


Остановите войну!
for scientists:


default search action
Hava T. Siegelmann
Person information

- affiliation: University of Massachusetts Amherst, USA
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [c55]Devdhar Patel, Joshua Russell, Francesca Walsh, Tauhidur Rahman, Terrence J. Sejnowski, Hava T. Siegelmann:
Temporally Layered Architecture for Adaptive, Distributed and Continuous Control. AAMAS 2023: 2830-2832 - [i21]Devdhar Patel, Joshua Russell, Francesca Walsh, Tauhidur Rahman, Terrence J. Sejnowski, Hava T. Siegelmann:
Temporally Layered Architecture for Adaptive, Distributed and Continuous Control. CoRR abs/2301.00723 (2023) - [i20]Adam A. Kohan, Edward A. Rietman, Hava T. Siegelmann:
Temporal Weights. CoRR abs/2301.04126 (2023) - [i19]Zhongyang Zhang, Kaidong Chai, Haowen Yu, Ramzi Majaj, Francesca Walsh, Edward Jay Wang, Upal Mahbub, Hava T. Siegelmann, Donghyun Kim, Tauhidur Rahman:
Neuromorphic High-Frequency 3D Dancing Pose Estimation in Dynamic Environment. CoRR abs/2301.06648 (2023) - 2022
- [j47]Dhireesha Kudithipudi, Mario Aguilar-Simon, Jonathan Babb, Maxim Bazhenov, Douglas Blackiston
, Josh C. Bongard
, Andrew P. Brna
, Suraj Chakravarthi Raja
, Nick Cheney, Jeff Clune, Anurag Reddy Daram
, Stefano Fusi
, Peter Helfer, Leslie Kay, Nicholas Ketz, Zsolt Kira
, Soheil Kolouri, Jeffrey L. Krichmar
, Sam Kriegman
, Michael Levin, Sandeep Madireddy, Santosh Manicka, Ali Marjaninejad
, Bruce McNaughton, Risto Miikkulainen
, Zaneta Navratilova, Tej Pandit, Alice Parker, Praveen K. Pilly
, Sebastian Risi, Terrence J. Sejnowski, Andrea Soltoggio
, Nicholas Soures, Andreas S. Tolias
, Darío Urbina-Meléndez
, Francisco J. Valero Cuevas
, Gido M. van de Ven
, Joshua T. Vogelstein
, Felix Wang, Ron Weiss
, Angel Yanguas-Gil
, Xinyun Zou
, Hava T. Siegelmann:
Biological underpinnings for lifelong learning machines. Nat. Mach. Intell. 4(3): 196-210 (2022) - [c54]Devdhar Patel, Ignacio Gavier, Joshua Russell, Andrew Malinsky, Edward A. Rietman, Hava T. Siegelmann:
Automatic Transpiler that Efficiently Converts Digital Circuits to a Neural Network Representation. IJCNN 2022: 1-8 - [i18]Hananel Hazan, Simon Caby, Christopher Earl, Hava T. Siegelmann, Michael Levin:
Memory via Temporal Delays in weightless Spiking Neural Network. CoRR abs/2202.07132 (2022) - [i17]Adam A. Kohan, Edward A. Rietman, Hava T. Siegelmann:
Forward Signal Propagation Learning. CoRR abs/2204.01723 (2022) - [i16]Arjun Karuvally, Terry J. Sejnowski, Hava T. Siegelmann:
Energy-based General Sequential Episodic Memory Networks at the Adiabatic Limit. CoRR abs/2212.05563 (2022) - [i15]Devdhar Patel, Hava T. Siegelmann:
QuickNets: Saving Training and Preventing Overconfidence in Early-Exit Neural Architectures. CoRR abs/2212.12866 (2022) - 2021
- [j46]Tyler L. Hayes, Giri P. Krishnan, Maxim Bazhenov, Hava T. Siegelmann, Terrence J. Sejnowski, Christopher Kanan:
Replay in Deep Learning: Current Approaches and Missing Biological Elements. Neural Comput. 33(11): 2908-2950 (2021) - [c53]Stephen Chung, Hava T. Siegelmann:
Turing Completeness of Bounded-Precision Recurrent Neural Networks. NeurIPS 2021: 28431-28441 - [i14]Tyler L. Hayes, Giri P. Krishnan, Maxim Bazhenov, Hava T. Siegelmann, Terrence J. Sejnowski, Christopher Kanan:
Replay in Deep Learning: Current Approaches and Missing Biological Elements. CoRR abs/2104.04132 (2021) - 2020
- [j45]Hananel Hazan
, Daniel J. Saunders, Darpan T. Sanghavi, Hava T. Siegelmann, Robert Kozma
:
Lattice map spiking neural networks (LM-SNNs) for clustering and classifying image data. Ann. Math. Artif. Intell. 88(11): 1237-1260 (2020) - [j44]Mark Shifrin
, Hava T. Siegelmann:
Near-optimal insulin treatment for diabetes patients: A machine learning approach. Artif. Intell. Medicine 107: 101917 (2020) - [c52]Alex Gain, Hava T. Siegelmann:
Abstraction Mechanisms Predict Generalization in Deep Neural Networks. ICML 2020: 3357-3366 - [c51]Daniel J. Saunders, Cooper Sigrist, Kenneth Chaney, Robert Kozma
, Hava T. Siegelmann:
Minibatch Processing for Speed-up and Scalability of Spiking Neural Network Simulation. IJCNN 2020: 1-8 - [c50]Alex Gain, Prakhar Kaushik, Hava T. Siegelmann:
Adaptive Neural Connections for Sparsity Learning. WACV 2020: 3177-3182 - [i13]Randy Bryant, Mark D. Hill, Tom Kazior, Daniel Lee, Jie Liu, Klara Nahrstedt, Vijay Narayanan, Jan M. Rabaey, Hava T. Siegelmann, Naresh R. Shanbhag, Naveen Verma, H.-S. Philip Wong:
Nanotechnology-inspired Information Processing Systems of the Future. CoRR abs/2005.02434 (2020)
2010 – 2019
- 2019
- [j43]Daniel J. Saunders, Devdhar Patel
, Hananel Hazan, Hava T. Siegelmann, Robert Kozma
:
Locally connected spiking neural networks for unsupervised feature learning. Neural Networks 119: 332-340 (2019) - [j42]Devdhar Patel
, Hananel Hazan
, Daniel J. Saunders, Hava T. Siegelmann, Robert Kozma
:
Improved robustness of reinforcement learning policies upon conversion to spiking neuronal network platforms applied to Atari Breakout game. Neural Networks 120: 108-115 (2019) - [c49]Robert Kozma
, Raymond Noack, Hava T. Siegelmann:
Models of Situated Intelligence Inspired by the Energy Management of Brains. SMC 2019: 567-572 - [p4]Jennifer Hammelman, Hava T. Siegelmann, Santosh Manicka, Michael Levin:
Toward Modeling Regeneration via Adaptable Echo State Networks. From Parallel to Emergent Computing 2019: 117-134 - [i12]Devdhar Patel, Hananel Hazan, Daniel J. Saunders, Hava T. Siegelmann, Robert Kozma:
Improved robustness of reinforcement learning policies upon conversion to spiking neuronal network platforms applied to ATARI games. CoRR abs/1903.11012 (2019) - [i11]Daniel J. Saunders, Devdhar Patel, Hananel Hazan, Hava T. Siegelmann, Robert Kozma:
Locally Connected Spiking Neural Networks for Unsupervised Feature Learning. CoRR abs/1904.06269 (2019) - [i10]Alex Gain, Hava T. Siegelmann:
Deep Neural Networks Abstract Like Humans. CoRR abs/1905.11515 (2019) - [i9]Hananel Hazan, Daniel J. Saunders, Darpan T. Sanghavi, Hava T. Siegelmann, Robert Kozma:
Lattice Map Spiking Neural Networks (LM-SNNs) for Clustering and Classifying Image Data. CoRR abs/1906.11826 (2019) - [i8]Daniel J. Saunders, Cooper Sigrist, Kenneth Chaney, Robert Kozma, Hava T. Siegelmann:
Minibatch Processing in Spiking Neural Networks. CoRR abs/1909.02549 (2019) - 2018
- [j41]Hananel Hazan
, Daniel J. Saunders, Hassaan Khan, Devdhar Patel
, Darpan T. Sanghavi, Hava T. Siegelmann, Robert Kozma
:
BindsNET: A Machine Learning-Oriented Spiking Neural Networks Library in Python. Frontiers Neuroinformatics 12: 89 (2018) - [c48]Hananel Hazan
, Daniel J. Saunders, Darpan T. Sanghavi, Hava T. Siegelmann, Robert Kozma
:
Unsupervised Learning with Self-Organizing Spiking Neural Networks. IJCNN 2018: 1-6 - [c47]Daniel J. Saunders, Hava T. Siegelmann, Robert Kozma
, Miklós Ruszinkó:
STDP Learning of Image Patches with Convolutional Spiking Neural Networks. IJCNN 2018: 1-7 - [c46]Robert Kozma
, Roman Ilin, Hava T. Siegelmann:
Evolution of Abstraction Across Layers in Deep Learning Neural Networks. INNS Conference on Big Data 2018: 203-213 - [p3]Bhaskar DasGupta, Derong Liu, Hava T. Siegelmann:
Neural Networks. Handbook of Approximation Algorithms and Metaheuristics (1) 2018: 345-359 - [i7]Hananel Hazan, Daniel J. Saunders, Hassaan Khan, Darpan T. Sanghavi, Hava T. Siegelmann, Robert Kozma:
BindsNET: A machine learning-oriented spiking neural networks library in Python. CoRR abs/1806.01423 (2018) - [i6]Hananel Hazan, Daniel J. Saunders, Darpan T. Sanghavi, Hava T. Siegelmann, Robert Kozma:
Unsupervised Learning with Self-Organizing Spiking Neural Networks. CoRR abs/1807.09374 (2018) - [i5]Adam A. Kohan, Edward A. Rietman, Hava T. Siegelmann:
Error Forward-Propagation: Reusing Feedforward Connections to Propagate Errors in Deep Learning. CoRR abs/1808.03357 (2018) - [i4]Daniel J. Saunders, Hava T. Siegelmann, Robert Kozma, Miklós Ruszinkó:
STDP Learning of Image Patches with Convolutional Spiking Neural Networks. CoRR abs/1808.08173 (2018) - 2017
- [c45]Raymond Noack, Chetan Manjesh, Miklós Ruszinkó, Hava T. Siegelmann, Robert Kozma
:
Resting state neural networks and energy metabolism. IJCNN 2017: 228-235 - [i3]Mark Shifrin, Hava T. Siegelmann:
Insulin Regimen ML-based control for T2DM patients. CoRR abs/1710.07855 (2017) - 2016
- [j40]Hava T. Siegelmann:
Preface. Theor. Comput. Sci. 633: 2-3 (2016) - 2015
- [j39]P. Taylor, Ze He, Noah Bilgrien, Hava T. Siegelmann:
Human Strategies for Multitasking, Search, and Control Improved via Real-Time Memory Aid for Gaze Location. Frontiers ICT 2: 15 (2015) - [j38]P. Taylor, Noah Bilgrien, Ze He, Hava T. Siegelmann:
EyeFrame: Real-Time Memory Aid Improves Human Multitasking via Domain-General Eye Tracking Procedures. Frontiers ICT 2: 17 (2015) - [c44]J. Nicholas Hobbs, Hava T. Siegelmann:
Implementation of universal computation via small recurrent finite precision neural networks. IJCNN 2015: 1-5 - 2014
- [j37]Hava T. Siegelmann, Rudolf Freund:
Report on UCNC 2014. Bull. EATCS 114 (2014) - [j36]Jérémie Cabessa
, Hava T. Siegelmann:
The Super-Turing Computational Power of plastic Recurrent Neural Networks. Int. J. Neural Syst. 24(8) (2014) - [c43]Arthur Steven Younger, Emmett Redd, Hava T. Siegelmann:
Development of Physical Super-Turing Analog Hardware. UCNC 2014: 379-391 - 2013
- [j35]Evgeny Kagan
, Alexander N. Rybalov, Hava T. Siegelmann, Ronald R. Yager:
Probability-Generated Aggregators. Int. J. Intell. Syst. 28(7): 709-727 (2013) - [c42]Megan M. Olsen, Hava T. Siegelmann:
Multiscale Agent-based Model of Tumor Angiogenesis. ICCS 2013: 1016-1025 - [c41]Megan M. Olsen, Hava T. Siegelmann:
Multiscale Agent-based Model of Tumor Angiogenesis. ICCS 2013: 1026-1035 - 2012
- [j34]Jérémie Cabessa
, Hava T. Siegelmann:
The Computational Power of Interactive Recurrent Neural Networks. Neural Comput. 24(4): 996-1019 (2012) - [j33]Jean-Philippe Thivierge, Ali A. Minai
, Hava T. Siegelmann, Cesare Alippi, Michael Georgiopoulos:
A year of neural network research: Special Issue on the 2011 International Joint Conference on Neural Networks. Neural Networks 32: 1-2 (2012) - [j32]Frederick C. Harris Jr., Jeffrey L. Krichmar
, Hava T. Siegelmann, Hiroaki Wagatsuma:
Guest Editorial: Biologically Inspired Human-Robot Interactions - Developing More Natural Ways to Communicate with our Machines. IEEE Trans. Auton. Ment. Dev. 4(3): 190-191 (2012) - 2011
- [c40]Kun Tu, Megan M. Olsen, Hava T. Siegelmann:
Activity Inference through Commonsense. AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning 2011 - [c39]Jérémie Cabessa
, Hava T. Siegelmann:
Evolving recurrent neural networks are super-Turing. IJCNN 2011: 3200-3206 - [c38]Kyle Ira Harrington, Megan M. Olsen, Hava T. Siegelmann:
Communicated somatic markers benefit both the individual and the species. IJCNN 2011: 3272-3278 - 2010
- [j31]Hava T. Siegelmann:
Complex Systems Science and Brain Dynamics. Frontiers Comput. Neurosci. 4: 7 (2010) - [j30]Megan M. Olsen, Kyle Ira Harrington, Hava T. Siegelmann:
Conspecific Emotional Cooperation Biases Population Dynamics: A Cellular Automata Approach. Int. J. Nat. Comput. Res. 1(3): 51-65 (2010) - [c37]Yariv Z. Levy, Dino Levy, Jerrold S. Meyer
, Hava T. Siegelmann:
Identification and control of intrinsic bias in a multiscale computational model of drug addiction. SAC 2010: 2389-2393
2000 – 2009
- 2009
- [c36]Yariv Z. Levy, Dino Levy, Jerrold S. Meyer, Hava T. Siegelmann:
Drug Addiction: A Computational Multiscale Model Combining Neuropsychology, Cognition and Behavior. BIOSIGNALS 2009: 87-94 - [c35]Kun Tu, Hava T. Siegelmann:
Text-based Reasoning with Symbolic Memory Model. NeSy 2009 - 2008
- [j29]Megan M. Olsen, N. Siegelmann-Danieli, Hava T. Siegelmann:
Robust artificial life via artificial programmed death. Artif. Intell. 172(6-7): 884-898 (2008) - [c34]David G. Cooper, Dov Katz, Hava T. Siegelmann:
Emotional Robotics: Tug of War. AAAI Spring Symposium: Emotion, Personality, and Social Behavior 2008: 23-29 - [c33]Megan M. Olsen, Kyle Ira Harrington, Hava T. Siegelmann:
Emotions for Strategic Real-Time Systems. AAAI Spring Symposium: Emotion, Personality, and Social Behavior 2008: 104-110 - 2007
- [j28]Fabian Roth, Hava T. Siegelmann, Rodney J. Douglas:
The Self-Construction and -Repair of a Foraging Organism by Explicitly Specified Development from a Single Cell. Artif. Life 13(4): 347-368 (2007) - [j27]William S. Bush, Hava T. Siegelmann:
Circadian synchrony in networks of protein rhythm driven neurons. Complex. 12(6): 46 (2007) - [c32]Megan M. Olsen, Hava T. Siegelmann:
Multi-Agent System that Attains Longevity via Death. IJCAI 2007: 1428-1433 - [r1]Hava T. Siegelmann, Bhaskar DasGupta, Derong Liu:
Neural Networks. Handbook of Approximation Algorithms and Metaheuristics 2007 - 2006
- [j26]William S. Bush, Hava T. Siegelmann:
Circadian synchrony in networks of protein rhythm driven neurons. Complex. 12(1): 67-72 (2006) - [c31]Kyle Ira Harrington, Hava T. Siegelmann:
Adaptive Multi-modal Sensors. 50 Years of Artificial Intelligence 2006: 164-173 - 2005
- [j25]Oscar Loureiro, Hava T. Siegelmann:
Introducing an active cluster-based information retrieval paradigm. J. Assoc. Inf. Sci. Technol. 56(10): 1024-1030 (2005) - 2004
- [j24]Asa Ben-Hur
, Alexander Roitershtein
, Hava T. Siegelmann:
On probabilistic analog automata. Theor. Comput. Sci. 320(2-3): 449-464 (2004) - [c30]AnYuan Guo, Hava T. Siegelmann:
Time-Warped Longest Common Subsequence Algorithm for Music Retrieval. ISMIR 2004 - 2003
- [j23]João Pedro Guerreiro Neto, Hava T. Siegelmann, José Félix Costa:
Symbolic Processing in Neural Networks. J. Braz. Comput. Soc. 8(3): 58- (2003) - [j22]Asa Ben-Hur
, Joshua Feinberg, Shmuel Fishman
, Hava T. Siegelmann:
Probabilistic analysis of a differential equation for linear programming. J. Complex. 19(4): 474-510 (2003) - [j21]Hava T. Siegelmann:
Neural and Super-Turing Computing. Minds Mach. 13(1): 103-114 (2003) - [i2]Asa Ben-Hur, Alexander Roitershtein, Hava T. Siegelmann:
On probabilistic analog automata. CoRR cs.OH/0304042 (2003) - 2002
- [j20]Asa Ben-Hur
, Hava T. Siegelmann, Shmuel Fishman
:
A Theory of Complexity for Continuous Time Systems. J. Complex. 18(1): 51-86 (2002) - 2001
- [j19]Hava T. Siegelmann:
Neural Computing. Bull. EATCS 73: 107-130 (2001) - [j18]Asa Ben-Hur, David Horn, Hava T. Siegelmann, Vladimir Vapnik:
Support Vector Clustering. J. Mach. Learn. Res. 2: 125-137 (2001) - [c29]Pedro Rodrigues, José Félix Costa, Hava T. Siegelmann:
Verifying Properties of Neural Networks. IWANN (1) 2001: 158-165 - [c28]Asa Ben-Hur
, Hava T. Siegelmann:
Computation in Gene Networks. MCU 2001: 11-24 - [c27]Tommi S. Jaakkola, Hava T. Siegelmann:
Active Information Retrieval. NIPS 2001: 777-784 - [i1]Asa Ben-Hur, Joshua Feinberg, Shmuel Fishman, Hava T. Siegelmann:
Probabilistic analysis of a differential equation for linear programming. CoRR cs.CC/0110056 (2001) - 2000
- [j17]Hod Lipson, Hava T. Siegelmann:
Clustering Irregular Shapes Using High-Order Neurons. Neural Comput. 12(10): 2331-2353 (2000) - [j16]Haim Karniely, Hava T. Siegelmann:
Sensor registration using neural networks. IEEE Trans. Aerosp. Electron. Syst. 36(1): 85-101 (2000) - [j15]Daniel H. Lange, Hava T. Siegelmann, Hillel Pratt, Gideon F. Inbar:
Overcoming selective ensemble averaging: unsupervised identification of event-related brain potentials. IEEE Trans. Biomed. Eng. 47(6): 822-826 (2000) - [c26]Asa Ben-Hur, Hava T. Siegelmann, David Horn, Vladimir Vapnik:
A Support Vector Clustering Method. ICPR 2000: 2724-2727 - [c25]Asa Ben-Hur, David Horn, Hava T. Siegelmann, Vladimir Vapnik:
A Support Vector Method for Clustering. NIPS 2000: 367-373 - [c24]Hava T. Siegelmann, Asa Ben-Hur:
Macroscopical Molecular Computation with Gene Networks. UMC 2000: 119-120 - [p2]Hava T. Siegelmann:
Finite Versus Infinite Neural Computation. Finite Versus Infinite 2000: 285-299
1990 – 1999
- 1999
- [b1]Hava T. Siegelmann:
Neural networks and analog computation - beyond the Turing limit. Progress in theoretical computer science, Birkhäuser 1999, ISBN 978-0-8176-3949-5, pp. I-XIII, 1-181 - [j14]Hava T. Siegelmann:
Stochastic Analog Networks and Computational Complexity. J. Complex. 15(4): 451-475 (1999) - [j13]Ricard Gavaldà
, Hava T. Siegelmann:
Discontinuities in Recurrent Neural Networks. Neural Comput. 11(3): 715-745 (1999) - [j12]Hava T. Siegelmann, Maurice Margenstern:
Nine switch-affine neurons suffice for Turing universality. Neural Networks 12(4-5): 593-600 (1999) - [c23]Hava T. Siegelmann, Alexander Roitershtein, Asa Ben-Hur:
Noisy Neural Networks and Generalizations. NIPS 1999: 335-341 - 1998
- [c22]Hod Lipson, Hava T. Siegelmann:
High Order Eigentensors as Symbolic Rules in Competitive Learning. Hybrid Neural Systems 1998: 286-297 - [c21]Hava T. Siegelmann, Shmuel Fishman:
Attractor systems and analog computation. KES (1) 1998: 237-242 - [c20]Hava T. Siegelmann, Asa Ben-Hur, Shmuel Fishman:
A Theory of Complexity for Continuous Time Dynamics. MCU (1) 1998: 179-203 - 1997
- [j11]Hava T. Siegelmann, C. Lee Giles
:
The complexity of language recognition by neural networks. Neurocomputing 15(3-4): 327-345 (1997) - [j10]José L. Balcázar, Ricard Gavaldà
, Hava T. Siegelmann:
Computational power of neural networks: a characterization in terms of Kolmogorov complexity. IEEE Trans. Inf. Theory 43(4): 1175-1183 (1997) - [j9]Ophir Frieder, Hava T. Siegelmann:
Multiprocessor Document Allocation: A Genetic Algorithm Approach. IEEE Trans. Knowl. Data Eng. 9(4): 640-642 (1997) - [j8]Hava T. Siegelmann, Bill G. Horne, C. Lee Giles
:
Computational capabilities of recurrent NARX neural networks. IEEE Trans. Syst. Man Cybern. Part B 27(2): 208-215 (1997) - [c19]João Pedro Guerreiro Neto, Hava T. Siegelmann, José Félix Costa, Carmen Paz Suárez Araujo:
Turing Universality of Neural Nets (Revisited). EUROCAST 1997: 361-366 - [c18]Daniel H. Lange, Hava T. Siegelmann, Hillel Pratt, Gideon F. Inbar:
A Generic Approach for Identification of Event Related Brain Potentials via a Competitive Neural Network Structure. NIPS 1997: 901-907 - [c17]Hava T. Siegelmann:
Neural Dynamics with Stochasticity. Summer School on Neural Networks 1997: 346-369 - 1996
- [j7]Hava T. Siegelmann:
Recurrent Neural Networks and Finite Automata. Comput. Intell. 12: 567-574 (1996) - [j6]Joe Kilian, Hava T. Siegelmann:
The Dynamic Universality of Sigmoidal Neural Networks. Inf. Comput. 128(1): 48-56 (1996) - [j5]Hava T. Siegelmann:
On NIL: the Software Constructor of Neural Networks. Parallel Process. Lett. 6(4): 575-582 (1996) - [j4]Hava T. Siegelmann:
The Simple Dynamics of Super Turing Theories. Theor. Comput. Sci. 168(2): 461-472 (1996) - 1995
- [j3]Hava T. Siegelmann, Eduardo D. Sontag:
On the Computational Power of Neural Nets. J. Comput. Syst. Sci. 50(1): 132-150 (1995) - [j2]Bhaskar DasGupta, Hava T. Siegelmann, Eduardo D. Sontag:
On the complexity of training neural networks with continuous activation functions. IEEE Trans. Neural Networks 6(6): 1490-1504 (1995) - [c16]Joachim Utans, John E. Moody, Steven Rehfuss, Hava T. Siegelmann:
Input variable selection for neural networks: application to predicting the U.S. business cycle. CIFEr 1995: 118-122 - [c15]Hava T. Siegelmann:
Welcoming the Super Turing Theories. SOFSEM 1995: 83-94 - [c14]Bill G. Horne, Hava T. Siegelmann, C. Lee Giles:
What NARX Networks Can Compute. SOFSEM 1995: 95-102 - [p1]Hava T. Siegelmann:
Recurrent Neural Networks. Computer Science Today 1995: 29-45 - 1994
- [j1]Hava T. Siegelmann, Eduardo D. Sontag:
Analog Computation via Neural Networks. Theor. Comput. Sci. 131(2): 331-360 (1994) - [c13]Hava T. Siegelmann:
Neural Programming Language. AAAI 1994: 877-882 - [c12]Bhaskar DasGupta, Hava T. Siegelmann, Eduardo D. Sontag:
On a Learnability Question Associated to Neural Networks with Continuous Activations (Extended Abstract). COLT 1994: 47-56 - [c11]Hava T. Siegelmann:
On The Computational Power of Probabilistic and Faulty Neural Networks. ICALP 1994: 23-34 - [c10]