao Ishibuchi:
Performance Comparison of Multiobjective Evolutionary Algorithms on Problems with Partially Different Properties from Popular Test Suites. SMC 2018: 769-774 - [c155]Naoki Masuyama, Chu Kiong Loo, Hisao Ishibuchi, Yusuke Nojima, Yiping Lin:
Topological Kernel Bayesian ARTMAP. WAC 2018: 1-5 - 2017
- [j33]Chun-Hao Chen, Chuan-Kang Ting, Yusuke Nojima:
Special issue on soft computing for big data and social informatics. Soft Comput. 21(11): 2799-2800 (2017) - [j32]Hisao Ishibuchi
, Yu Setoguchi, Hiroyuki Masuda, Yusuke Nojima
:
Performance of Decomposition-Based Many-Objective Algorithms Strongly Depends on Pareto Front Shapes. IEEE Trans. Evol. Comput. 21(2): 169-190 (2017) - [j31]Jesús Alcalá-Fdez, Rafael Alcalá
, Sergio González, Yusuke Nojima, Salvador García
:
Evolutionary Fuzzy Rule-Based Methods for Monotonic Classification. IEEE Trans. Fuzzy Syst. 25(6): 1376-1390 (2017) - [c154]Hisao Ishibuchi, Ryo Imada, Yu Setoguchi, Yusuke Nojima:
Hypervolume Subset Selection for Triangular and Inverted Triangular Pareto Fronts of Three-Objective Problems. FOGA 2017: 95-110 - [c153]Yusuke Nojima, Koki Arahari, Shuji Takemura, Hisao Ishibuchi:
Multiobjective fuzzy genetics-based machine learning based on MOEA/D with its modifications. FUZZ-IEEE 2017: 1-6 - [c152]Hisao Ishibuchi, Ryo Imada, Yu Setoguchi, Yusuke Nojima:
Reference point specification in hypervolume calculation for fair comparison and efficient search. GECCO 2017: 585-592 - [c151]Yusuke Nojima, Yuki Tanigaki, Hisao Ishibuchi:
Multiobjective data mining from solutions by evolutionary multiobjective optimization. GECCO 2017: 617-624 - [c150]Chang-Shing Lee
, Chia-Hsiu Kao, Mei-Hui Wang, Sheng-Chi Yang, Yusuke Nojima, Ryosuke Saga, Nan Shuo, Naoyuki Kubota
:
FML-based prediction agent and its application to game of Go. IFSA-SCIS 2017: 1-6 - [c149]Yusuke Nojima, Shuji Takemura, Kazuhiro Watanabe, Hisao Ishibuchi:
Michigan-style fuzzy GBML with (1+1)-ES generation update and multi-pattern rule generation. IFSA-SCIS 2017: 1-6 - [c148]Yuki Tanigaki, Yusuke Nojima, Hisao Ishibuchi:
Performance comparison of EMO algorithms on test problems with different search space shape. IFSA-SCIS 2017: 1-6 - [c147]Ken Doi, Ryo Imada, Yusuke Nojima, Hisao Ishibuchi:
Use of Inverted Triangular Weight Vectors in Decomposition-Based Many-Objective Algorithms. SEAL 2017: 321-333 - [c146]Hisao Ishibuchi, Ryo Imada, Ken Doi, Yusuke Nojima:
Use of inverted triangular weight vectors in decomposition-based multiobjective algorithms. SMC 2017: 373-378 - [i1]Chang-Shing Lee, Mei-Hui Wang, Chia-Hsiu Kao, Sheng-Chi Yang, Yusuke Nojima, Ryosuke Saga, Nan Shuo, Naoyuki Kubota:
FML-based Prediction Agent and Its Application to Game of Go. CoRR abs/1704.04719 (2017) - 2016
- [j30]Hisao Ishibuchi
, Hiroyuki Masuda, Yusuke Nojima:
Pareto Fronts of Many-Objective Degenerate Test Problems. IEEE Trans. Evol. Comput. 20(5): 807-813 (2016) - [c145]Takahiko Sudo, Kazushi Goto, Yusuke Nojima, Hisao Ishibuchi:
Further analysis on strange evolution behavior of 7-bit binary string strategies in iterated prisoner's dilemma game. CEC 2016: 335-342 - [c144]Hisao Ishibuchi, Hiroyuki Masuda, Yusuke Nojima:
Sensitivity of performance evaluation results by inverted generational distance to reference points. CEC 2016: 1107-1114 - [c143]Hisao Ishibuchi, Ken Doi, Yusuke Nojima:
Characteristics of many-objective test problems and penalty parameter specification in MOEA/D. CEC 2016: 1115-1122 - [c142]Hisao Ishibuchi, Yu Setoguchi, Hiroyuki Masuda, Yusuke Nojima:
How to compare many-objective algorithms under different settings of population and archive sizes. CEC 2016: 1149-1156 - [c141]Yusuke Nojima, Hisao Ishibuchi:
Effects of parallel distributed implementation on the search performance of Pittsburgh-style genetics-based machine learning algorithms. CEC 2016: 2193-2200 - [c140]Yuki Tanigaki, Yusuke Nojima, Hisao Ishibuchi:
Meta-optimization based multi-objective test problem generation using WFG toolkit. CEC 2016: 2768-2775 - [c139]Hiroyuki Masuda, Yusuke Nojima, Hisao Ishibuchi:
Common properties of scalable multiobjective problems and a new framework of test problems. CEC 2016: 3011-3018 - [c138]Hisao Ishibuchi, Ryo Imada, Yu Setoguchi, Yusuke Nojima:
Performance comparison of NSGA-II and NSGA-III on various many-objective test problems. CEC 2016: 3045-3052 - [c137]Yusuke Nojima, Hisao Ishibuchi:
Multiobjective fuzzy genetics-based machine learning with a reject option. FUZZ-IEEE 2016: 1405-1412 - [c136]Heiner Zille, Hisao Ishibuchi, Sanaz Mostaghim
, Yusuke Nojima:
Weighted Optimization Framework for Large-scale Multi-objective Optimization. GECCO (Companion) 2016: 83-84 - [c135]Hisao Ishibuchi, Ken Doi, Yusuke Nojima:
Use of Piecewise Linear and Nonlinear Scalarizing Functions in MOEA/D. PPSN 2016: 503-513 - [c134]Takahiro Funakoshi, Yusuke Nojima, Hisao Ishibuchi:
Effects of Different Implementations of a Real Random Number Generator on the Search Behavior of Multiobjective Evolutionary Algorithms. SCIS&ISIS 2016: 172-177 - [c133]Hisao Ishibuchi, Ken Doi, Yusuke Nojima:
Reference point specification in MOEA/D for multi-objective and many-objective problems. SMC 2016: 4015-4020 - [c132]Heiner Zille, Hisao Ishibuchi, Sanaz Mostaghim
, Yusuke Nojima:
Mutation operators based on variable grouping for multi-objective large-scale optimization. SSCI 2016: 1-8 - 2015
- [j29]Hisao Ishibuchi
, Naoya Akedo, Yusuke Nojima:
Behavior of Multiobjective Evolutionary Algorithms on Many-Objective Knapsack Problems. IEEE Trans. Evol. Comput. 19(2): 264-283 (2015) - [c131]Yusuke Nojima, Yuji Takahashi, Hisao Ishibuchi
:
Application of Parallel Distributed Implementation to Multiobjective Fuzzy Genetics-Based Machine Learning. ACIIDS (1) 2015: 462-471 - [c130]Yuji Takahashi, Yusuke Nojima, Hisao Ishibuchi:
Rotation effects of objective functions in parallel distributed multiobjective fuzzy genetics-based machine learning. ASCC 2015: 1-6 - [c129]Yuki Tanigaki, Hiroyuki Masuda, Yu Setoguchi, Yusuke Nojima, Hisao Ishibuchi:
Algorithm structure optimization by choosing operators in multiobjective genetic local search. CEC 2015: 854-861 - [c128]Takahiko Sudo, Kazushi Goto, Yusuke Nojima, Hisao Ishibuchi:
Effects of ensemble action selection with different usage of player's memory resource on the evolution of cooperative strategies for iterated prisoner's dilemma game. CEC 2015: 1505-1512 - [c127]Hisao Ishibuchi, Hiroyuki Masuda, Yusuke Nojima:
Comparing solution sets of different size in evolutionary many-objective optimization. CEC 2015: 2859-2866 - [c126]Yusuke Nojima, Kazuhiro Watanabe, Hisao Ishibuchi:
Effects of heuristic rule generation from multiple patterns in multiobjective fuzzy genetics-Based machine learning. CEC 2015: 2996-3003 - [c125]Takahiko Sudo, Kazushi Goto, Yusuke Nojima, Hisao Ishibuchi:
Strange evolution behavior of 7-bit binary string strategies in iterated prisoner's dilemma game. CEC 2015: 3346-3353 - [c124]Hisao Ishibuchi
, Hiroyuki Masuda, Yuki Tanigaki, Yusuke Nojima:
Modified Distance Calculation in Generational Distance and Inverted Generational Distance. EMO (2) 2015: 110-125 - [c123]Hisao Ishibuchi, Yusuke Nojima:
Handling a training dataset as a black-box model for privacy preserving in fuzzy GBML algorithms. FUZZ-IEEE 2015: 1-8 - [c122]Yusuke Nojima, Kazuhiro Watanabe, Hisao Ishibuchi:
Simple modifications on heuristic rule generation and rule evaluation in Michigan-style fuzzy genetics-based machine learning. FUZZ-IEEE 2015: 1-8 - [c121]Hisao Ishibuchi, Hiroyuki Masuda, Yusuke Nojima:
A Study on Performance Evaluation Ability of a Modified Inverted Generational Distance Indicator. GECCO 2015: 695-702 - [c120]Hisao Ishibuchi, Ken Doi, Hiroyuki Masuda, Yusuke Nojima:
Relation Between Weight Vectors and Solutions in MOEA/D. SSCI 2015: 861-868 - [c119]Yusuke Nojima, Chun-Hao Chen:
Genetic fuzzy systems and its application to data mining. TAAI 2015: 33 - [c118]Yusuke Nojima, Kazuhiro Watanabe, Hisao Ishibuchi:
Variants of heuristic rule generation from multiple patterns in Michigan-style fuzzy genetics-based machine learning. TAAI 2015: 427-432 - [p7]Hisao Ishibuchi, Yusuke Nojima:
Multiobjective Genetic Fuzzy Systems. Handbook of Computational Intelligence 2015: 1479-1498 - 2014
- [j28]Chin Hooi Tan, Keem Siah Yap
, Hisao Ishibuchi
, Yusuke Nojima, Hwa Jen Yap
:
Application of Fuzzy Inference Rules to Early Semi-automatic Estimation of Activity Duration in Software Project Management. IEEE Trans. Hum. Mach. Syst. 44(5): 678-688 (2014) - [c117]Takahiko Sudo, Yusuke Nojima, Hisao Ishibuchi
:
Effects of ensemble action selection on the evolution of iterated prisoner's dilemma game strategies. IEEE Congress on Evolutionary Computation 2014: 1195-1201 - [c116]Hiroyuki Masuda, Yusuke Nojima, Hisao Ishibuchi
:
Visual examination of the behavior of EMO algorithms for many-objective optimization with many decision variables. IEEE Congress on Evolutionary Computation 2014: 2633-2640 - [c115]Hisao Ishibuchi
, Hiroyuki Masuda, Yuki Tanigaki, Yusuke Nojima:
Difficulties in specifying reference points to calculate the inverted generational distance for many-objective optimization problems. MCDM 2014: 170-177 - [c114]Hisao Ishibuchi
, Hiroyuki Masuda, Yuki Tanigaki, Yusuke Nojima:
Review of coevolutionary developments of evolutionary multi-objective and many-objective algorithms and test problems. MCDM 2014: 178-184 - [c113]Yuji Takahashi, Yusuke Nojima, Hisao Ishibuchi
:
Hybrid fuzzy genetics-based machine learning with entropy-based inhomogeneous interval discretization. FUZZ-IEEE 2014: 1512-1517 - [c112]Hisao Ishibuchi
, Hiroyuki Masuda, Yusuke Nojima:
Meta-level multi-objective formulations of set optimization for multi-objective optimization problems: multi-reference point approach to hypervolume maximization. GECCO (Companion) 2014: 89-90 - [c111]Hisao Ishibuchi
, Takahiko Sudo, Yusuke Nojima:
Archive Management in Interactive Evolutionary Computation with Minimum Requirement for Human User's Fitness Evaluation Ability. ICAISC (1) 2014: 360-371 - [c110]Hisao Ishibuchi, Yuki Tanigaki, Hiroyuki Masuda, Yusuke Nojima:
Distance-Based Analysis of Crossover Operators for Many-Objective Knapsack Problems. PPSN 2014: 600-610 - [c109]Yuki Tanigaki, Kaname Narukawa, Yusuke Nojima, Hisao Ishibuchi:
Preference-based NSGA-II for many-objective knapsack problems. SCIS&ISIS 2014: 637-642 - [c108]Yusuke Nojima, Yuji Takahashi, Hisao Ishibuchi
:
Genetic lateral tuning of membership functions as post-processing for hybrid fuzzy genetics-based machine learning. SCIS&ISIS 2014: 667-672 - [c107]Hisao Ishibuchi, Hiroyuki Masuda, Yusuke Nojima:
Selecting a small number of non-dominated solutions to be presented to the decision maker. SMC 2014: 3816-3821 - 2013
- [j27]Rafael Alcalá
, Yusuke Nojima, Hisao Ishibuchi
, Francisco Herrera:
Special Issue on "Evolutionary Fuzzy Systems" EFSs. Knowl. Based Syst. 54: 1-2 (2013) - [j26]Hisao Ishibuchi
, Yusuke Nojima:
Repeated double cross-validation for choosing a single solution in evolutionary multi-objective fuzzy classifier design. Knowl. Based Syst. 54: 22-31 (2013) - [j25]Michela Fazzolari, Rafael Alcalá
, Yusuke Nojima, Hisao Ishibuchi
, Francisco Herrera
:
A Review of the Application of Multiobjective Evolutionary Fuzzy Systems: Current Status and Further Directions. IEEE Trans. Fuzzy Syst. 21(1): 45-65 (2013) - [j24]Hisao Ishibuchi
, Shingo Mihara, Yusuke Nojima:
Parallel Distributed Hybrid Fuzzy GBML Models With Rule Set Migration and Training Data Rotation. IEEE Trans. Fuzzy Syst. 21(2): 355-368 (2013) - [c106]Hisao Ishibuchi
, Masakazu Yamane, Yusuke Nojima:
Learning from multiple data sets with different missing attributes and privacy policies: Parallel distributed fuzzy genetics-based machine learning approach. BigData 2013: 63-70 - [c105]Yusuke Nojima, Xian-Hua Han, Kazuki Taniguchi, Yen-Wei Chen:
High frequency compensated face hallucination with total variation constraint. BMEI 2013: 831-835 - [c104]Hisao Ishibuchi
, Takahiko Sudo, Koichiro Hoshino, Yusuke Nojima:
Evolution of cooperative strategies for iterated prisoner's dilemma on networks. CASoN 2013: 32-37 - [c103]Hisao Ishibuchi
, Masakazu Yamane, Naoya Akedo, Yusuke Nojima:
Many-objective and many-variable test problems for visual examination of multiobjective search. IEEE Congress on Evolutionary Computation 2013: 1491-1498 - [c102]Hisao Ishibuchi
, Yuki Tanigaki, Naoya Akedo, Yusuke Nojima:
How to strike a balance between local search and global search in multiobjective memetic algorithms for multiobjective 0/1 knapsack problems. IEEE Congress on Evolutionary Computation 2013: 1643-1650 - [c101]Hisao Ishibuchi
, Masakazu Yamane, Yusuke Nojima:
Effects of duplicated objectives in many-objective optimization problems on the search behavior of hypervolume-based evolutionary algorithms. MCDM 2013: 25-32 - [c100]Hisao Ishibuchi
, Masakazu Yamane, Yusuke Nojima:
Difficulty in Evolutionary Multiobjective Optimization of Discrete Objective Functions with Different Granularities. EMO 2013: 230-245 - [c99]Hisao Ishibuchi
, Naoya Akedo, Yusuke Nojima:
Relation between Neighborhood Size and MOEA/D Performance on Many-Objective Problems. EMO 2013: 459-474 - [c98]Hisao Ishibuchi
, Masakazu Yamane, Yusuke Nojima:
Rule weight update in parallel distributed fuzzy genetics-based machine learning with data rotation. FUZZ-IEEE 2013: 1-8 - [c97]Michela Fazzolari, Rafael Alcalá
, Yusuke Nojima, Hisao Ishibuchi
, Francisco Herrera:
Improving a fuzzy association rule-based classification model by granularity learning based on heuristic measures over multiple granularities. GEFS 2013: 44-51 - [c96]Yusuke Nojima, Hisao Ishibuchi
:
Multiobjective genetic fuzzy rule selection with fuzzy relational rules. GEFS 2013: 60-67 - [c95]Hisao Ishibuchi
, Yusuke Nojima:
Difficulties in choosing a single final classifier from non-dominated solutions in multiobjective fuzzy genetics-based machine learning. IFSA/NAFIPS 2013: 1203-1208 - [c94]Hisao Ishibuchi
, Koichiro Hoshino, Yusuke Nojima:
Neighborhood Specification for Game Strategy Evolution in a Spatial Iterated Prisoner's Dilemma Game. LION 2013: 215-230 - [c93]Hisao Ishibuchi
, Naoya Akedo, Yusuke Nojima:
A Study on the Specification of a Scalarizing Function in MOEA/D for Many-Objective Knapsack Problems. LION 2013: 231-246 - [c92]Hisao Ishibuchi
, Takahiko Sudo, Koichiro Hoshino, Yusuke Nojima:
Effects of the Number of Opponents on the Evolution of Cooperation in the Iterated Prisoner's Dilemma. SMC 2013: 2001-2006 - 2012
- [j23]Rafael Alcalá
, Yusuke Nojima, Hisao Ishibuchi
, Francisco Herrera
:
Special Issue on Evolutionary Fuzzy Systems. Int. J. Comput. Intell. Syst. 5(2): 209-211 (2012) - [c91]Hisao Ishibuchi
, Koichiro Hoshino, Yusuke Nojima:
Strategy evolution in a spatial IPD game where each agent is not allowed to play against itself. IEEE Congress on Evolutionary Computation 2012: 1-8 - [c90]Hisao Ishibuchi
, Koichiro Hoshino, Yusuke Nojima:
Evolution of strategies in a spatial IPD game with a number of different representation schemes. IEEE Congress on Evolutionary Computation 2012: 1-8 - [c89]