


default search action
1st NeurReps 2022, New Orleans, Lousiana, USA
- Sophia Sanborn, Christian Shewmake, Simone Azeglio, Arianna Di Bernardo, Nina Miolane:

NeurIPS Workshop on Symmetry and Geometry in Neural Representations, 03 December 2022, New Orleans, Lousiana, USA. Proceedings of Machine Learning Research 197, PMLR 2022 - Sophia Sanborn, Christian Shewmake, Simone Azeglio, Arianna Di Bernardo, Nina Miolane:

Preface. i-vi - Noah Shutty, Casimir Wierzynski:

Computing representations for Lie algebraic networks. 1-21 - Ho Yin Chau, Frank Qiu, Yubei Chen, Bruno A. Olshausen:

Disentangling images with Lie group transformations and sparse coding. 22-47 - Tycho F. A. van der Ouderaa, Mark van der Wilk:

Sparse Convolutions on Lie Groups. 48-62 - David Klee, Ondrej Biza, Robert Platt, Robin Walters:

Image to Icosahedral Projection for SO(3) Object Reasoning from Single-View Images. 64-80 - Mateus Sangalli, Samy Blusseau, Santiago Velasco-Forero, Jesús Angulo:

Moving frame net: SE(3)-equivariant network for volumes. 81-97 - David A. R. Robin, Kevin Scaman, Marc Lelarge:

Periodic signal recovery with regularized sine neural networks. 98-110 - Anshul Thakur, Vinayak Abrol, Pulkit Sharma:

Does Geometric Structure in Convolutional Filter Space Provide Filter Redundancy Information? 111-121 - Sarah McGuire, Shane Jackson, Tegan Emerson, Henry Kvinge:

Do neural networks trained with topological features learn different internal representations? 122-136 - Thomas Davies, Jack Aspinall, Bryan Wilder, Tran-Thanh Long:

Fuzzy c-means clustering in persistence diagram space for deep learning model selection. 137-157 - Arif Dönmez:

On the ambiguity in classification. 158-170 - Danil Akhtiamov, Matt Thomson:

Connectedness of loss landscapes via the lens of Morse theory. 171-181 - Benjamin Aslan, Daniel Platt, David Sheard

:
Group invariant machine learning by fundamental domain projections. 181-218 - Yu Tian, Zachary Lubberts, Melanie Weber:

Mixed-membership community detection via line graph curvature. 219-233 - Justin Jude, Matthew G. Perich, Lee E. Miller, Matthias H. Hennig:

Capturing cross-session neural population variability through self-supervised identification of consistent neuron ensembles. 234-257 - John J. Vastola, Zach Cohen, Jan Drugowitsch:

Is the information geometry of probabilistic population codes learnable? 258-277 - Binxu Wang, Carlos R. Ponce:

On the level sets and invariance of neural tuning landscapes. 278-300 - Luca Baroni

, Mohammad Bashiri, Konstantin F. Willeke, Ján Antolík
, Fabian H. Sinz:
Learning invariance manifolds of visual sensory neurons. 301-326 - Ramakrishnan Iyer, Joshua H. Siegle, Gayathri Mahalingam, Shawn R. Olsen, Stefan Mihalas:

Geometry of inter-areal interactions in mouse visual cortex. 327-353 - David A. Klindt, Sigurd Gaukstad, Melvin Vaupel, Erik Hermansen, Benjamin A. Dunn:

Topological ensemble detection with differentiable yoking. 354-369 - Dehong Xu, Ruiqi Gao, Wenhao Zhang, Xue-Xin Wei, Ying Nian Wu:

Conformal Isometry of Lie Group Representation in Recurrent Network of Grid Cells. 370-387 - Sunny Duan, Mikail Khona, Adrian Bertagnoli, Sarthak Chandra, Ila Fiete:

See and Copy: Generation of complex compositional movements from modular and geometric RNN representations. 388-400

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














