default search action
RecSys 2016: Boston, MA, USA - Posters
- Ido Guy, Amit Sharma:
Proceedings of the Poster Track of the 10th ACM Conference on Recommender Systems (RecSys 2016), Boston, USA, September 17, 2016. CEUR Workshop Proceedings 1688, CEUR-WS.org 2016 - Panagiotis Symeonidis, Dimitrios Malakoudis:
MoocRec.com : Massive Open Online Courses Recommender System. - Elja Arjas, Arnoldo Frigessi, Valeria Vitelli, Marta Crispino:
Recommendation from Intransitive Pairwise Comparisons. - Remo Manuel Frey, Denis Vuckovac, Alexander Ilic:
A Secure Shopping Experience Based on Blockchain and Beacon Technology. - Masahiro Kazama, István Varga:
Cross Domain Recommendation Using Vector Space Transfer Learning. - Nevena Dragovic, Maria Soledad Pera:
Genre Prediction to Inform the Recommendation Process. - Sneha Chaudhari, Amos Azaria, Tom M. Mitchell:
An Entity Graph Based Recommender System. - Mattia Brusamento, Roberto Pagano, Martha A. Larson, Paolo Cremonesi:
Explicit Elimination of Similarity Blocking for Session-based Recommendation. - Oren Barkan, Yael Brumer, Noam Koenigstein:
Modelling Session Activity with Neural Embedding. - Stephanie Yang, Max Sklar:
Detecting Trending Venues Using Foursquare's Data. - Rainer Schlosser, Martin Boissier, Andre Schober, Matthias Uflacker:
How to Survive Dynamic Pricing Competition in E-commerce. - Fatemeh Vahedian, Robin D. Burke, Bamshad Mobasher:
Weighted Random Walks for Meta-Path Expansion in Heterogeneous Networks. - Ludovik Çoba, Markus Zanker:
rrecsys: An R-package for Prototyping Recommendation Algorithms. - Oren Barkan, Noam Koenigstein:
Item2vec: Neural Item Embedding for Collaborative Filtering. - Mario Scriminaci, Andreas Lommatzsch, Benjamin Kille, Frank Hopfgartner, Martha A. Larson, Davide Malagoli, András Serény, Till Plumbaum:
Idomaar: A Framework for Multi-dimensional Benchmarking of Recommender Algorithms. - Enrique Cruz, Berk Kapicioglu:
Tip Ranker: A M.L. Approach to Ranking Short Reviews. - Moshe Unger, Bracha Shapira, Lior Rokach, Ariel Bar:
Deep Auto-Encoding for Context-Aware Inference of Preferred Items' Categories. - Chih-Ming Chen, Chun-Yao Yang, Chih-Chun Hsia, Yian Chen, Ming-Feng Tsai:
Music Playlist Recommendation via Preference Embedding. - Chih-Yu Chao, Yi-Fan Chu, Yi Ho, Chuan-Ju Wang, Ming-Feng Tsai:
Dish Discovery via Word Embeddings on Restaurant Reviews. - Joseph Jay Williams, Luong Hoang:
Combining Dynamic A/B Experimentation and Recommender Systems in MOOCs. - Tim Donkers, Benedikt Loepp, Jürgen Ziegler:
Towards Understanding Latent Factors and User Profiles by Enhancing Matrix Factorization with Tags. - Ion Madrazo Azpiazu, Maria Soledad Pera:
Is Readability a Valuable Signal for Hashtag Recommendations? - Evangelia Anagnostopoulou, Efthimios Bothos, Babis Magoutas, Gregoris Mentzas:
Memory Priming and User Preferences. - Ludovico Boratto, Salvatore Carta, Gianni Fenu, Roberto Saia:
Representing Items as Word-Embedding Vectors and Generating Recommendations by Measuring their Linear Independence. - Farzad Eskandanian, Bamshad Mobasher, Robin D. Burke:
User Segmentation for Controlling Recommendation Diversity.
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.