default search action
Ying Nian Wu
Yingnian Wu
Person information
SPARQL queries
🛈 Please note that only 59% of the records listed on this page have a DOI. Therefore, DOI-based queries can only provide partial results.
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j40]Zhibo Wei, Yongze Liu, Yingnian Wu, Wenbai Chen, Qing-Kui Li:
T-S fuzzy model based event-triggered change control for product and supply chain systems. Int. J. Syst. Sci. 55(3): 426-439 (2024) - [c99]Tianyang Zhao, Kunwar Yashraj Singh, Srikar Appalaraju, Peng Tang, Vijay Mahadevan, R. Manmatha, Ying Nian Wu:
No Head Left Behind - Multi-Head Alignment Distillation for Transformers. AAAI 2024: 7514-7524 - [c98]Deqian Kong, Furqan Khan, Xu Zhang, Prateek Singhal, Ying Nian Wu:
Long-Term Social Interaction Context: The Key to Egocentric Addressee Detection. ICASSP 2024: 8250-8254 - [c97]Qing Li, Yixin Zhu, Yitao Liang, Ying Nian Wu, Song-Chun Zhu, Siyuan Huang:
Neural-Symbolic Recursive Machine for Systematic Generalization. ICLR 2024 - [c96]Cheng Han, James Chenhao Liang, Qifan Wang, Majid Rabbani, Sohail A. Dianat, Raghuveer Rao, Ying Nian Wu, Dongfang Liu:
Image Translation as Diffusion Visual Programmers. ICLR 2024 - [c95]Qin Zhang, Linghan Xu, Jun Fang, Qingming Tang, Ying Nian Wu, Joseph Tighe, Yifan Xing:
Threshold-Consistent Margin Loss for Open-World Deep Metric Learning. ICLR 2024 - [c94]Yaxuan Zhu, Jianwen Xie, Ying Nian Wu, Ruiqi Gao:
Learning Energy-Based Models by Cooperative Diffusion Recovery Likelihood. ICLR 2024 - [c93]Andrew Lizarraga, Brandon Taraku, Edouardo Honig, Ying Nian Wu, Shantanu H. Joshi:
Differentiable VQ-VAE's for Robust White Matter Streamline Encodings. ISBI 2024: 1-5 - [i114]Cheng Han, James Chenhao Liang, Qifan Wang, Majid Rabbani, Sohail A. Dianat, Raghuveer Rao, Ying Nian Wu, Dongfang Liu:
Image Translation as Diffusion Visual Programmers. CoRR abs/2401.09742 (2024) - [i113]Deqian Kong, Dehong Xu, Minglu Zhao, Bo Pang, Jianwen Xie, Andrew Lizarraga, Yuhao Huang, Sirui Xie, Ying Nian Wu:
Latent Plan Transformer: Planning as Latent Variable Inference. CoRR abs/2402.04647 (2024) - [i112]Huixin Zhan, Ying Nian Wu, Zijun Zhang:
Efficient and Scalable Fine-Tune of Language Models for Genome Understanding. CoRR abs/2402.08075 (2024) - [i111]Deqian Kong, Yuhao Huang, Jianwen Xie, Edouardo Honig, Ming Xu, Shuanghong Xue, Pei Lin, Sanping Zhou, Sheng Zhong, Nanning Zheng, Ying Nian Wu:
Dual-Space Optimization: Improved Molecule Sequence Design by Latent Prompt Transformer. CoRR abs/2402.17179 (2024) - [i110]Shu Wang, Muzhi Han, Ziyuan Jiao, Zeyu Zhang, Ying Nian Wu, Song-Chun Zhu, Hangxin Liu:
LLM3: Large Language Model-based Task and Motion Planning with Motion Failure Reasoning. CoRR abs/2403.11552 (2024) - [i109]Yingshan Chang, Yasi Zhang, Zhiyuan Fang, Yingnian Wu, Yonatan Bisk, Feng Gao:
Skews in the Phenomenon Space Hinder Generalization in Text-to-Image Generation. CoRR abs/2403.16394 (2024) - [i108]Yasi Zhang, Peiyu Yu, Ying Nian Wu:
Object-Conditioned Energy-Based Attention Map Alignment in Text-to-Image Diffusion Models. CoRR abs/2404.07389 (2024) - [i107]Hengzhi He, Peiyu Yu, Junpeng Ren, Ying Nian Wu, Guang Cheng:
Watermarking Generative Tabular Data. CoRR abs/2405.14018 (2024) - [i106]Peiyu Yu, Dinghuai Zhang, Hengzhi He, Xiaojian Ma, Ruiyao Miao, Yifan Lu, Yasi Zhang, Deqian Kong, Ruiqi Gao, Jianwen Xie, Guang Cheng, Ying Nian Wu:
Latent Energy-Based Odyssey: Black-Box Optimization via Expanded Exploration in the Energy-Based Latent Space. CoRR abs/2405.16730 (2024) - [i105]Sirui Xie, Zhisheng Xiao, Diederik P. Kingma, Tingbo Hou, Ying Nian Wu, Kevin Patrick Murphy, Tim Salimans, Ben Poole, Ruiqi Gao:
EM Distillation for One-step Diffusion Models. CoRR abs/2405.16852 (2024) - [i104]Dehong Xu, Ruiqi Gao, Wen-Hao Zhang, Xue-Xin Wei, Ying Nian Wu:
An Investigation of Conformal Isometry Hypothesis for Grid Cells. CoRR abs/2405.16865 (2024) - [i103]Yunuo Chen, Tianyi Xie, Zeshun Zong, Xuan Li, Feng Gao, Yin Yang, Ying Nian Wu, Chenfanfu Jiang:
Atlas3D: Physically Constrained Self-Supporting Text-to-3D for Simulation and Fabrication. CoRR abs/2405.18515 (2024) - [i102]Yasi Zhang, Peiyu Yu, Yaxuan Zhu, Yingshan Chang, Feng Gao, Ying Nian Wu, Oscar Leong:
Flow Priors for Linear Inverse Problems via Iterative Corrupted Trajectory Matching. CoRR abs/2405.18816 (2024) - [i101]Muzhi Han, Yifeng Zhu, Song-Chun Zhu, Ying Nian Wu, Yuke Zhu:
InterPreT: Interactive Predicate Learning from Language Feedback for Generalizable Task Planning. CoRR abs/2405.19758 (2024) - [i100]Mingkai Chen, Taowen Wang, James Chenhao Liang, Chuan Liu, Chunshu Wu, Qifan Wang, Ying Nian Wu, Michael Huang, Chuang Ren, Ang Li, Tong Geng, Dongfang Liu:
Inertial Confinement Fusion Forecasting via LLMs. CoRR abs/2407.11098 (2024) - 2023
- [j39]Tan Hao, Ying Nian Wu, Zhang Jiaxing, Zhang Jing:
Study on a hybrid algorithm combining enhanced ant colony optimization and double improved simulated annealing via clustering in the Traveling Salesman Problem (TSP). PeerJ Comput. Sci. 9: e1609 (2023) - [j38]Yingnian Wu, Jing Zhang, Qingkui Li, Hao Tan:
Research on Real-Time Robust Optimization of Perishable Supply-Chain Systems Based on Digital Twins. Sensors 23(4): 1850 (2023) - [j37]Jing Zhang, Yingnian Wu, Qingkui Li:
Production Change Optimization Model of Nonlinear Supply Chain System under Emergencies. Sensors 23(7): 3718 (2023) - [j36]Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris L. Baker, Yibiao Zhao, Ying Nian Wu:
Energy-Based Continuous Inverse Optimal Control. IEEE Trans. Neural Networks Learn. Syst. 34(12): 10563-10577 (2023) - [c92]Jiali Cui, Ying Nian Wu, Tian Han:
Learning Joint Latent Space EBM Prior Model for Multi-layer Generator. CVPR 2023: 3603-3612 - [c91]Yizhou Zhao, Yuanhong Zeng, Qian Long, Ying Nian Wu, Song-Chun Zhu:
Sim2Plan: Robot Motion Planning via Message Passing Between Simulation and Reality. FTC (1) 2023: 29-42 - [c90]Jiali Cui, Ying Nian Wu, Tian Han:
Learning Hierarchical Features with Joint Latent Space Energy-Based Prior. ICCV 2023: 2218-2227 - [c89]Qing Li, Siyuan Huang, Yining Hong, Yixin Zhu, Ying Nian Wu, Song-Chun Zhu:
A Minimalist Dataset for Systematic Generalization of Perception, Syntax, and Semantics. ICLR 2023 - [c88]Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark, Ashwin Kalyan:
Dynamic Prompt Learning via Policy Gradient for Semi-structured Mathematical Reasoning. ICLR 2023 - [c87]Yu-Zhe Shi, Manjie Xu, John E. Hopcroft, Kun He, Joshua B. Tenenbaum, Song-Chun Zhu, Ying Nian Wu, Wenjuan Han, Yixin Zhu:
On the Complexity of Bayesian Generalization. ICML 2023: 31389-31407 - [c86]Yan Xu, Deqian Kong, Dehong Xu, Ziwei Ji, Bo Pang, Pascale Fung, Ying Nian Wu:
Diverse and Faithful Knowledge-Grounded Dialogue Generation via Sequential Posterior Inference. ICML 2023: 38518-38534 - [c85]Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Jianfeng Gao:
Chameleon: Plug-and-Play Compositional Reasoning with Large Language Models. NeurIPS 2023 - [c84]Peiyu Yu, Yaxuan Zhu, Sirui Xie, Xiaojian Ma, Ruiqi Gao, Song-Chun Zhu, Ying Nian Wu:
Learning Energy-Based Prior Model with Diffusion-Amortized MCMC. NeurIPS 2023 - [c83]Junfeng Zuo, Xiao Liu, Ying Nian Wu, Si Wu, Wenhao Zhang:
A Recurrent Neural Circuit Mechanism of Temporal-scaling Equivariant Representation. NeurIPS 2023 - [c82]Quanshi Zhang, Xu Cheng, Xin Wang, Yu Yang, Yingnian Wu:
Network Transplanting for the Functionally Modular Architecture. PRCV (3) 2023: 69-83 - [c81]Deqian Kong, Bo Pang, Tian Han, Ying Nian Wu:
Molecule Design by Latent Space Energy-Based Modeling and Gradual Distribution Shifting. UAI 2023: 1109-1120 - [i99]Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Jianfeng Gao:
Chameleon: Plug-and-Play Compositional Reasoning with Large Language Models. CoRR abs/2304.09842 (2023) - [i98]Qin Zhang, Dongsheng An, Tianjun Xiao, Tong He, Qingming Tang, Ying Nian Wu, Joseph Tighe, Yifan Xing:
Learning for Open-World Calibration with Graph Neural Networks. CoRR abs/2305.12039 (2023) - [i97]Yan Xu, Deqian Kong, Dehong Xu, Ziwei Ji, Bo Pang, Pascale Fung, Ying Nian Wu:
Diverse and Faithful Knowledge-Grounded Dialogue Generation via Sequential Posterior Inference. CoRR abs/2306.01153 (2023) - [i96]Jiali Cui, Ying Nian Wu, Tian Han:
Learning Joint Latent Space EBM Prior Model for Multi-layer Generator. CoRR abs/2306.06323 (2023) - [i95]Weinan Song, Yaxuan Zhu, Lei He, Yingnian Wu, Jianwen Xie:
Progressive Energy-Based Cooperative Learning for Multi-Domain Image-to-Image Translation. CoRR abs/2306.14448 (2023) - [i94]Deqian Kong, Bo Pang, Tian Han, Ying Nian Wu:
Molecule Design by Latent Space Energy-Based Modeling and Gradual Distribution Shifting. CoRR abs/2306.14902 (2023) - [i93]Qin Zhang, Linghan Xu, Qingming Tang, Jun Fang, Ying Nian Wu, Joe Tighe, Yifan Xing:
Calibration-Aware Margin Loss: Pushing the Accuracy-Calibration Consistency Pareto Frontier for Deep Metric Learning. CoRR abs/2307.04047 (2023) - [i92]Yizhou Zhao, Yuanhong Zeng, Qian Long, Ying Nian Wu, Song-Chun Zhu:
Sim2Plan: Robot Motion Planning via Message Passing between Simulation and Reality. CoRR abs/2307.07862 (2023) - [i91]Yaxuan Zhu, Jianwen Xie, Yingnian Wu, Ruiqi Gao:
Learning Energy-Based Models by Cooperative Diffusion Recovery Likelihood. CoRR abs/2309.05153 (2023) - [i90]Yuanhong Zeng, Yizhou Zhao, Ying Nian Wu:
Triple Regression for Camera Agnostic Sim2Real Robot Grasping and Manipulation Tasks. CoRR abs/2309.09017 (2023) - [i89]Peiyu Yu, Yaxuan Zhu, Sirui Xie, Xiaojian Ma, Ruiqi Gao, Song-Chun Zhu, Ying Nian Wu:
Learning Energy-Based Prior Model with Diffusion-Amortized MCMC. CoRR abs/2310.03218 (2023) - [i88]Deqian Kong, Yuhao Huang, Jianwen Xie, Ying Nian Wu:
Molecule Design by Latent Prompt Transformer. CoRR abs/2310.03253 (2023) - [i87]Yilue Qian, Peiyu Yu, Ying Nian Wu, Wei Wang, Lifeng Fan:
Learning Concept-Based Visual Causal Transition and Symbolic Reasoning for Visual Planning. CoRR abs/2310.03325 (2023) - [i86]Jiali Cui, Ying Nian Wu, Tian Han:
Learning Hierarchical Features with Joint Latent Space Energy-Based Prior. CoRR abs/2310.09604 (2023) - [i85]Dehong Xu, Ruiqi Gao, Wen-Hao Zhang, Xue-Xin Wei, Ying Nian Wu:
Conformal Normalization in Recurrent Neural Network of Grid Cells. CoRR abs/2310.19192 (2023) - [i84]Andrew Lizarraga, Brandon Taraku, Edouardo Honig, Ying Nian Wu, Shantanu H. Joshi:
Differentiable VQ-VAE's for Robust White Matter Streamline Encodings. CoRR abs/2311.06212 (2023) - [i83]Ziheng Zhou, Yingnian Wu, Song-Chun Zhu, Demetri Terzopoulos:
Aligner: One Global Token is Worth Millions of Parameters When Aligning Large Language Models. CoRR abs/2312.05503 (2023) - 2022
- [j35]Rui Yang, Yingnian Wu, Xiaolong Liu, Wenbai Chen:
GACSNet: A Lightweight Network for the Noninvasive Blood Glucose Detection. Appl. Artif. Intell. 36(1) (2022) - [j34]Xianglei Xing, Ruiqi Gao, Tian Han, Song-Chun Zhu, Ying Nian Wu:
Deformable Generator Networks: Unsupervised Disentanglement of Appearance and Geometry. IEEE Trans. Pattern Anal. Mach. Intell. 44(3): 1162-1179 (2022) - [j33]Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu:
Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 44(5): 2468-2484 (2022) - [j32]Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu:
Cooperative Training of Fast Thinking Initializer and Slow Thinking Solver for Conditional Learning. IEEE Trans. Pattern Anal. Mach. Intell. 44(8): 3957-3973 (2022) - [j31]Luyao Yuan, Xiaofeng Gao, Zilong Zheng, Mark Edmonds, Ying Nian Wu, Federico Rossano, Hongjing Lu, Yixin Zhu, Song-Chun Zhu:
In situ bidirectional human-robot value alignment. Sci. Robotics 7(68) (2022) - [c80]Ruiqi Gao, Jianwen Xie, Siyuan Huang, Yufan Ren, Song-Chun Zhu, Ying Nian Wu:
Learning V1 Simple Cells with Vector Representation of Local Content and Matrix Representation of Local Motion. AAAI 2022: 6674-6684 - [c79]Yifei Xu, Jingqiao Zhang, Ru He, Liangzhu Ge, Chao Yang, Cheng Yang, Ying Nian Wu:
SAS: Self-Augmentation Strategy for Language Model Pre-training. AAAI 2022: 11586-11594 - [c78]Cristian I. Challu, Peihong Jiang, Ying Nian Wu, Laurent Callot:
Deep Generative model with Hierarchical Latent Factors for Time Series Anomaly Detection. AISTATS 2022: 1643-1654 - [c77]Feng Gao, Qing Ping, Govind Thattai, Aishwarya N. Reganti, Ying Nian Wu, Prem Natarajan:
Transform-Retrieve-Generate: Natural Language-Centric Outside-Knowledge Visual Question Answering. CVPR 2022: 5057-5067 - [c76]Chi Zhang, Sirui Xie, Baoxiong Jia, Ying Nian Wu, Song-Chun Zhu, Yixin Zhu:
Learning Algebraic Representation for Systematic Generalization in Abstract Reasoning. ECCV (39) 2022: 692-709 - [c75]Erik Nijkamp, Ruiqi Gao, Pavel Sountsov, Srinivas Vasudevan, Bo Pang, Song-Chun Zhu, Ying Nian Wu:
MCMC Should Mix: Learning Energy-Based Model with Neural Transport Latent Space MCMC. ICLR 2022 - [c74]Peiyu Yu, Sirui Xie, Xiaojian Ma, Baoxiong Jia, Bo Pang, Ruiqi Gao, Yixin Zhu, Song-Chun Zhu, Ying Nian Wu:
Latent Diffusion Energy-Based Model for Interpretable Text Modelling. ICML 2022: 25702-25720 - [c73]Dehong Xu, Ruiqi Gao, Wen-Hao Zhang, Xue-Xin Wei, Ying Nian Wu:
Conformal Isometry of Lie Group Representation in Recurrent Network of Grid Cells. NeurReps 2022: 370-387 - [c72]Wenhao Zhang, Ying Nian Wu, Si Wu:
Translation-equivariant Representation in Recurrent Networks with a Continuous Manifold of Attractors. NeurIPS 2022 - [i82]Feng Gao, Qing Ping, Govind Thattai, Aishwarya N. Reganti, Ying Nian Wu, Prem Natarajan:
A Thousand Words Are Worth More Than a Picture: Natural Language-Centric Outside-Knowledge Visual Question Answering. CoRR abs/2201.05299 (2022) - [i81]Cristian Challu, Peihong Jiang, Ying Nian Wu, Laurent Callot:
Deep Generative model with Hierarchical Latent Factors for Time Series Anomaly Detection. CoRR abs/2202.07586 (2022) - [i80]Peiyu Yu, Sirui Xie, Xiaojian Ma, Baoxiong Jia, Bo Pang, Ruiqi Gao, Yixin Zhu, Song-Chun Zhu, Ying Nian Wu:
Latent Diffusion Energy-Based Model for Interpretable Text Modeling. CoRR abs/2206.05895 (2022) - [i79]Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark, Ashwin Kalyan:
Dynamic Prompt Learning via Policy Gradient for Semi-structured Mathematical Reasoning. CoRR abs/2209.14610 (2022) - [i78]Qing Li, Yixin Zhu, Yitao Liang, Ying Nian Wu, Song-Chun Zhu, Siyuan Huang:
Neural-Symbolic Recursive Machine for Systematic Generalization. CoRR abs/2210.01603 (2022) - [i77]Dehong Xu, Ruiqi Gao, Wen-Hao Zhang, Xue-Xin Wei, Ying Nian Wu:
Conformal Isometry of Lie Group Representation in Recurrent Network of Grid Cells. CoRR abs/2210.02684 (2022) - [i76]Cristian Challu, Peihong Jiang, Ying Nian Wu, Laurent Callot:
SpectraNet: Multivariate Forecasting and Imputation under Distribution Shifts and Missing Data. CoRR abs/2210.12515 (2022) - [i75]Yu-Zhe Shi, Manjie Xu, John E. Hopcroft, Kun He, Joshua B. Tenenbaum, Song-Chun Zhu, Ying Nian Wu, Wenjuan Han, Yixin Zhu:
On the Complexity of Bayesian Generalization. CoRR abs/2211.11033 (2022) - 2021
- [j30]Jianwen Xie, Song-Chun Zhu, Ying Nian Wu:
Learning Energy-Based Spatial-Temporal Generative ConvNets for Dynamic Patterns. IEEE Trans. Pattern Anal. Mach. Intell. 43(2): 516-531 (2021) - [j29]Quanshi Zhang, Xin Wang, Ying Nian Wu, Huilin Zhou, Song-Chun Zhu:
Interpretable CNNs for Object Classification. IEEE Trans. Pattern Anal. Mach. Intell. 43(10): 3416-3431 (2021) - [j28]Quanshi Zhang, Xin Wang, Ruiming Cao, Ying Nian Wu, Feng Shi, Song-Chun Zhu:
Extraction of an Explanatory Graph to Interpret a CNN. IEEE Trans. Pattern Anal. Mach. Intell. 43(11): 3863-3877 (2021) - [j27]Quanshi Zhang, Jie Ren, Ge Huang, Ruiming Cao, Ying Nian Wu, Song-Chun Zhu:
Mining Interpretable AOG Representations From Convolutional Networks via Active Question Answering. IEEE Trans. Pattern Anal. Mach. Intell. 43(11): 3949-3963 (2021) - [c71]Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu:
Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-Domain Translation. AAAI 2021: 10430-10440 - [c70]Liang Qiu, Yuan Liang, Yizhou Zhao, Pan Lu, Baolin Peng, Zhou Yu, Ying Nian Wu, Song-Chun Zhu:
SocAoG: Incremental Graph Parsing for Social Relation Inference in Dialogues. ACL/IJCNLP (1) 2021: 658-670 - [c69]Wenjuan Han, Bo Pang, Ying Nian Wu:
Robust Transfer Learning with Pretrained Language Models through Adapters. ACL/IJCNLP (2) 2021: 854-861 - [c68]Yunqi Guo, Zhaowei Tan, Kaiyuan Chen, Songwu Lu, Ying Nian Wu:
A Model Obfuscation Approach to IoT Security. CNS 2021: 1-9 - [c67]Yaxuan Zhu, Ruiqi Gao, Siyuan Huang, Song-Chun Zhu, Ying Nian Wu:
Learning Neural Representation of Camera Pose with Matrix Representation of Pose Shift via View Synthesis. CVPR 2021: 9959-9968 - [c66]Bo Pang, Tianyang Zhao, Xu Xie, Ying Nian Wu:
Trajectory Prediction With Latent Belief Energy-Based Model. CVPR 2021: 11814-11824 - [c65]Jianwen Xie, Yifei Xu, Zilong Zheng, Song-Chun Zhu, Ying Nian Wu:
Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for 3D Generation, Reconstruction and Classification. CVPR 2021: 14976-14985 - [c64]Bo Pang, Erik Nijkamp, Tian Han, Ying Nian Wu:
Generative Text Modeling through Short Run Inference. EACL 2021: 1156-1165 - [c63]Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma:
Learning Energy-Based Models by Diffusion Recovery Likelihood. ICLR 2021 - [c62]Bo Pang, Ying Nian Wu:
Latent Space Energy-Based Model of Symbol-Vector Coupling for Text Generation and Classification. ICML 2021: 8359-8370 - [c61]Hung-Jui Huang, Kai-Chi Huang, Michal Cáp, Yibiao Zhao, Ying Nian Wu, Chris L. Baker:
Planning on a (Risk) Budget: Safe Non-Conservative Planning in Probabilistic Dynamic Environments. ICRA 2021: 10257-10263 - [c60]Xu Xie, Chi Zhang, Yixin Zhu, Ying Nian Wu, Song-Chun Zhu:
Congestion-aware Multi-agent Trajectory Prediction for Collision Avoidance. ICRA 2021: 13693-13700 - [c59]Yangzi Guo, Ying Nian Wu, Adrian Barbu:
A Study of Local Optima for Learning Feature Interactions using Neural Networks. IJCNN 2021: 1-8 - [c58]Erik Nijkamp, Bo Pang, Ying Nian Wu, Caiming Xiong:
SCRIPT: Self-Critic PreTraining of Transformers. NAACL-HLT 2021: 5196-5202 - [c57]Peiyu Yu, Sirui Xie, Xiaojian Ma, Yixin Zhu, Ying Nian Wu, Song-Chun Zhu:
Unsupervised Foreground Extraction via Deep Region Competition. NeurIPS 2021: 14264-14279 - [c56]Ruiqi Gao, Jianwen Xie, Xue-Xin Wei, Song-Chun Zhu, Ying Nian Wu:
On Path Integration of Grid Cells: Group Representation and Isotropic Scaling. NeurIPS 2021: 28623-28635 - [c55]Luyao Yuan, Dongruo Zhou, Junhong Shen, Jingdong Gao, Jeffrey L. Chen, Quanquan Gu, Ying Nian Wu, Song-Chun Zhu:
Iterative Teacher-Aware Learning. NeurIPS 2021: 29231-29245 - [i74]Sirui Xie, Xiaojian Ma, Peiyu Yu, Yixin Zhu, Ying Nian Wu, Song-Chun Zhu:
HALMA: Humanlike Abstraction Learning Meets Affordance in Rapid Problem Solving. CoRR abs/2102.11344 (2021) - [i73]Qing Li, Siyuan Huang, Yining Hong, Yixin Zhu, Ying Nian Wu, Song-Chun Zhu:
A HINT from Arithmetic: On Systematic Generalization of Perception, Syntax, and Semantics. CoRR abs/2103.01403 (2021) - [i72]Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu:
Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-Domain Translation. CoRR abs/2103.04285 (2021) - [i71]Xu Xie, Chi Zhang, Yixin Zhu, Ying Nian Wu, Song-Chun Zhu:
Congestion-aware Multi-agent Trajectory Prediction for Collision Avoidance. CoRR abs/2103.14231 (2021) - [i70]Yaxuan Zhu, Ruiqi Gao, Siyuan Huang, Song-Chun Zhu, Yingnian Wu:
Learning Neural Representation of Camera Pose with Matrix Representation of Pose Shift via View Synthesis. CoRR abs/2104.01508 (2021) - [i69]Bo Pang, Tianyang Zhao, Xu Xie, Ying Nian Wu:
Trajectory Prediction with Latent Belief Energy-Based Model. CoRR abs/2104.03086 (2021) - [i68]Liang Qiu, Yuan Liang, Yizhou Zhao, Pan Lu, Baolin Peng, Zhou Yu, Ying Nian Wu, Song-Chun Zhu:
SocAoG: Incremental Graph Parsing for Social Relation Inference in Dialogues. CoRR abs/2106.01006 (2021) - [i67]Bo Pang, Erik Nijkamp, Tian Han, Ying Nian Wu:
Generative Text Modeling through Short Run Inference. CoRR abs/2106.02513 (2021) - [i66]Yifei Xu, Jingqiao Zhang, Ru He, Liangzhu Ge, Chao Yang, Cheng Yang, Ying Nian Wu:
SAS: Self-Augmented Strategy for Language Model Pre-training. CoRR abs/2106.07176 (2021) - [i65]Hung-Jui Huang, Kai-Chi Huang, Michal Cáp, Yibiao Zhao, Ying Nian Wu, Chris L. Baker:
Planning on a (Risk) Budget: Safe Non-Conservative Planning in Probabilistic Dynamic Environments. CoRR abs/2106.09127 (2021) - [i64]Quanshi Zhang, Tian Han, Lixin Fan, Zhanxing Zhu, Hang Su, Ying Nian Wu, Jie Ren, Hao Zhang:
Proceedings of ICML 2021 Workshop on Theoretic Foundation, Criticism, and Application Trend of Explainable AI. CoRR abs/2107.08821 (2021) - [i63]