


Остановите войну!
for scientists:


default search action
Paolo Cremonesi
Person information

- affiliation: Politecnico di Milano, Italy
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j33]Luca Benedetto
, Paolo Cremonesi
, Andrew Caines
, Paula Buttery
, Andrea Cappelli
, Andrea Giussani
, Roberto Turrin
:
A Survey on Recent Approaches to Question Difficulty Estimation from Text. ACM Comput. Surv. 55(9): 178:1-178:37 (2023) - 2022
- [j32]Cesare Bernardis
, Maurizio Ferrari Dacrema
, Fernando Benjamín Pérez Maurera
, Massimo Quadrana, Mario Scriminaci, Paolo Cremonesi
:
From Data Analysis to Intent-Based Recommendation: An Industrial Case Study in the Video Domain. IEEE Access 10: 14779-14796 (2022) - [j31]Maurizio Ferrari Dacrema
, Nicolò Felicioni, Paolo Cremonesi:
Offline Evaluation of Recommender Systems in a User Interface With Multiple Carousels. Frontiers Big Data 5: 910030 (2022) - [j30]Edoardo D'Amico, Giovanni Gabbolini, Cesare Bernardis
, Paolo Cremonesi:
Analyzing and improving stability of matrix factorization for recommender systems. J. Intell. Inf. Syst. 58(2): 255-285 (2022) - [j29]João Vinagre
, Alípio Mário Jorge
, Marie Al-Ghossein, Albert Bifet, Paolo Cremonesi:
Preface to the special issue on dynamic recommender systems and user models. User Model. User Adapt. Interact. 32(4): 503-507 (2022) - [j28]Cesare Bernardis
, Paolo Cremonesi:
NFC: a deep and hybrid item-based model for item cold-start recommendation. User Model. User Adapt. Interact. 32(4): 747-780 (2022) - [c132]Fernando Benjamín Pérez Maurera
, Maurizio Ferrari Dacrema
, Paolo Cremonesi
:
An Evaluation Study of Generative Adversarial Networks for Collaborative Filtering. ECIR (1) 2022: 671-685 - [c131]Maurizio Ferrari Dacrema, Nicolò Felicioni, Paolo Cremonesi:
Evaluating Recommendations in a User Interface With Multiple Carousels. IIR 2022 - [c130]Maurizio Ferrari Dacrema, Fabio Moroni, Riccardo Nembrini, Nicola Ferro, Guglielmo Faggioli, Paolo Cremonesi:
Feature Selection via Quantum Annealers for Ranking and Classification Tasks. IIR 2022 - [c129]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Replication of Collaborative Filtering Generative Adversarial Networks on Recommender Systems. IIR 2022 - [c128]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Replication of Recommender Systems with Impressions. IIR 2022 - [c127]Nicolò Felicioni, Maurizio Ferrari Dacrema, Marcello Restelli, Paolo Cremonesi:
Off-Policy Evaluation with Deficient Support Using Side Information. NeurIPS 2022 - [c126]Pietro Chiavassa, Andrea Marchesin
, Ignazio Pedone, Maurizio Ferrari Dacrema
, Paolo Cremonesi:
Virtual Network Function Embedding with Quantum Annealing. QCE 2022: 282-291 - [c125]Gloria Turati, Maurizio Ferrari Dacrema
, Paolo Cremonesi:
Feature Selection for Classification with QAOA. QCE 2022: 782-785 - [c124]Riccardo Nembrini, Costantino Carugno, Maurizio Ferrari Dacrema
, Paolo Cremonesi:
Towards Recommender Systems with Community Detection and Quantum Computing. RecSys 2022: 579-585 - [c123]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema
, Paolo Cremonesi:
Towards the Evaluation of Recommender Systems with Impressions. RecSys 2022: 610-615 - [c122]Ervin Dervishaj
, Paolo Cremonesi:
GAN-based matrix factorization for recommender systems. SAC 2022: 1373-1381 - [c121]Matteo Montanari, Cesare Bernardis, Paolo Cremonesi:
On the impact of data sampling on hyper-parameter optimisation of recommendation algorithms. SAC 2022: 1399-1402 - [c120]Maurizio Ferrari Dacrema
, Fabio Moroni, Riccardo Nembrini, Nicola Ferro, Guglielmo Faggioli, Paolo Cremonesi:
Towards Feature Selection for Ranking and Classification Exploiting Quantum Annealers. SIGIR 2022: 2814-2824 - [c119]Federico Rios, Paolo Rizzo, Francesco Puddu, Federico Romeo, Andrea Lentini, Giuseppe Asaro, Filippo Rescalli, Cristiana Bolchini, Paolo Cremonesi:
Recommending Relevant Papers to Conference Participants: a Deep Learning Driven Content-based Approach. UMAP (Adjunct Publication) 2022: 52-57 - [e3]Gabriella Pasi, Paolo Cremonesi, Salvatore Orlando, Markus Zanker, David Massimo, Gloria Turati:
Proceedings of the 12th Italian Information Retrieval Workshop 2022, Milan, Italy, June 29-30, 2022. CEUR Workshop Proceedings 3177, CEUR-WS.org 2022 [contents] - [r3]Dietmar Jannach, Massimo Quadrana, Paolo Cremonesi:
Session-Based Recommender Systems. Recommender Systems Handbook 2022: 301-334 - [r2]Maurizio Ferrari Dacrema
, Iván Cantador, Ignacio Fernández-Tobías, Shlomo Berkovsky
, Paolo Cremonesi:
Design and Evaluation of Cross-Domain Recommender Systems. Recommender Systems Handbook 2022: 485-516 - [i26]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Paolo Cremonesi:
An Evaluation Study of Generative Adversarial Networks for Collaborative Filtering. CoRR abs/2201.01815 (2022) - [i25]Ervin Dervishaj, Paolo Cremonesi:
GAN-based Matrix Factorization for Recommender Systems. CoRR abs/2201.08042 (2022) - [i24]Maurizio Ferrari Dacrema, Fabio Moroni, Riccardo Nembrini, Nicola Ferro, Guglielmo Faggioli, Paolo Cremonesi:
Towards Feature Selection for Ranking and Classification Exploiting Quantum Annealers. CoRR abs/2205.04346 (2022) - [i23]Gloria Turati, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Feature Selection for Classification with QAOA. CoRR abs/2211.02861 (2022) - 2021
- [j27]Paolo Cremonesi, Dietmar Jannach:
Progress in Recommender Systems Research: Crisis? What Crisis? AI Mag. 42(3): 43-54 (2021) - [j26]Yashar Deldjoo
, Markus Schedl, Paolo Cremonesi, Gabriella Pasi:
Recommender Systems Leveraging Multimedia Content. ACM Comput. Surv. 53(5): 106:1-106:38 (2021) - [j25]Riccardo Nembrini
, Maurizio Ferrari Dacrema
, Paolo Cremonesi
:
Feature Selection for Recommender Systems with Quantum Computing. Entropy 23(8): 970 (2021) - [j24]Stefano Cereda, Stefano Valladares, Paolo Cremonesi, Stefano Doni:
CGPTuner: a Contextual Gaussian Process Bandit Approach for the Automatic Tuning of IT Configurations Under Varying Workload Conditions. Proc. VLDB Endow. 14(8): 1401-1413 (2021) - [j23]Maurizio Ferrari Dacrema
, Simone Boglio, Paolo Cremonesi, Dietmar Jannach:
A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research. ACM Trans. Inf. Syst. 39(2): 20:1-20:49 (2021) - [c118]Luca Benedetto, Giovanni Aradelli, Paolo Cremonesi, Andrea Cappelli, Andrea Giussani, Roberto Turrin:
On the application of Transformers for estimating the difficulty of Multiple-Choice Questions from text. BEA@EACL 2021: 147-157 - [c117]Nicolò Felicioni, Maurizio Ferrari Dacrema, Fernando Benjamín Pérez Maurera, Paolo Cremonesi:
Measuring the Ranking Quality of Recommendations in a Two-Dimensional Carousel Setting. IIR 2021 - [c116]Ekaterina Loginova, Luca Benedetto, Dries Benoit, Paolo Cremonesi:
Towards the Application of Calibrated Transformers to the Unsupervised Estimation of Question Difficulty from Text. RANLP 2021: 846-855 - [c115]Cesare Bernardis, Paolo Cremonesi:
Eigenvalue Perturbation for Item-based Recommender Systems. RecSys 2021: 656-660 - [c114]Maurizio Ferrari Dacrema
, Nicolò Felicioni, Paolo Cremonesi:
Optimizing the Selection of Recommendation Carousels with Quantum Computing. RecSys 2021: 691-696 - [c113]Giovanni Gabbolini, Edoardo D'Amico, Cesare Bernardis, Paolo Cremonesi:
On the instability of embeddings for recommender systems: the case of matrix factorization. SAC 2021: 1363-1370 - [c112]Nicolò Felicioni, Maurizio Ferrari Dacrema
, Paolo Cremonesi:
Measuring the User Satisfaction in a Recommendation Interface with Multiple Carousels. IMX 2021: 212-217 - [c111]Nicolò Felicioni, Maurizio Ferrari Dacrema
, Paolo Cremonesi:
A Methodology for the Offline Evaluation of Recommender Systems in a User Interface with Multiple Carousels. UMAP (Adjunct Publication) 2021: 10-15 - [i22]Giovanni Gabbolini, Edoardo D'Amico, Cesare Bernardis, Paolo Cremonesi:
On the instability of embeddings for recommender systems: the case of Matrix Factorization. CoRR abs/2104.05796 (2021) - [i21]Nicolò Felicioni, Maurizio Ferrari Dacrema, Paolo Cremonesi:
A Methodology for the Offline Evaluation of Recommender Systems in a User Interface with Multiple Carousels. CoRR abs/2105.06275 (2021) - [i20]Nicolò Felicioni, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Measuring the User Satisfaction in a Recommendation Interface with Multiple Carousels. CoRR abs/2105.07062 (2021) - [i19]Riccardo Nembrini, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Feature Selection for Recommender Systems with Quantum Computing. CoRR abs/2110.05089 (2021) - 2020
- [c110]Luca Benedetto
, Andrea Cappelli, Roberto Turrin, Paolo Cremonesi
:
Introducing a Framework to Assess Newly Created Questions with Natural Language Processing. AIED (1) 2020: 43-54 - [c109]Gabriele Prato, Federico Sallemi, Paolo Cremonesi, Mario Scriminaci, Stefan Gudmundsson, Silvio Palumbo:
Outfit Completion and Clothes Recommendation. CHI Extended Abstracts 2020: 1-7 - [c108]Maurizio Ferrari Dacrema
, Federico Parroni, Paolo Cremonesi, Dietmar Jannach:
Critically Examining the Claimed Value of Convolutions over User-Item Embedding Maps for Recommender Systems. CIKM 2020: 355-363 - [c107]Fernando Benjamín Pérez Maurera
, Maurizio Ferrari Dacrema
, Lorenzo Saule, Mario Scriminaci, Paolo Cremonesi:
ContentWise Impressions: An Industrial Dataset with Impressions Included. CIKM 2020: 3093-3100 - [c106]Maurizio Ferrari Dacrema
, Paolo Cremonesi, Dietmar Jannach:
Methodological Issues in Recommender Systems Research (Extended Abstract). IJCAI 2020: 4706-4710 - [c105]Luca Benedetto
, Andrea Cappelli, Roberto Turrin, Paolo Cremonesi:
R2DE: a NLP approach to estimating IRT parameters of newly generated questions. LAK 2020: 412-421 - [c104]Stefano Cereda
, Gianluca Palermo, Paolo Cremonesi, Stefano Doni:
A Collaborative Filtering Approach for the Automatic Tuning of Compiler Optimisations. LCTES 2020: 15-25 - [i18]Luca Benedetto, Andrea Cappelli, Roberto Turrin, Paolo Cremonesi:
R2DE: a NLP approach to estimating IRT parameters of newly generated questions. CoRR abs/2001.07569 (2020) - [i17]Luca Benedetto, Andrea Cappelli, Roberto Turrin, Paolo Cremonesi:
Introducing a framework to assess newly created questions with Natural Language Processing. CoRR abs/2004.13530 (2020) - [i16]Stefano Cereda, Gianluca Palermo, Paolo Cremonesi, Stefano Doni:
A Collaborative Filtering Approach for the Automatic Tuning of Compiler Optimisations. CoRR abs/2005.04092 (2020) - [i15]Maurizio Ferrari Dacrema
, Federico Parroni, Paolo Cremonesi, Dietmar Jannach:
Critically Examining the Claimed Value of Convolutions over User-Item Embedding Maps for Recommender Systems. CoRR abs/2007.11893 (2020) - [i14]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema
, Lorenzo Saule, Mario Scriminaci, Paolo Cremonesi:
ContentWise Impressions: An industrial dataset with impressions included. CoRR abs/2008.01212 (2020)
2010 – 2019
- 2019
- [j22]Yashar Deldjoo
, Maurizio Ferrari Dacrema
, Mihai Gabriel Constantin
, Hamid Eghbal-zadeh, Stefano Cereda
, Markus Schedl
, Bogdan Ionescu, Paolo Cremonesi
:
Movie genome: alleviating new item cold start in movie recommendation. User Model. User Adapt. Interact. 29(2): 291-343 (2019) - [c103]Luca Benedetto
, Paolo Cremonesi:
Rexy, A Configurable Application for Building Virtual Teaching Assistants. INTERACT (2) 2019: 233-241 - [c102]Paolo Cremonesi:
A pragmatic and industry-aware approach toward the design of on-line recommender systems. ORSUM@RecSys 2019: 1 - [c101]Luca Luciano Costanzo, Yashar Deldjoo, Maurizio Ferrari Dacrema, Markus Schedl, Paolo Cremonesi:
Towards Evaluating User Profiling Methods Based on Explicit Ratings on Item Features. IntRS@RecSys 2019: 72-76 - [c100]Maurizio Ferrari Dacrema
, Paolo Cremonesi, Dietmar Jannach:
Are we really making much progress? A worrying analysis of recent neural recommendation approaches. RecSys 2019: 101-109 - [c99]Cesare Bernardis, Maurizio Ferrari Dacrema
, Paolo Cremonesi:
Estimating Confidence of Individual User Predictions in Item-based Recommender Systems. UMAP 2019: 149-156 - [c98]Massimo Quadrana, Dietmar Jannach, Paolo Cremonesi:
Tutorial: Sequence-Aware Recommender Systems. WWW (Companion Volume) 2019: 1316 - [i13]Luca Benedetto
, Paolo Cremonesi, Manuel Parenti:
A Virtual Teaching Assistant for Personalized Learning. CoRR abs/1902.09289 (2019) - [i12]Maurizio Ferrari Dacrema, Paolo Cremonesi, Dietmar Jannach:
Are We Really Making Much Progress? A Worrying Analysis of Recent Neural Recommendation Approaches. CoRR abs/1907.06902 (2019) - [i11]Luca Luciano Costanzo, Yashar Deldjoo, Maurizio Ferrari Dacrema, Markus Schedl, Paolo Cremonesi:
Towards Evaluating User Profiling Methods Based on Explicit Ratings on Item Features. CoRR abs/1908.11055 (2019) - [i10]Maurizio Ferrari Dacrema
, Simone Boglio, Paolo Cremonesi, Dietmar Jannach:
A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research. CoRR abs/1911.07698 (2019) - 2018
- [j21]Massimo Quadrana
, Paolo Cremonesi
, Dietmar Jannach:
Sequence-Aware Recommender Systems. ACM Comput. Surv. 51(4): 66:1-66:36 (2018) - [j20]Yashar Deldjoo
, Mehdi Elahi
, Massimo Quadrana, Paolo Cremonesi
:
Using visual features based on MPEG-7 and deep learning for movie recommendation. Int. J. Multim. Inf. Retr. 7(4): 207-219 (2018) - [c97]Luca Benedetto, Paolo Cremonesi, Manuel Parenti:
A Virtual Teaching Assistant for Personalized Learning. CIKM Workshops 2018 - [c96]Yashar Deldjoo, Markus Schedl, Paolo Cremonesi, Gabriella Pasi:
Content-Based Multimedia Recommendation Systems: Definition and Application Domains. IIR 2018 - [c95]Yashar Deldjoo
, Mihai Gabriel Constantin
, Bogdan Ionescu, Markus Schedl, Paolo Cremonesi
:
MMTF-14K: a multifaceted movie trailer feature dataset for recommendation and retrieval. MMSys 2018: 450-455 - [c94]Maurizio Ferrari Dacrema, Alberto Gasparin, Paolo Cremonesi:
Deriving Item Features Relevance from Collaborative Domain Knowledge. KaRS@RecSys 2018: 1-4 - [c93]Yashar Deldjoo
, Mihai Gabriel Constantin
, Hamid Eghbal-Zadeh, Bogdan Ionescu, Markus Schedl, Paolo Cremonesi
:
Audio-visual encoding of multimedia content for enhancing movie recommendations. RecSys 2018: 455-459 - [c92]Massimo Quadrana, Paolo Cremonesi
:
Sequence-aware recommendation. RecSys 2018: 539-540 - [c91]Massimo Quadrana, Paolo Cremonesi
, Dietmar Jannach:
Sequence-aware Recommender Systems. UMAP 2018: 373-374 - [p4]Paolo Cremonesi, Franca Garzotto, Maurizio Ferrari Dacrema
:
User Preference Sources: Explicit vs. Implicit Feedback. Collaborative Recommendations 2018: 233-252 - [i9]Paolo Cremonesi, Chiara Francalanci, Alessandro Poli, Roberto Pagano, Luca Mazzoni, Alberto Maggioni, Mehdi Elahi:
Social Network based Short-Term Stock Trading System. CoRR abs/1801.05295 (2018) - [i8]Massimo Quadrana, Paolo Cremonesi, Dietmar Jannach:
Sequence-Aware Recommender Systems. CoRR abs/1802.08452 (2018) - [i7]Cesare Bernardis, Maurizio Ferrari Dacrema
, Paolo Cremonesi:
A novel graph-based model for hybrid recommendations in cold-start scenarios. CoRR abs/1808.10664 (2018) - [i6]Maurizio Ferrari Dacrema
, Paolo Cremonesi:
Eigenvalue analogy for confidence estimation in item-based recommender systems. CoRR abs/1809.02052 (2018) - [i5]Maurizio Ferrari Dacrema
, Alberto Gasparin, Paolo Cremonesi:
Deriving item features relevance from collaborative domain knowledge. CoRR abs/1811.01905 (2018) - 2017
- [j19]Paolo Cremonesi
, Mehdi Elahi
, Franca Garzotto:
User interface patterns in recommendation-empowered content intensive multimedia applications. Multim. Tools Appl. 76(4): 5275-5309 (2017) - [c90]Yashar Deldjoo
, Paolo Cremonesi
, Markus Schedl, Massimo Quadrana:
The effect of different video summarization models on the quality of video recommendation based on low-level visual features. CBMI 2017: 20:1-20:6 - [c89]Yashar Deldjoo, Cristina Frà, Massimo Valla, Paolo Cremonesi:
Letting Users Assist What to Watch: An Interactive Query-by-Example Movie Recommendation System. IIR 2017: 63-66 - [c88]Stefano Cereda, Leonardo Cella, Paolo Cremonesi:
Estimate Features Relevance for Groups of Users. IIR 2017: 80-83 - [c87]Leonardo Cella, Romaric Gaudel, Paolo Cremonesi:
Kernalized Collaborative Contextual Bandits. RecSys Posters 2017 - [c86]Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, Paolo Cremonesi
:
Personalizing Session-based Recommendations with Hierarchical Recurrent Neural Networks. RecSys 2017: 130-137 - [c85]Mehdi Elahi
, Yashar Deldjoo
, Farshad Bakhshandegan Moghaddam, Leonardo Cella, Stefano Cereda
, Paolo Cremonesi
:
Exploring the Semantic Gap for Movie Recommendations. RecSys 2017: 326-330 - [c84]Andreu Vall, Massimo Quadrana, Markus Schedl, Gerhard Widmer, Paolo Cremonesi:
The Importance of Song Context in Music Playlists. RecSys Posters 2017 - [c83]Leonardo Cella, Stefano Cereda
, Massimo Quadrana, Paolo Cremonesi
:
Deriving Item Features Relevance from Past User Interactions. UMAP 2017: 275-279 - [e2]Paolo Cremonesi, Francesco Ricci, Shlomo Berkovsky, Alexander Tuzhilin:
Proceedings of the Eleventh ACM Conference on Recommender Systems, RecSys 2017, Como, Italy, August 27-31, 2017. ACM 2017, ISBN 978-1-4503-4652-8 [contents] - [i4]Roberto Pagano, Massimo Quadrana, Mehdi Elahi
, Paolo Cremonesi:
Toward Active Learning in Cross-domain Recommender Systems. CoRR abs/1701.02021 (2017) - [i3]Yashar Deldjoo, Massimo Quadrana, Mehdi Elahi, Paolo Cremonesi:
Using Mise-En-Scène Visual Features based on MPEG-7 and Deep Learning for Movie Recommendation. CoRR abs/1704.06109 (2017) - [i2]Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, Paolo Cremonesi:
Personalizing Session-based Recommendations with Hierarchical Recurrent Neural Networks. CoRR abs/1706.04148 (2017) - 2016
- [j18]Giuliano Casale
, Andrea Sansottera, Paolo Cremonesi
:
Compact Markov-modulated models for multiclass trace fitting. Eur. J. Oper. Res. 255(3): 822-833 (2016) - [j17]Yashar Deldjoo
, Mehdi Elahi
, Paolo Cremonesi
, Franca Garzotto, Pietro Piazzolla
, Massimo Quadrana:
Content-Based Video Recommendation System Based on Stylistic Visual Features. J. Data Semant. 5(2): 99-113 (2016) - [j16]Paolo Cremonesi
, Alan Said
, Domonkos Tikk, Michelle X. Zhou:
Introduction to the Special Issue on Recommender System Benchmarking. ACM Trans. Intell. Syst. Technol. 7(3): 38:1-38:4 (2016) - [c82]Paolo Cremonesi
, Antonella Di Rienzo, Franca Garzotto, Luigi Oliveto, Pietro Piazzolla
:
Smart Lighting for Fashion Store Windows. AVI 2016: 13-20 - [c81]Antonella Di Rienzo, Paolo Tagliaferri, Francesco Arenella, Franca Garzotto, Cristina Frà, Paolo Cremonesi
, Massimo Valla:
Bridging Physical Space and Digital Landscape to Drive Retail Innovation. AVI 2016: 356-357 - [c80]Yashar Deldjoo
, Mehdi Elahi
, Paolo Cremonesi
, Franca Garzotto, Pietro Piazzolla
:
Recommending Movies Based on Mise-en-Scene Design. CHI Extended Abstracts 2016: 1540-1547 - [c79]Paolo Cremonesi
, Antonella Di Rienzo, Franca Garzotto, Luigi Oliveto, Pietro Piazzolla
:
Dynamic and Interactive Lighting for Fashion Store Windows. CHI Extended Abstracts 2016: 2257-2263 - [c78]Paolo Cremonesi, Franca Garzotto, Marco Gribaudo, Pietro Piazzolla, Mauro Iacono:
vMannequin: A Fashion Store Concept Design Tool. ECMS 2016: 527-533 - [c77]Yashar Deldjoo
, Mehdi Elahi
, Paolo Cremonesi
, Farshad Bakhshandegan Moghaddam, Andrea Luigi Edoardo Caielli:
How to Combine Visual Features with Tags to Improve Movie Recommendation Accuracy? EC-Web 2016: 34-45 - [c76]Mattia Brusamento, Roberto Pagano, Martha A. Larson, Paolo Cremonesi:
Explicit Elimination of Similarity Blocking for Session-based Recommendation. RecSys Posters 2016 - [c75]Tommaso Carpi, Marco Edemanti, Ervin Kamberoski, Elena Sacchi, Paolo Cremonesi
, Roberto Pagano, Massimo Quadrana:
Multi-stack ensemble for job recommendation. RecSys Challenge 2016: 8:1-8:4 - [c74]Yashar Deldjoo, Mehdi Elahi, Paolo Cremonesi:
Using Visual Features and Latent Factors for Movie Recommendation. CBRecSys@RecSys 2016: 15-18 - [c73]Tamas Motajcsek, Jean-Yves Le Moine, Martha A. Larson, Daniel Kohlsdorf, Andreas Lommatzsch, Domonkos Tikk, Omar Alonso, Paolo Cremonesi, Andrew M. Demetriou, Kristaps Dobrajs, Franca Garzotto, Ayse Göker, Frank Hopfgartner
, Davide Malagoli, Thuy Ngoc Nguyen, Jasminko Novak, Francesco Ricci, Mario Scriminaci, Marko Tkalcic
, Anna Zacchi:
Algorithms Aside: Recommendation As The Lens Of Life. RecSys 2016: 215-219 - [c72]Roberto Pagano, Paolo Cremonesi
, Martha A. Larson, Balázs Hidasi, Domonkos Tikk, Alexandros Karatzoglou, Massimo Quadrana:
The Contextual Turn: from Context-Aware to Context-Driven Recommender Systems. RecSys 2016: 249-252 - [i1]Yashar Deldjoo, Shengping Zhang, Bahman Zanj, Paolo Cremonesi, Matteo Matteucci:
Sparse vs. Non-sparse: Which One Is Better for Practical Visual Tracking? CoRR abs/1608.00168 (2016) - 2015
- [c71]Paolo Cremonesi
, Mehdi Elahi
, Franca Garzotto:
Interaction Design Patterns in Recommender Systems. CHItaly 2015: 66-73 - [c70]Yashar Deldjoo
, Mehdi Elahi
, Massimo Quadrana, Paolo Cremonesi
, Franca Garzotto:
Toward Effective Movie Recommendations Based on Mise-en-Scène Film Styles. CHItaly 2015: 162-165 - [c69]Paolo Cremonesi, Franca Garzotto, Matteo Guarnerio, Francesco Gusmeroli, Roberto Pagano:
Decision Making through Polarized Summarization of User Reviews. DMRS 2015: 37-40 - [c68]Mona Naseri, Mehdi Elahi, Paolo Cremonesi:
Investigating the Decision Making Process of Users based on the PoliMovie Dataset. DMRS 2015: 41-44 - [c67]Yashar Deldjoo
, Mehdi Elahi
, Massimo Quadrana, Paolo Cremonesi
:
Toward Building a Content-Based Video Recommendation System Based on Low-Level Features. EC-Web 2015: 45-56 - [c66]Paolo Cremonesi
, Primo Modica, Roberto Pagano, Emanuele Rabosio, Letizia Tanca:
Personalized and Context-Aware TV Program Recommendations Based on Implicit Feedback. EC-Web 2015: 57-68 - [c65]