


Остановите войну!
for scientists:


default search action
RecSys 2023: Singapore
- Jie Zhang, Li Chen, Shlomo Berkovsky, Min Zhang, Tommaso Di Noia, Justin Basilico, Luiz Pizzato, Yang Song:
Proceedings of the 17th ACM Conference on Recommender Systems, RecSys 2023, Singapore, Singapore, September 18-22, 2023. ACM 2023
Applications
- Felix Bölz
, Diana Nurbakova
, Sylvie Calabretto
, Armin Gerl
, Lionel Brunie
, Harald Kosch
:
HUMMUS: A Linked, Healthiness-Aware, User-centered and Argument-Enabling Recipe Data Set for Recommendation. 1-11
Side Information, Items structure and Relations
- Saurabh Agrawal
, John Trenkle
, Jaya Kawale
:
Beyond Labels: Leveraging Deep Learning and LLMs for Content Metadata. 1
Late-Breaking Results
- Xumei Xi
, Yuke Zhao
, Quan Liu
, Liwen Ouyang
, Yang Wu
:
Integrating Offline Reinforcement Learning with Transformers for Sequential Recommendation. 1
Tutorials
- Kim Falk
, Morten Arngren
:
Recommenders In the wild - Practical Evaluation Methods. 1
Applications
- Yoji Tomita
, Riku Togashi
, Yuriko Hashizume
, Naoto Ohsaka
:
Fast and Examination-agnostic Reciprocal Recommendation in Matching Markets. 12-23 - Boming Yang
, Dairui Liu
, Toyotaro Suzumura
, Ruihai Dong
, Irene Li
:
✨ Going Beyond Local: Global Graph-Enhanced Personalized News Recommendations. 24-34 - Ming Li
, Mozhdeh Ariannezhad
, Andrew Yates
, Maarten de Rijke
:
Masked and Swapped Sequence Modeling for Next Novel Basket Recommendation in Grocery Shopping. 35-46
Side Information, Items structure and Relations
- Zhen Gong
, Xin Wu
, Lei Chen
, Zhenzhe Zheng
, Shengjie Wang
, Anran Xu
, Chong Wang
, Fan Wu
:
Full Index Deep Retrieval: End-to-End User and Item Structures for Cold-start and Long-tail Item Recommendation. 47-57 - Andreas Peintner
, Amir Reza Mohammadi
, Eva Zangerle
:
SPARE: Shortest Path Global Item Relations for Efficient Session-based Recommendation. 58-69 - Buket Baran
, Guilherme Dinis Junior
, Antonina Danylenko
, Olayinka S. Folorunso
, Gösta Forsum
, Maksym Lefarov
, Lucas Maystre
, Yu Zhao
:
Accelerating Creator Audience Building through Centralized Exploration. 70-73
Sequential Recommendation
- Haibo Liu
, Zhixiang Deng
, Liang Wang
, Jinjia Peng
, Shi Feng
:
Distribution-based Learnable Filters with Side Information for Sequential Recommendation. 78-88 - Bowen Zheng
, Yupeng Hou
, Wayne Xin Zhao
, Yang Song
, Hengshu Zhu
:
Reciprocal Sequential Recommendation. 89-100 - Chengxi Li, Yejing Wang, Qidong Liu, Xiangyu Zhao, Wanyu Wang, Yiqi Wang, Lixin Zou, Wenqi Fan, Qing Li:
STRec: Sparse Transformer for Sequential Recommendations. 101-111 - Walid Bendada
, Théo Bontempelli
, Mathieu Morlon
, Benjamin Chapus
, Thibault Cador
, Thomas Bouabça
, Guillaume Salha-Galvan
:
Track Mix Generation on Music Streaming Services using Transformers. 112-115 - Aleksandr Vladimirovich Petrov
, Craig MacDonald
:
gSASRec: Reducing Overconfidence in Sequential Recommendation Trained with Negative Sampling. 116-128 - Peilin Zhou
, Jingqi Gao
, Yueqi Xie
, Qichen Ye
, Yining Hua
, Jaeboum Kim
, Shoujin Wang
, Sunghun Kim
:
Equivariant Contrastive Learning for Sequential Recommendation. 129-140 - Yichi Zhang
, Guisheng Yin
, Yuxin Dong
:
Contrastive Learning with Frequency-Domain Interest Trends for Sequential Recommendation. 141-150 - Xuewen Tao
, Mingming Ha
, Qiongxu Ma
, Hongwei Cheng
, Wenfang Lin
, Xiaobo Guo
, Linxun Chen
, Bing Han
:
Task Aware Feature Extraction Framework for Sequential Dependence Multi-Task Learning. 151-160
Click-Through Rate Prediction
- Cheng Wang
, Jiacheng Sun
, Zhenhua Dong
, Ruixuan Li
, Rui Zhang
:
Gradient Matching for Categorical Data Distillation in CTR Prediction. 161-170 - Yimin Lv
, Shuli Wang
, Beihong Jin
, Yisong Yu
, Yapeng Zhang
, Jian Dong
, Yongkang Wang
, Xingxing Wang
, Dong Wang
:
Deep Situation-Aware Interaction Network for Click-Through Rate Prediction. 171-182 - Yujun Li
, Xing Tang
, Bo Chen
, Yimin Huang
, Ruiming Tang
, Zhenguo Li
:
AutoOpt: Automatic Hyperparameter Scheduling and Optimization for Deep Click-through Rate Prediction. 183-194 - Congcong Liu
, Liang Shi
, Pei Wang
, Fei Teng
, Xue Jiang
, Changping Peng
, Zhangang Lin
, Jingping Shao
:
Loss Harmonizing for Multi-Scenario CTR Prediction. 195-199
Trustworthy Recommendation
- Jiakai Tang
, Shiqi Shen
, Zhipeng Wang
, Zhi Gong
, Jingsen Zhang
, Xu Chen
:
When Fairness meets Bias: a Debiased Framework for Fairness aware Top-N Recommendation. 200-210 - Hao Yang
, Zhining Liu
, Zeyu Zhang
, Chenyi Zhuang
, Xu Chen
:
Towards Robust Fairness-aware Recommendation. 211-222 - Chenyang Wang
, Yankai Liu
, Yuanqing Yu
, Weizhi Ma
, Min Zhang
, Yiqun Liu
, Haitao Zeng
, Junlan Feng
, Chao Deng
:
Two-sided Calibration for Quality-aware Responsible Recommendation. 223-233 - Changsheng Wang
, Jianbai Ye
, Wenjie Wang
, Chongming Gao
, Fuli Feng
, Xiangnan He
:
RecAD: Towards A Unified Library for Recommender Attack and Defense. 234-244
Collaborative filtering
- Huiyuan Chen
, Xiaoting Li
, Vivian Lai
, Chin-Chia Michael Yeh
, Yujie Fan
, Yan Zheng
, Mahashweta Das
, Hao Yang
:
Adversarial Collaborative Filtering for Free. 245-255 - Yuhan Zhao
, Rui Chen
, Riwei Lai
, Qilong Han
, Hongtao Song
, Li Chen
:
Augmented Negative Sampling for Collaborative Filtering. 256-266 - Derek Zhiyuan Cheng
, Ruoxi Wang
, Wang-Cheng Kang
, Benjamin Coleman
, Yin Zhang
, Jianmo Ni
, Jonathan Valverde
, Lichan Hong
, Ed H. Chi:
Efficient Data Representation Learning in Google-scale Systems. 267-271 - Balázs Hidasi
, Ádám Tibor Czapp
:
The Effect of Third Party Implementations on Reproducibility. 272-282 - Yueqi Xie
, Jingqi Gao
, Peilin Zhou
, Qichen Ye
, Yining Hua
, Jae Boum Kim
, Fangzhao Wu
, Sunghun Kim
:
Rethinking Multi-Interest Learning for Candidate Matching in Recommender Systems. 283-293 - Hao Ding, Branislav Kveton, Yifei Ma, Youngsuk Park
, Venkataramana Kini, Yupeng Gu, Ravi Divvela, Fei Wang, Anoop Deoras, Hao Wang:
Trending Now: Modeling Trend Recommendations. 294-305 - Norman Knyazev
, Harrie Oosterhuis
:
A Lightweight Method for Modeling Confidence in Recommendations with Learned Beta Distributions. 306-317 - Benedikt Schifferer
, Wenzhe Shi
, Gabriel de Souza Pereira Moreira
, Even Oldridge
, Chris Deotte
, Gilberto Titericz
, Kazuki Onodera
, Praveen Dhinwa
, Vishal Agrawal
, Chris Green
:
Investigating the effects of incremental training on neural ranking models. 318-321
Graphs
- Yuwei Cao
, Liangwei Yang
, Chen Wang
, Zhiwei Liu
, Hao Peng
, Chenyu You
, Philip S. Yu
:
Multi-task Item-attribute Graph Pre-training for Strict Cold-start Item Recommendation. 322-333 - Dang Minh Nguyen
, Chenfei Wang
, Yan Shen
, Yifan Zeng
:
LightSAGE: Graph Neural Networks for Large Scale Item Retrieval in Shopee's Advertisement Recommendation. 334-337 - Wei Wei
, Lianghao Xia
, Chao Huang
:
Multi-Relational Contrastive Learning for Recommendation. 338-349 - Vito Walter Anelli
, Daniele Malitesta
, Claudio Pomo
, Alejandro Bellogín
, Eugenio Di Sciascio
, Tommaso Di Noia
:
Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis. 350-361
Interactive Recommendation
- Yaxiong Wu
, Craig Macdonald
, Iadh Ounis
:
Goal-Oriented Multi-Modal Interactive Recommendation with Verbal and Non-Verbal Relevance Feedback. 362-373 - Zhipeng Zhao
, Kun Zhou
, Xiaolei Wang
, Wayne Xin Zhao
, Fan Pan
, Zhao Cao
, Ji-Rong Wen
:
Alleviating the Long-Tail Problem in Conversational Recommender Systems. 374-385 - Cheng Wang
, Jiacheng Sun
, Zhenhua Dong
, Jieming Zhu
, Zhenguo Li
, Ruixuan Li
, Rui Zhang
:
Data-free Knowledge Distillation for Reusing Recommendation Models. 386-395 - Gary Tang
, Jiangwei Pan
, Henry Wang
, Justin Basilico
:
Reward innovation for long-term member satisfaction. 396-399 - Yan Chen
, Emilian Vankov
, Linas Baltrunas
, Preston Donovan
, Akash Mehta
, Benjamin Schroeder
, Matthew Herman
:
Contextual Multi-Armed Bandit for Email Layout Recommendation. 400-402 - Xinyang Yi
, Shao-Chuan Wang
, Ruining He
, Hariharan Chandrasekaran
, Charles Wu
, Lukasz Heldt
, Lichan Hong
, Minmin Chen
, Ed H. Chi
:
Online Matching: A Real-time Bandit System for Large-scale Recommendations. 403-414 - Huazheng Wang
, Haifeng Xu
, Chuanhao Li
, Zhiyuan Liu
, Hongning Wang
:
Incentivizing Exploration in Linear Contextual Bandits under Information Gap. 415-425 - William Black
, Ercument Ilhan
, Andrea Marchini
, Vilda Markeviciute
:
AdaptEx: A Self-Service Contextual Bandit Platform. 426-429
Reinforcement Learning
- Kabir Nagrecha
, Lingyi Liu
, Pablo Delgado
, Prasanna Padmanabhan
:
InTune: Reinforcement Learning-based Data Pipeline Optimization for Deep Recommendation Models. 430-442 - Zhi Zheng
, Ying Sun
, Xin Song
, Hengshu Zhu
, Hui Xiong
:
Generative Learning Plan Recommendation for Employees: A Performance-aware Reinforcement Learning Approach. 443-454 - Vivek F. Farias
, Hao Li
, Tianyi Peng
, Xinyuyang Ren
, Huawei Zhang
, Andrew Zheng
:
Correcting for Interference in Experiments: A Case Study at Douyin. 455-466 - Vincenzo Paparella
, Vito Walter Anelli
, Ludovico Boratto
, Tommaso Di Noia
:
Reproducibility of Multi-Objective Reinforcement Learning Recommendation: Interplay between Effectiveness and Beyond-Accuracy Perspectives. 467-478
Cross-domain Recommendation
- Xiaoxin Ye
, Yun Li
, Lina Yao
:
DREAM: Decoupled Representation via Extraction Attention Module and Supervised Contrastive Learning for Cross-Domain Sequential Recommender. 479-490 - Zitao Xu
, Weike Pan
, Zhong Ming
:
A Multi-view Graph Contrastive Learning Framework for Cross-Domain Sequential Recommendation. 491-501 - Haokai Ma
, Ruobing Xie
, Lei Meng
, Xin Chen
, Xu Zhang
, Leyu Lin
, Jie Zhou
:
Exploring False Hard Negative Sample in Cross-Domain Recommendation. 502-514 - Jiajie Zhu
, Yan Wang
, Feng Zhu
, Zhu Sun
:
Domain Disentanglement with Interpolative Data Augmentation for Dual-Target Cross-Domain Recommendation. 515-527
Multimedia Recommendation
- Haiyuan Zhao
, Lei Zhang
, Jun Xu
, Guohao Cai
, Zhenhua Dong
, Ji-Rong Wen
:
Uncovering User Interest from Biased and Noised Watch Time in Video Recommendation. 528-539 - Yunzhu Pan
, Chen Gao
, Jianxin Chang
, Yanan Niu
, Yang Song
, Kun Gai
, Depeng Jin
, Yong Li
:
Understanding and Modeling Passive-Negative Feedback for Short-video Sequential Recommendation. 540-550 - Benjamin Richard Clark
, Kristine Grivcova
, Polina Proutskova
, Duncan Martin Walker
:
Personalised Recommendations for the BBC iPlayer: Initial approach and current challenges. 551-553 - Pasquale Lops
, Elio Musacchio
, Cataldo Musto
, Marco Polignano
, Antonio Silletti
, Giovanni Semeraro
:
Reproducibility Analysis of Recommender Systems relying on Visual Features: traps, pitfalls, and countermeasures. 554-564
Knowledge and Context
- Meng Yuan
, Fuzhen Zhuang
, Zhao Zhang
, Deqing Wang
, Jin Dong
:
Knowledge-based Multiple Adaptive Spaces Fusion for Recommendation. 565-575 - Alberto Carlo Maria Mancino
, Antonio Ferrara
, Salvatore Bufi
, Daniele Malitesta
, Tommaso Di Noia
, Eugenio Di Sciascio
:
KGTORe: Tailored Recommendations through Knowledge-aware GNN Models. 576-587 - Dugang Liu
, Yuhao Wu
, Weixin Li
, Xiaolian Zhang
, Hao Wang
, Qinjuan Yang
, Zhong Ming
:
Pairwise Intent Graph Embedding Learning for Context-Aware Recommendation. 588-598 - Bin Yin
, Junjie Xie
, Yu Qin
, Zixiang Ding
, Zhichao Feng
, Xiang Li
, Wei Lin
:
Heterogeneous Knowledge Fusion: A Novel Approach for Personalized Recommendation via LLM. 599-601
Multi-task Recommendation
- Wanda Li
, Wenhao Zheng
, Xuanji Xiao
, Suhang Wang
:
STAN: Stage-Adaptive Network for Multi-Task Recommendation by Learning User Lifecycle-Based Representation. 602-612 - Youchen Sun
, Zhu Sun
, Xiao Sha
, Jie Zhang
, Yew Soon Ong
:
Disentangling Motives behind Item Consumption and Social Connection for Mutually-enhanced Joint Prediction. 613-624 - Qianzhen Rao
, Yang Liu
, Weike Pan
, Zhong Ming
:
BVAE: Behavior-aware Variational Autoencoder for Multi-Behavior Multi-Task Recommendation. 625-636 - Rui Luo
, Tianxin Wang
, Jingyuan Deng
, Peng Wan
:
MCM: A Multi-task Pre-trained Customer Model for Personalization. 637-639
Evaluation
- Lien Michiels
, Jorre T. A. Vannieuwenhuyze
, Jens Leysen
, Robin Verachtert
, Annelien Smets
, Bart Goethals
:
How Should We Measure Filter Bubbles? A Regression Model and Evidence for Online News. 640-651 - Faisal Shehzad
, Dietmar Jannach
:
Everyone's a Winner! On Hyperparameter Tuning of Recommendation Models. 652-657 - Yang Liu
, Alan Medlar
, Dorota Glowacka
:
What We Evaluate When We Evaluate Recommender Systems: Understanding Recommender Systems' Performance using Item Response Theory. 658-670 - Junyi Shen
, Dayvid V. R. Oliveira
, Jin Cao
, Brian Knott
, Goodman Gu
, Sindhu Vijaya Raghavan
, Yunye Jin
, Nikita Sudan
, Rob Monarch
:
Identifying Controversial Pairs in Item-to-Item Recommendations. 671-674
Short Papers
- Olivier Jeunen
:
A Probabilistic Position Bias Model for Short-Video Recommendation Feeds. 675-681 - Haoxuan Li
, Taojun Hu
, Zetong Xiong
, Chunyuan Zheng
, Fuli Feng
, Xiangnan He
, Xiao-Hua Zhou
:
ADRNet: A Generalized Collaborative Filtering Framework Combining Clinical and Non-Clinical Data for Adverse Drug Reaction Prediction. 682-687 - Abhishek Jaiswal
, Gautam Chauhan
, Nisheeth Srivastava
:
Using Learnable Physics for Real-Time Exercise Form Recommendations. 688-695 - Yoosof Mashayekhi
, Bo Kang
, Jefrey Lijffijt
, Tijl De Bie
:
ReCon: Reducing Congestion in Job Recommendation using Optimal Transport. 696-701 - Rui Ding
, Ruobing Xie
, Xiaobo Hao
, Xiaochun Yang
, Kaikai Ge
, Xu Zhang
, Jie Zhou
, Leyu Lin
:
Interpretable User Retention Modeling in Recommendation. 702-708 - Sebastian Lubos
, Viet-Man Le
, Alexander Felfernig
, Thi Ngoc Trang Tran
:
Analysis Operations for Constraint-based Recommender Systems. 709-714 - Iason Chaimalas
, Duncan Martin Walker
, Edoardo Gruppi
, Benjamin Richard Clark
, Laura Toni
:
Bootstrapped Personalized Popularity for Cold Start Recommender Systems. 715-722 - Sirui Wang
, Peiguang Li
, Yunsen Xian
, Hongzhi Zhang
:
Beyond the Sequence: Statistics-Driven Pre-training for Stabilizing Sequential Recommendation Model. 723-729 - Amit Pande
, Kunal Ghosh
, Rankyung Park
:
Personalized Category Frequency prediction for Buy It Again recommendations. 730-736 - Wenqi Sun
, Ruobing Xie
, Junjie Zhang
, Wayne Xin Zhao
, Leyu Lin
, Ji-Rong Wen
:
Generative Next-Basket Recommendation. 737-743 - Jianjun Yuan
, Wei Lee Woon
, Ludovik Coba
:
Adversarial Sleeping Bandit Problems with Multiple Plays: Algorithm and Ranking Application. 744-749 - Pantelis Pipergias Analytis
, Philipp Hager
:
Collaborative filtering algorithms are prone to mainstream-taste bias. 750-756 - Huiyuan Chen
, Kaixiong Zhou
, Kwei-Herng Lai
, Chin-Chia Michael Yeh
, Yan Zheng
, Xia Hu
, Hao Yang
:
Hessian-aware Quantized Node Embeddings for Recommendation. 757-762 - Martin Spisák
, Radek Bartyzal
, Antonín Hoskovec
, Ladislav Peska
, Miroslav Tuma
:
Scalable Approximate NonSymmetric Autoencoder for Collaborative Filtering. 763-770 - Zerong Lan
, Yingyi Zhang
, Xianneng Li
:
M3REC: A Meta-based Multi-scenario Multi-task Recommendation Framework. 771-776 - Sheshera Mysore
, Andrew McCallum
, Hamed Zamani
:
Large Language Model Augmented Narrative Driven Recommendations. 777-783 - Mostafa Rahmani
, James Caverlee
, Fei Wang
:
Incorporating Time in Sequential Recommendation Models. 784-790 - Vivian Lai
, Huiyuan Chen
, Chin-Chia Michael Yeh
, Minghua Xu
, Yiwei Cai
, Hao Yang
:
Enhancing Transformers without Self-supervised Learning: A Loss Landscape Perspective in Sequential Recommendation. 791-797 - Ashraf Ghiye
, Baptiste Barreau
, Laurent Carlier
, Michalis Vazirgiannis
:
Adaptive Collaborative Filtering with Personalized Time Decay Functions for Financial Product Recommendation. 798-804 - Mihaela Curmei
, Walid Krichene
, Li Zhang
, Mukund Sundararajan
:
Private Matrix Factorization with Public Item Features. 805-812 - Lucien Heitz
, Juliane A. Lischka
, Rana Abdullah
, Laura Laugwitz
, Hendrik Meyer
, Abraham Bernstein
:
Deliberative Diversity for News Recommendations: Operationalization and Experimental User Study. 813-819 - Yaokun Liu
, Xiaowang Zhang
, Minghui Zou
, Zhiyong Feng
:
Co-occurrence Embedding Enhancement for Long-tail Problem in Multi-Interest Recommendation. 820-825 - Elad Haramaty
, Zohar S. Karnin
, Arnon Lazerson
, Liane Lewin-Eytan
, Yoelle Maarek
:
Extended Conversion: Capturing Successful Interactions in Voice Shopping. 826-832 - Walid Bendada
, Guillaume Salha-Galvan
, Romain Hennequin
, Thomas Bouabça
, Tristan Cazenave
:
On the Consistency of Average Embeddings for Item Recommendation. 833-839 - Marta Moscati
, Christian Wallmann
, Markus Reiter-Haas
, Dominik Kowald
, Elisabeth Lex
, Markus Schedl
:
Integrating the ACT-R Framework with Collaborative Filtering for Explainable Sequential Music Recommendation. 840-847 - Balázs Hidasi
, Ádám Tibor Czapp
:
Widespread Flaws in Offline Evaluation of Recommender Systems. 848-855 - Giuseppe Spillo
, Allegra De Filippo
, Cataldo Musto
, Michela Milano
, Giovanni Semeraro
:
Towards Sustainability-aware Recommender Systems: Analyzing the Trade-off Between Algorithms Performance and Carbon Footprint. 856-862 - Stefania Ionescu
, Aniko Hannak
, Nicolò Pagan
:
Group Fairness for Content Creators: the Role of Human and Algorithmic Biases under Popularity-based Recommendations. 863-870 - Bjørnar Vassøy
, Helge Langseth
, Benjamin Kille
:
Providing Previously Unseen Users Fair Recommendations Using Variational Autoencoders. 871-876 - Aayush Singha Roy
, Edoardo D'Amico
, Elias Z. Tragos
, Aonghus Lawlor
, Neil Hurley
:
Scalable Deep Q-Learning for Session-Based Slate Recommendation. 877-882 - Tushar Prakash
, Raksha Jalan
, Brijraj Singh
, Naoyuki Onoe
:
CR-SoRec: BERT driven Consistency Regularization for Social Recommendation. 883-889 - Scott Sanner
, Krisztian Balog
, Filip Radlinski
, Ben Wedin
, Lucas Dixon
:
Large Language Models are Competitive Near Cold-start Recommenders for Language- and Item-based Preferences. 890-896 - Rana Shahout
, Yehonatan Peisakhovsky
, Sasha Stoikov
, Nikhil Garg
:
Interface Design to Mitigate Inflation in Recommender Systems. 897-903 - Alejandro Ariza-Casabona
, Maria Salamó
, Ludovico Boratto
, Gianni Fenu
:
Towards Self-Explaining Sequence-Aware Recommendation. 904-911