default search action
Maurizio Ferrari Dacrema
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j7]Riccardo Pellini, Maurizio Ferrari Dacrema:
Analyzing the effectiveness of quantum annealing with meta-learning. Quantum Mach. Intell. 6(2): 48 (2024) - [c44]Andrea Pasin, Maurizio Ferrari Dacrema, Paolo Cremonesi, Nicola Ferro:
Overview of QuantumCLEF 2024: The Quantum Computing Challenge for Information Retrieval and Recommender Systems at CLEF. CLEF (2) 2024: 260-282 - [c43]Andrea Pasin, Maurizio Ferrari Dacrema, Paolo Cremonesi, Nicola Ferro:
QuantumCLEF 2024: Overview of the Quantum Computing Challenge for Information Retrieval and Recommender Systems at CLEF. CLEF (Working Notes) 2024: 3032-3053 - [c42]Maurizio Ferrari Dacrema, Andrea Pasin, Paolo Cremonesi, Nicola Ferro:
Quantum Computing for Information Retrieval and Recommender Systems. ECIR (5) 2024: 358-362 - [c41]Andrea Pasin, Maurizio Ferrari Dacrema, Paolo Cremonesi, Nicola Ferro:
QuantumCLEF - Quantum Computing at CLEF. ECIR (5) 2024: 482-489 - [c40]Nicola Cecere, Andrea Pisani, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Leveraging Semantic Embeddings of User Reviews with Off-the-Shelf LLMs for Recommender Systems. IIR 2024: 87-90 - [c39]Andrea Pisani, Nicola Cecere, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Pre-Trained LLM Embeddings of Product Reviews for Recommendation. IIR 2024: 91-94 - [c38]Andrea Alari, Lorenzo Campana, Federico Giuseppe Ciliberto, Saverio Maggese, Carlo Sgaravatti, Francesco Zanella, Andrea Pisani, Maurizio Ferrari Dacrema:
Exploiting Contextual Normalizations and Article Endorsement for News Recommendation. RecSys Challenge 2024: 17-21 - [c37]Maurizio Ferrari Dacrema, Andrea Pasin, Paolo Cremonesi, Nicola Ferro:
Using and Evaluating Quantum Computing for Information Retrieval and Recommender Systems. SIGIR 2024: 3017-3020 - [i21]Nicolò Felicioni, Michael Benigni, Maurizio Ferrari Dacrema:
AutoOPE: Automated Off-Policy Estimator Selection. CoRR abs/2406.18022 (2024) - [i20]Riccardo Pellini, Maurizio Ferrari Dacrema:
Analyzing the Effectiveness of Quantum Annealing with Meta-Learning. CoRR abs/2408.00570 (2024) - [i19]Costantino Carugno, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Adaptive Learning for Quantum Linear Regression. CoRR abs/2408.02833 (2024) - [i18]Simone Foderà, Gloria Turati, Riccardo Nembrini, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Reinforcement Learning for Variational Quantum Circuits Design. CoRR abs/2409.05475 (2024) - 2023
- [j6]Maurizio Ferrari Dacrema, Pablo Castells, Justin Basilico, Paolo Cremonesi:
Report on the Workshop on Learning and Evaluating Recommendations with Impressions (LERI) at RecSys 2023. SIGIR Forum 57(2): 19:1-19:8 (2023) - [c36]Andrea Pasin, Maurizio Ferrari Dacrema, Paolo Cremonesi, Nicola Ferro:
qCLEF: A Proposal to Evaluate Quantum Annealing for Information Retrieval and Recommender Systems. CLEF 2023: 97-108 - [c35]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Pablo Castells, Paolo Cremonesi:
Impressions in Recommender Systems: Present and Future. IIR 2023: 97-104 - [c34]Riccardo Pellini, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Towards Improved QUBO Formulations of IR Tasks for Quantum Annealers. IIR 2023: 137-142 - [c33]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Pablo Castells, Paolo Cremonesi:
Characterizing Impression-Aware Recommender Systems. LERI@RecSys 2023: 22-33 - [c32]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Pablo Castells, Paolo Cremonesi:
Incorporating Impressions to Graph-Based Recommenders. LERI@RecSys 2023: 62-67 - [c31]Gloria Turati, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Benchmarking Adaptative Variational Quantum Algorithms on QUBO Instances. QCE 2023: 407-413 - [c30]Paolo Basso, Arturo Benedetti, Nicola Cecere, Alessandro Maranelli, Salvatore Marragony, Samuele Peri, Andrea Riboni, Alessandro Verosimile, Davide Zanutto, Maurizio Ferrari Dacrema:
Pessimistic Rescaling and Distribution Shift of Boosting Models for Impression-Aware Online Advertising Recommendation. RecSys Challenge 2023: 33-38 - [c29]Maurizio Ferrari Dacrema, Pablo Castells, Justin Basilico, Paolo Cremonesi:
Workshop on Learning and Evaluating Recommendations with Impressions (LERI). RecSys 2023: 1248-1251 - [e1]Maurizio Ferrari Dacrema, Pablo Castells, Justin Basilico, Paolo Cremonesi:
Proceedings of the Workshop on Learning and Evaluating Recommendations with Impressions co-located with the 17th ACM Conference on Recommender Systems (RecSys 2023), Singapore, September 19th, 2023. CEUR Workshop Proceedings 3590, CEUR-WS.org 2023 [contents] - [i17]Gloria Turati, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Benchmarking Adaptative Variational Quantum Algorithms on QUBO Instances. CoRR abs/2308.01789 (2023) - [i16]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Pablo Castells, Paolo Cremonesi:
Impression-Aware Recommender Systems. CoRR abs/2308.07857 (2023) - 2022
- [j5]Cesare Bernardis, Maurizio Ferrari Dacrema, Fernando Benjamín Pérez Maurera, Massimo Quadrana, Mario Scriminaci, Paolo Cremonesi:
From Data Analysis to Intent-Based Recommendation: An Industrial Case Study in the Video Domain. IEEE Access 10: 14779-14796 (2022) - [j4]Maurizio Ferrari Dacrema, Nicolò Felicioni, Paolo Cremonesi:
Offline Evaluation of Recommender Systems in a User Interface With Multiple Carousels. Frontiers Big Data 5: 910030 (2022) - [c28]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Paolo Cremonesi:
An Evaluation Study of Generative Adversarial Networks for Collaborative Filtering. ECIR (1) 2022: 671-685 - [c27]Maurizio Ferrari Dacrema, Nicolò Felicioni, Paolo Cremonesi:
Evaluating Recommendations in a User Interface With Multiple Carousels. IIR 2022 - [c26]Maurizio Ferrari Dacrema, Fabio Moroni, Riccardo Nembrini, Nicola Ferro, Guglielmo Faggioli, Paolo Cremonesi:
Feature Selection via Quantum Annealers for Ranking and Classification Tasks. IIR 2022 - [c25]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Replication of Collaborative Filtering Generative Adversarial Networks on Recommender Systems. IIR 2022 - [c24]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Replication of Recommender Systems with Impressions. IIR 2022 - [c23]Nicolò Felicioni, Maurizio Ferrari Dacrema, Marcello Restelli, Paolo Cremonesi:
Off-Policy Evaluation with Deficient Support Using Side Information. NeurIPS 2022 - [c22]Pietro Chiavassa, Andrea Marchesin, Ignazio Pedone, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Virtual Network Function Embedding with Quantum Annealing. QCE 2022: 282-291 - [c21]Gloria Turati, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Feature Selection for Classification with QAOA. QCE 2022: 782-785 - [c20]Riccardo Nembrini, Costantino Carugno, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Towards Recommender Systems with Community Detection and Quantum Computing. RecSys 2022: 579-585 - [c19]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Towards the Evaluation of Recommender Systems with Impressions. RecSys 2022: 610-615 - [c18]Maurizio Ferrari Dacrema, Fabio Moroni, Riccardo Nembrini, Nicola Ferro, Guglielmo Faggioli, Paolo Cremonesi:
Towards Feature Selection for Ranking and Classification Exploiting Quantum Annealers. SIGIR 2022: 2814-2824 - [r1]Maurizio Ferrari Dacrema, Iván Cantador, Ignacio Fernández-Tobías, Shlomo Berkovsky, Paolo Cremonesi:
Design and Evaluation of Cross-Domain Recommender Systems. Recommender Systems Handbook 2022: 485-516 - [d2]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Paolo Cremonesi:
An Evaluation of Generative Adversarial Networks for Collaborative Filtering - Supplemental Material. Version v1.0.1-ecir-2022-camera-ready-prep. Zenodo, 2022 [all versions] - [d1]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Paolo Cremonesi:
An Evaluation Study of Generative Adversarial Networks for Collaborative Filtering - Supplemental Material. Version v1.1.1-ecir-2022-camera-ready. Zenodo, 2022 [all versions] - [i15]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Paolo Cremonesi:
An Evaluation Study of Generative Adversarial Networks for Collaborative Filtering. CoRR abs/2201.01815 (2022) - [i14]Maurizio Ferrari Dacrema, Fabio Moroni, Riccardo Nembrini, Nicola Ferro, Guglielmo Faggioli, Paolo Cremonesi:
Towards Feature Selection for Ranking and Classification Exploiting Quantum Annealers. CoRR abs/2205.04346 (2022) - [i13]Gloria Turati, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Feature Selection for Classification with QAOA. CoRR abs/2211.02861 (2022) - 2021
- [j3]Riccardo Nembrini, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Feature Selection for Recommender Systems with Quantum Computing. Entropy 23(8): 970 (2021) - [j2]Maurizio Ferrari Dacrema, Simone Boglio, Paolo Cremonesi, Dietmar Jannach:
A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research. ACM Trans. Inf. Syst. 39(2): 20:1-20:49 (2021) - [c17]Maurizio Ferrari Dacrema:
Demonstrating the Equivalence of List Based and Aggregate Metrics to Measure the Diversity of Recommendations (Student Abstract). AAAI 2021: 15779-15780 - [c16]Nicolò Felicioni, Maurizio Ferrari Dacrema, Fernando Benjamín Pérez Maurera, Paolo Cremonesi:
Measuring the Ranking Quality of Recommendations in a Two-Dimensional Carousel Setting. IIR 2021 - [c15]Luca Carminati, Giacomo Lodigiani, Pietro Maldini, Samuele Meta, Stiven Metaj, Arcangelo Pisa, Alessandro Sanvito, Mattia Surricchio, Fernando Benjamín Pérez Maurera, Cesare Bernardis, Maurizio Ferrari Dacrema:
Lightweight and Scalable Model for Tweet Engagements Predictions in a Resource-constrained Environment. RecSys Challenge 2021: 28-33 - [c14]Maurizio Ferrari Dacrema, Nicolò Felicioni, Paolo Cremonesi:
Optimizing the Selection of Recommendation Carousels with Quantum Computing. RecSys 2021: 691-696 - [c13]Nicolò Felicioni, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Measuring the User Satisfaction in a Recommendation Interface with Multiple Carousels. IMX 2021: 212-217 - [c12]Nicolò Felicioni, Maurizio Ferrari Dacrema, Paolo Cremonesi:
A Methodology for the Offline Evaluation of Recommender Systems in a User Interface with Multiple Carousels. UMAP (Adjunct Publication) 2021: 10-15 - [i12]Nicolò Felicioni, Maurizio Ferrari Dacrema, Paolo Cremonesi:
A Methodology for the Offline Evaluation of Recommender Systems in a User Interface with Multiple Carousels. CoRR abs/2105.06275 (2021) - [i11]Nicolò Felicioni, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Measuring the User Satisfaction in a Recommendation Interface with Multiple Carousels. CoRR abs/2105.07062 (2021) - [i10]Riccardo Nembrini, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Feature Selection for Recommender Systems with Quantum Computing. CoRR abs/2110.05089 (2021) - 2020
- [b1]Maurizio Ferrari Dacrema:
An assessment of reproducibility and methodological issues in neural recommender systems research. Polytechnic University of Milan, Italy, 2020 - [c11]Maurizio Ferrari Dacrema, Federico Parroni, Paolo Cremonesi, Dietmar Jannach:
Critically Examining the Claimed Value of Convolutions over User-Item Embedding Maps for Recommender Systems. CIKM 2020: 355-363 - [c10]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Lorenzo Saule, Mario Scriminaci, Paolo Cremonesi:
ContentWise Impressions: An Industrial Dataset with Impressions Included. CIKM 2020: 3093-3100 - [c9]Maurizio Ferrari Dacrema, Paolo Cremonesi, Dietmar Jannach:
Methodological Issues in Recommender Systems Research (Extended Abstract). IJCAI 2020: 4706-4710 - [c8]Nicolò Felicioni, Andrea Donati, Luca Conterio, Luca Bartoccioni, Davide Yi Xian Hu, Cesare Bernardis, Maurizio Ferrari Dacrema:
Multi-Objective Blended Ensemble For Highly Imbalanced Sequence Aware Tweet Engagement Prediction. RecSys Challenge 2020: 29-33 - [i9]Maurizio Ferrari Dacrema, Federico Parroni, Paolo Cremonesi, Dietmar Jannach:
Critically Examining the Claimed Value of Convolutions over User-Item Embedding Maps for Recommender Systems. CoRR abs/2007.11893 (2020) - [i8]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Lorenzo Saule, Mario Scriminaci, Paolo Cremonesi:
ContentWise Impressions: An industrial dataset with impressions included. CoRR abs/2008.01212 (2020) - [i7]Sebastiano Antenucci, Simone Boglio, Emanuele Chioso, Ervin Dervishaj, Shuwen Kang, Tommaso Scarlatti, Maurizio Ferrari Dacrema:
Artist-driven layering and user's behaviour impact on recommendations in a playlist continuation scenario. CoRR abs/2010.06233 (2020)
2010 – 2019
- 2019
- [j1]Yashar Deldjoo, Maurizio Ferrari Dacrema, Mihai Gabriel Constantin, Hamid Eghbal-zadeh, Stefano Cereda, Markus Schedl, Bogdan Ionescu, Paolo Cremonesi:
Movie genome: alleviating new item cold start in movie recommendation. User Model. User Adapt. Interact. 29(2): 291-343 (2019) - [c7]Edoardo D'Amico, Giovanni Gabbolini, Daniele Montesi, Matteo Moreschini, Federico Parroni, Federico Piccinini, Alberto Rossettini, Alessio Russo Introito, Cesare Bernardis, Maurizio Ferrari Dacrema:
Leveraging laziness, browsing-pattern aware stacked models for sequential accommodation learning to rank. RecSys Challenge 2019: 7:1-7:5 - [c6]Luca Luciano Costanzo, Yashar Deldjoo, Maurizio Ferrari Dacrema, Markus Schedl, Paolo Cremonesi:
Towards Evaluating User Profiling Methods Based on Explicit Ratings on Item Features. IntRS@RecSys 2019: 72-76 - [c5]Maurizio Ferrari Dacrema, Paolo Cremonesi, Dietmar Jannach:
Are we really making much progress? A worrying analysis of recent neural recommendation approaches. RecSys 2019: 101-109 - [c4]Cesare Bernardis, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Estimating Confidence of Individual User Predictions in Item-based Recommender Systems. UMAP 2019: 149-156 - [i6]Maurizio Ferrari Dacrema, Paolo Cremonesi, Dietmar Jannach:
Are We Really Making Much Progress? A Worrying Analysis of Recent Neural Recommendation Approaches. CoRR abs/1907.06902 (2019) - [i5]Luca Luciano Costanzo, Yashar Deldjoo, Maurizio Ferrari Dacrema, Markus Schedl, Paolo Cremonesi:
Towards Evaluating User Profiling Methods Based on Explicit Ratings on Item Features. CoRR abs/1908.11055 (2019) - [i4]Maurizio Ferrari Dacrema, Simone Boglio, Paolo Cremonesi, Dietmar Jannach:
A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research. CoRR abs/1911.07698 (2019) - 2018
- [c3]Francesco Amigoni, Maurizio Ferrari Dacrema, Alessandro Donati, Christian Laroque, Michèle Lavagna, Alessandro Riva:
Aggregating Models for Anomaly Detection in Space Systems: Results from the FCTMAS Study. IAS 2018: 142-160 - [c2]Maurizio Ferrari Dacrema, Alberto Gasparin, Paolo Cremonesi:
Deriving Item Features Relevance from Collaborative Domain Knowledge. KaRS@RecSys 2018: 1-4 - [c1]Sebastiano Antenucci, Simone Boglio, Emanuele Chioso, Ervin Dervishaj, Shuwen Kang, Tommaso Scarlatti, Maurizio Ferrari Dacrema:
Artist-driven layering and user's behaviour impact on recommendations in a playlist continuation scenario. RecSys Challenge 2018: 4:1-4:6 - [p1]Paolo Cremonesi, Franca Garzotto, Maurizio Ferrari Dacrema:
User Preference Sources: Explicit vs. Implicit Feedback. Collaborative Recommendations 2018: 233-252 - [i3]Cesare Bernardis, Maurizio Ferrari Dacrema, Paolo Cremonesi:
A novel graph-based model for hybrid recommendations in cold-start scenarios. CoRR abs/1808.10664 (2018) - [i2]Maurizio Ferrari Dacrema, Paolo Cremonesi:
Eigenvalue analogy for confidence estimation in item-based recommender systems. CoRR abs/1809.02052 (2018) - [i1]Maurizio Ferrari Dacrema, Alberto Gasparin, Paolo Cremonesi:
Deriving item features relevance from collaborative domain knowledge. CoRR abs/1811.01905 (2018)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-21 00:06 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint