default search action
Guangquan Zhang 0001
Person information
- affiliation: University of Technology Sydney, Faculty of Engineering and Information Technology, Centre for Artificial Intelligence, NSW, Australia
- affiliation (PhD 2000): Curtin University of Technology, Department of Mathematics and Statistics, Perth, WA, Australia
- affiliation (1979 - 1997): Hebei University, Baoding, China
Other persons with the same name
- Guangquan Zhang 0002 — Soochow University, Suzhou, China
- Guangquan Zhang 0003 — Wuhan University of Science and Technology, Department of Resource and Environmental Engineering, China
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j214]Ningyuan Zhang, Jie Lu, Keqiuyin Li, Zhen Fang, Guangquan Zhang:
Source-Free Unsupervised Domain Adaptation: Current research and future directions. Neurocomputing 564: 126921 (2024) - [j213]Kun Wang, Li Xiong, Anjin Liu, Guangquan Zhang, Jie Lu:
A self-adaptive ensemble for user interest drift learning. Neurocomputing 577: 127308 (2024) - [j212]Haotian Xu, Junyu Xuan, Guangquan Zhang, Jie Lu:
Trust region policy optimization via entropy regularization for Kullback-Leibler divergence constraint. Neurocomputing 589: 127716 (2024) - [j211]Keqiuyin Li, Jie Lu, Hua Zuo, Guangquan Zhang:
Multi-source domain adaptation handling inaccurate label spaces. Neurocomputing 594: 127824 (2024) - [j210]Zhaoqing Liu, Guangquan Zhang, Jie Lu:
Semi-supervised heterogeneous domain adaptation for few-sample credit risk classification. Neurocomputing 596: 127948 (2024) - [j209]Tianyu Liu, Jie Lu, Zheng Yan, Guangquan Zhang:
Robust Gaussian Process Regression With Input Uncertainty: A PAC-Bayes Perspective. IEEE Trans. Cybern. 54(2): 962-973 (2024) - [j208]Guangzhi Ma, Jie Lu, Feng Liu, Zhen Fang, Guangquan Zhang:
Multiclass Classification With Fuzzy-Feature Observations: Theory and Algorithms. IEEE Trans. Cybern. 54(2): 1048-1061 (2024) - [j207]Zhen Fang, Jie Lu, Guangquan Zhang:
An Extremely Simple Algorithm for Source Domain Reconstruction. IEEE Trans. Cybern. 54(3): 1921-1933 (2024) - [j206]Keqiuyin Li, Jie Lu, Hua Zuo, Guangquan Zhang:
Multidomain Adaptation With Sample and Source Distillation. IEEE Trans. Cybern. 54(4): 2193-2205 (2024) - [j205]Zihe Liu, Jie Lu, Junyu Xuan, Guangquan Zhang:
Deep Reinforcement Learning in Nonstationary Environments With Unknown Change Points. IEEE Trans. Cybern. 54(9): 5191-5204 (2024) - [j204]Guangzhi Ma, Jie Lu, Guangquan Zhang:
Multisource Domain Adaptation With Interval-Valued Target Data via Fuzzy Neural Networks. IEEE Trans. Fuzzy Syst. 32(5): 3094-3106 (2024) - [j203]Guangzhi Ma, Jie Lu, Feng Liu, Zhen Fang, Guangquan Zhang:
Domain Adaptation With Interval-Valued Observations: Theory and Algorithms. IEEE Trans. Fuzzy Syst. 32(5): 3107-3120 (2024) - [j202]Jie Lu, Guangzhi Ma, Guangquan Zhang:
Fuzzy Machine Learning: A Comprehensive Framework and Systematic Review. IEEE Trans. Fuzzy Syst. 32(7): 3861-3878 (2024) - [j201]Kuo Shi, Jie Lu, Zhen Fang, Guangquan Zhang:
Unsupervised Domain Adaptation Enhanced by Fuzzy Prompt Learning. IEEE Trans. Fuzzy Syst. 32(7): 4038-4048 (2024) - [j200]Kezhi Lu, Qian Zhang, Danny Hughes, Guangquan Zhang, Jie Lu:
AMT-CDR: A Deep Adversarial Multi-Channel Transfer Network for Cross-Domain Recommendation. ACM Trans. Intell. Syst. Technol. 15(4): 87:1-87:26 (2024) - [c165]En Yu, Jie Lu, Bin Zhang, Guangquan Zhang:
Online Boosting Adaptive Learning under Concept Drift for Multistream Classification. AAAI 2024: 16522-16530 - [c164]Kuo Shi, Jie Lu, Zhen Fang, Guangquan Zhang:
Enhancing Vision-Language Models Incorporating TSK Fuzzy System for Domain Adaptation. FUZZ 2024: 1-8 - [c163]Bo Peng, Zhen Fang, Guangquan Zhang, Jie Lu:
Knowledge Distillation with Auxiliary Variable. ICML 2024 - [c162]Yunzhuang Shen, Yuan Sun, Xiaodong Li, Zhiguang Cao, Andrew C. Eberhard, Guangquan Zhang:
Adaptive Stabilization Based on Machine Learning for Column Generation. ICML 2024 - [c161]Kuo Shi, Jie Lu, Zhen Fang, Guangquan Zhang:
CLIP-Enhanced Unsupervised Domain Adaptation with Consistency Regularization. IJCNN 2024: 1-8 - [i33]Yi Zhang, Mengjia Wu, Guangquan Zhang, Jie Lu:
Responsible AI: Portraits with Intelligent Bibliometrics. CoRR abs/2405.02846 (2024) - [i32]Yunzhuang Shen, Yuan Sun, Xiaodong Li, Zhiguang Cao, Andrew C. Eberhard, Guangquan Zhang:
Adaptive Stabilization Based on Machine Learning for Column Generation. CoRR abs/2405.11198 (2024) - [i31]Feng Gu, Jie Lu, Zhen Fang, Kun Wang, Guangquan Zhang:
A Neighbor-Searching Discrepancy-based Drift Detection Scheme for Learning Evolving Data. CoRR abs/2405.14153 (2024) - [i30]Zihe Liu, Jie Lu, Guangquan Zhang, Junyu Xuan:
A Behavior-Aware Approach for Deep Reinforcement Learning in Non-stationary Environments without Known Change Points. CoRR abs/2405.14214 (2024) - [i29]Guohang Zeng, Qian Zhang, Guangquan Zhang, Jie Lu:
Sharpness-Aware Cross-Domain Recommendation to Cold-Start Users. CoRR abs/2408.01931 (2024) - 2023
- [j199]Haotian Xu, Zheng Yan, Junyu Xuan, Guangquan Zhang, Jie Lu:
Improving proximal policy optimization with alpha divergence. Neurocomputing 534: 94-105 (2023) - [j198]Yi Zhang, Mengjia Wu, Guangquan Zhang, Jie Lu:
Stepping beyond your comfort zone: Diffusion-based network analytics for knowledge trajectory recommendation. J. Assoc. Inf. Sci. Technol. 74(7): 775-790 (2023) - [j197]Kairui Guo, Mengjia Wu, Zelia Soo, Yue Yang, Yi Zhang, Qian Zhang, Hua Lin, Mark Grosser, Deon Venter, Guangquan Zhang, Jie Lu:
Artificial intelligence-driven biomedical genomics. Knowl. Based Syst. 279: 110937 (2023) - [j196]Zhen Fang, Jie Lu, Feng Liu, Guangquan Zhang:
Semi-Supervised Heterogeneous Domain Adaptation: Theory and Algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 45(1): 1087-1105 (2023) - [j195]Hang Yu, Weixu Liu, Jie Lu, Yimin Wen, Xiangfeng Luo, Guangquan Zhang:
Detecting group concept drift from multiple data streams. Pattern Recognit. 134: 109113 (2023) - [j194]Kun Wang, Jie Lu, Anjin Liu, Guangquan Zhang, Li Xiong:
Evolving Gradient Boost: A Pruning Scheme Based on Loss Improvement Ratio for Learning Under Concept Drift. IEEE Trans. Cybern. 53(4): 2110-2123 (2023) - [j193]Keqiuyin Li, Jie Lu, Hua Zuo, Guangquan Zhang:
Source-Free Multidomain Adaptation With Fuzzy Rule-Based Deep Neural Networks. IEEE Trans. Fuzzy Syst. 31(12): 4180-4194 (2023) - [j192]Fujin Zhu, Jie Lu, Adi Lin, Junyu Xuan, Guangquan Zhang:
Direct Learning With Multi-Task Neural Networks for Treatment Effect Estimation. IEEE Trans. Knowl. Data Eng. 35(3): 2457-2470 (2023) - [j191]Qian Zhang, Wenhui Liao, Guangquan Zhang, Bo Yuan, Jie Lu:
A Deep Dual Adversarial Network for Cross-Domain Recommendation. IEEE Trans. Knowl. Data Eng. 35(4): 3266-3278 (2023) - [j190]Anjin Liu, Jie Lu, Yiliao Song, Junyu Xuan, Guangquan Zhang:
Concept Drift Detection Delay Index. IEEE Trans. Knowl. Data Eng. 35(5): 4585-4597 (2023) - [j189]Keqiuyin Li, Jie Lu, Hua Zuo, Guangquan Zhang:
Dynamic Classifier Alignment for Unsupervised Multi-Source Domain Adaptation. IEEE Trans. Knowl. Data Eng. 35(5): 4727-4740 (2023) - [j188]Ming Zhou, Jie Lu, Yiliao Song, Guangquan Zhang:
Multi-Stream Concept Drift Self-Adaptation Using Graph Neural Network. IEEE Trans. Knowl. Data Eng. 35(12): 12828-12841 (2023) - [j187]Li Zhong, Zhen Fang, Feng Liu, Bo Yuan, Guangquan Zhang, Jie Lu:
Bridging the Theoretical Bound and Deep Algorithms for Open Set Domain Adaptation. IEEE Trans. Neural Networks Learn. Syst. 34(8): 3859-3873 (2023) - [j186]Yiliao Song, Jie Lu, Haiyan Lu, Guangquan Zhang:
Learning Data Streams With Changing Distributions and Temporal Dependency. IEEE Trans. Neural Networks Learn. Syst. 34(8): 3952-3965 (2023) - [j185]Wenhui Liao, Qian Zhang, Bo Yuan, Guangquan Zhang, Jie Lu:
Heterogeneous Multidomain Recommender System Through Adversarial Learning. IEEE Trans. Neural Networks Learn. Syst. 34(11): 8965-8977 (2023) - [c160]Kun Wang, Jie Lu, Anjin Liu, Guangquan Zhang:
An Augmented Learning Approach for Multiple Data Streams Under Concept Drift. AI (1) 2023: 391-402 - [c159]Keqiuyin Li, Jie Lu, Hua Zuo, Guangquan Zhang:
Attention-Bridging TS Fuzzy Rules for Universal Multi-Domain Adaptation Without Source Data. FUZZ 2023: 1-6 - [c158]Guangzhi Ma, Jie Lu, Guangquan Zhang:
Interval-Valued Observations-Based Multi-Source Domain Adaptation Using Fuzzy Neural Networks. FUZZ 2023: 1-6 - [c157]Mengjia Wu, Yi Zhang, Hua Lin, Mark Grosser, Guangquan Zhang, Jie Lu:
BiblioEngine: An AI-Empowered Platform for Disease Genetic Knowledge Mining. HIS 2023: 187-198 - [c156]Xinheng Wu, Jie Lu, Zhen Fang, Guangquan Zhang:
Meta OOD Learning For Continuously Adaptive OOD Detection. ICCV 2023: 19296-19307 - [c155]Guohang Zeng, Zhen Fang, Guangquan Zhang, Jie Lu:
One-step Domain Adaptation Approach with Partial Label. IJCNN 2023: 1-8 - [c154]Keqiuyin Li, Jie Lu, Hua Zuo, Guangquan Zhang:
Domain Adaptation for Image Segmentation with Category-Guide Classifier. ISKE 2023: 568-572 - [c153]Keqiuyin Li, Jie Lu, Hua Zuo, Guangquan Zhang:
Multi-Source Domain Adaptation with Incomplete Source Label Spaces. KES 2023: 2343-2350 - [c152]Pham Minh Thu Do, Qian Zhang, Guangquan Zhang, Jie Lu:
meta-GRS: A Graph Neural Network for Cross-Domain Recommender System via Meta-Learning. KES 2023: 2536-2545 - [c151]Kun Wang, Jie Lu, Anjin Liu, Guangquan Zhang:
TCR-M: A Topic Change Recognition-based Method for Data Stream Learning. KES 2023: 3001-3010 - [i28]Xinheng Wu, Jie Lu, Zhen Fang, Guangquan Zhang:
Meta OOD Learning for Continuously Adaptive OOD Detection. CoRR abs/2309.11705 (2023) - [i27]En Yu, Jie Lu, Bin Zhang, Guangquan Zhang:
Online Boosting Adaptive Learning under Concept Drift for Multistream Classification. CoRR abs/2312.10841 (2023) - 2022
- [j184]Bin Wang, Jie Lu, Tianrui Li, Zheng Yan, Guangquan Zhang:
A quantile fusion methodology for deep forecasting. Neurocomputing 483: 286-298 (2022) - [j183]Kun Wang, Jie Lu, Anjin Liu, Yiliao Song, Li Xiong, Guangquan Zhang:
Elastic gradient boosting decision tree with adaptive iterations for concept drift adaptation. Neurocomputing 491: 288-304 (2022) - [j182]En Yu, Yiliao Song, Guangquan Zhang, Jie Lu:
Learn-to-adapt: Concept drift adaptation for hybrid multiple streams. Neurocomputing 496: 121-130 (2022) - [j181]Kai Yang, Jie Lu, Wanggen Wan, Guangquan Zhang, Li Hou:
Transfer learning based on sparse Gaussian process for regression. Inf. Sci. 605: 286-300 (2022) - [j180]Hang Yu, Qingyong Zhang, Tianyu Liu, Jie Lu, Yimin Wen, Guangquan Zhang:
Meta-ADD: A meta-learning based pre-trained model for concept drift active detection. Inf. Sci. 608: 996-1009 (2022) - [j179]Hang Yu, Jie Lu, Guangquan Zhang:
Continuous Support Vector Regression for Nonstationary Streaming Data. IEEE Trans. Cybern. 52(5): 3592-3605 (2022) - [j178]Fan Dong, Jie Lu, Yiliao Song, Feng Liu, Guangquan Zhang:
A Drift Region-Based Data Sample Filtering Method. IEEE Trans. Cybern. 52(9): 9377-9390 (2022) - [j177]Hang Yu, Jie Lu, Guangquan Zhang:
Topology Learning-Based Fuzzy Random Neural Networks for Streaming Data Regression. IEEE Trans. Fuzzy Syst. 30(2): 412-425 (2022) - [j176]Hang Yu, Jie Lu, Anjin Liu, Bin Wang, Ruimin Li, Guangquan Zhang:
Real-Time Prediction System of Train Carriage Load Based on Multi-Stream Fuzzy Learning. IEEE Trans. Intell. Transp. Syst. 23(9): 15155-15165 (2022) - [j175]Hang Yu, Jie Lu, Guangquan Zhang:
An Online Robust Support Vector Regression for Data Streams. IEEE Trans. Knowl. Data Eng. 34(1): 150-163 (2022) - [j174]Yiliao Song, Jie Lu, Anjin Liu, Haiyan Lu, Guangquan Zhang:
A Segment-Based Drift Adaptation Method for Data Streams. IEEE Trans. Neural Networks Learn. Syst. 33(9): 4876-4889 (2022) - [j173]Keqiuyin Li, Jie Lu, Hua Zuo, Guangquan Zhang:
Multi-Source Contribution Learning for Domain Adaptation. IEEE Trans. Neural Networks Learn. Syst. 33(10): 5293-5307 (2022) - [j172]Yiyang Zhang, Feng Liu, Zhen Fang, Bo Yuan, Guangquan Zhang, Jie Lu:
Learning From a Complementary-Label Source Domain: Theory and Algorithms. IEEE Trans. Neural Networks Learn. Syst. 33(12): 7667-7681 (2022) - [j171]Hang Yu, Jie Lu, Guangquan Zhang:
MORStreaming: A Multioutput Regression System for Streaming Data. IEEE Trans. Syst. Man Cybern. Syst. 52(8): 4862-4874 (2022) - [c150]Zhaoqing Liu, Anjin Liu, Guangquan Zhang, Jie Lu:
An Empirical Study of Fuzzy Decision Tree for Gradient Boosting Ensemble. AI 2022: 716-727 - [c149]Keqiuyin Li, Jie Lu, Hua Zuo, Guangquan Zhang:
Source-Free Multi-Domain Adaptation with Generally Auxiliary Model Training. IJCNN 2022: 1-8 - [i26]Guangzhi Ma, Jie Lu, Feng Liu, Zhen Fang, Guangquan Zhang:
Multi-class Classification with Fuzzy-feature Observations: Theory and Algorithms. CoRR abs/2206.04311 (2022) - [i25]Tianyu Liu, Jie Lu, Zheng Yan, Guangquan Zhang:
Streaming PAC-Bayes Gaussian process regression with a performance guarantee for online decision making. CoRR abs/2210.08486 (2022) - 2021
- [j170]Wenjun Chang, Qian Zhang, Chao Fu, Weiyong Liu, Guangquan Zhang, Jie Lu:
A cross-domain recommender system through information transfer for medical diagnosis. Decis. Support Syst. 143: 113489 (2021) - [j169]Tianyu Liu, Jie Lu, Zheng Yan, Guangquan Zhang:
Statistical generalization performance guarantee for meta-learning with data dependent prior. Neurocomputing 465: 391-405 (2021) - [j168]Qian Liu, Jie Lu, Guangquan Zhang, Tao Shen, Zhihan Zhang, Heyan Huang:
Domain-specific meta-embedding with latent semantic structures. Inf. Sci. 555: 410-423 (2021) - [j167]Kai Yang, Jie Lu, Wanggen Wan, Guangquan Zhang:
Multi-source transfer regression via source-target pairwise segment. Inf. Sci. 556: 389-403 (2021) - [j166]Yi Zhang, Mengjia Wu, George Yijun Tian, Guangquan Zhang, Jie Lu:
Ethics and privacy of artificial intelligence: Understandings from bibliometrics. Knowl. Based Syst. 222: 106994 (2021) - [j165]Anjin Liu, Jie Lu, Guangquan Zhang:
Concept Drift Detection via Equal Intensity k-Means Space Partitioning. IEEE Trans. Cybern. 51(6): 3198-3211 (2021) - [j164]Qian Liu, Heyan Huang, Junyu Xuan, Guangquan Zhang, Yang Gao, Jie Lu:
A Fuzzy Word Similarity Measure for Selecting Top-$k$ Similar Words in Query Expansion. IEEE Trans. Fuzzy Syst. 29(8): 2132-2144 (2021) - [j163]Anjin Liu, Jie Lu, Guangquan Zhang:
Concept Drift Detection: Dealing With Missing Values via Fuzzy Distance Estimations. IEEE Trans. Fuzzy Syst. 29(11): 3219-3233 (2021) - [j162]Feng Liu, Guangquan Zhang, Jie Lu:
Multisource Heterogeneous Unsupervised Domain Adaptation via Fuzzy Relation Neural Networks. IEEE Trans. Fuzzy Syst. 29(11): 3308-3322 (2021) - [j161]Junyu Xuan, Jie Lu, Guangquan Zhang:
Bayesian Nonparametric Unsupervised Concept Drift Detection for Data Stream Mining. ACM Trans. Intell. Syst. Technol. 12(1): 5:1-5:22 (2021) - [j160]Anjin Liu, Jie Lu, Guangquan Zhang:
Diverse Instance-Weighting Ensemble Based on Region Drift Disagreement for Concept Drift Adaptation. IEEE Trans. Neural Networks Learn. Syst. 32(1): 293-307 (2021) - [j159]Zhen Fang, Jie Lu, Feng Liu, Junyu Xuan, Guangquan Zhang:
Open Set Domain Adaptation: Theoretical Bound and Algorithm. IEEE Trans. Neural Networks Learn. Syst. 32(10): 4309-4322 (2021) - [c148]Li Zhong, Zhen Fang, Feng Liu, Jie Lu, Bo Yuan, Guangquan Zhang:
How Does the Combined Risk Affect the Performance of Unsupervised Domain Adaptation Approaches? AAAI 2021: 11079-11087 - [c147]Keqiuyin Li, Jie Lu, Hua Zuo, Guangquan Zhang:
Multi-Source Domain Adaptation with Fuzzy-Rule based Deep Neural Networks. FUZZ-IEEE 2021: 1-6 - [c146]Guangzhi Ma, Feng Liu, Guangquan Zhang, Jie Lu:
Learning from Imprecise Observations: An Estimation Error Bound based on Fuzzy Random Variables. FUZZ-IEEE 2021: 1-8 - [c145]Zhen Fang, Jie Lu, Anjin Liu, Feng Liu, Guangquan Zhang:
Learning Bounds for Open-Set Learning. ICML 2021: 3122-3132 - [c144]Ming Zhou, Yiliao Song, Guangquan Zhang, Bin Zhang, Jie Lu:
An Efficient Bayesian Neural Network for Multiple Data Streams. IJCNN 2021: 1-8 - [i24]Zhong Li, Zhen Fang, Feng Liu, Jie Lu, Bo Yuan, Guangquan Zhang:
How does the Combined Risk Affect the Performance of Unsupervised Domain Adaptation Approaches? CoRR abs/2101.01104 (2021) - [i23]Tianyu Liu, Jie Lu, Zheng Yan, Guangquan Zhang:
PAC-Bayes Bounds for Meta-learning with Data-Dependent Prior. CoRR abs/2102.03748 (2021) - [i22]Hang Yu, Tianyu Liu, Jie Lu, Guangquan Zhang:
Automatic Learning to Detect Concept Drift. CoRR abs/2105.01419 (2021) - [i21]Zhen Fang, Jie Lu, Anjin Liu, Feng Liu, Guangquan Zhang:
Learning Bounds for Open-Set Learning. CoRR abs/2106.15792 (2021) - [i20]Adi Lin, Jie Lu, Junyu Xuan, Fujin Zhu, Guangquan Zhang:
Deep Bayesian Estimation for Dynamic Treatment Regimes with a Long Follow-up Time. CoRR abs/2109.11929 (2021) - [i19]Junyu Xuan, Jie Lu, Guangquan Zhang:
Bayesian Transfer Learning: An Overview of Probabilistic Graphical Models for Transfer Learning. CoRR abs/2109.13233 (2021) - 2020
- [b4]Jie Lu, Qian Zhang, Guangquan Zhang:
Recommender Systems - Advanced Developments. Intelligent Information Systems 6, WorldScientific 2020, ISBN 9789811224621, pp. 1-380 - [j158]Yi Zhang, Mengjia Wu, Hua Lin, Steven Tipper, Mark Grosser, Guangquan Zhang, Jie Lu:
Framework of Computational Intelligence-Enhanced Knowledge Base Construction: Methodology and A Case of Gene-Related Cardiovascular Disease. Int. J. Comput. Intell. Syst. 13(1): 1109-1119 (2020) - [j157]Fujin Zhu, Jie Lu, Adi Lin, Guangquan Zhang:
A Pareto-smoothing method for causal inference using generalized Pareto distribution. Neurocomputing 378: 142-152 (2020) - [j156]Guanjin Wang, Guangquan Zhang, Kup-Sze Choi, Kin-Man Lam, Jie Lu:
Output based transfer learning with least squares support vector machine and its application in bladder cancer prognosis. Neurocomputing 387: 279-292 (2020) - [j155]Bin Wang, Tianrui Li, Zheng Yan, Guangquan Zhang, Jie Lu:
DeepPIPE: A distribution-free uncertainty quantification approach for time series forecasting. Neurocomputing 397: 11-19 (2020) - [j154]Guanjin Wang, Jie Lu, Kup-Sze Choi, Guangquan Zhang:
A Transfer-Based Additive LS-SVM Classifier for Handling Missing Data. IEEE Trans. Cybern. 50(2): 739-752 (2020) - [j153]Yiliao Song, Jie Lu, Haiyan Lu, Guangquan Zhang:
Fuzzy Clustering-Based Adaptive Regression for Drifting Data Streams. IEEE Trans. Fuzzy Syst. 28(3): 544-557 (2020) - [j152]Jie Lu, Hua Zuo, Guangquan Zhang:
Fuzzy Multiple-Source Transfer Learning. IEEE Trans. Fuzzy Syst. 28(12): 3418-3431 (2020) - [j151]Adi Lin, Jie Lu, Junyu Xuan, Fujin Zhu, Guangquan Zhang:
A Causal Dirichlet Mixture Model for Causal Inference from Observational Data. ACM Trans. Intell. Syst. Technol. 11(3): 33:1-33:29 (2020) - [j150]Hang Yu, Jie Lu, Guangquan Zhang:
Online Topology Learning by a Gaussian Membership-Based Self-Organizing Incremental Neural Network. IEEE Trans. Neural Networks Learn. Syst. 31(10): 3947-3961 (2020) - [j149]Feng Liu, Guangquan Zhang, Jie Lu:
Heterogeneous Domain Adaptation: An Unsupervised Approach. IEEE Trans. Neural Networks Learn. Syst. 31(12): 5588-5602 (2020) - [j148]Junyu Xuan, Xiangfeng Luo, Jie Lu, Guangquan Zhang:
Web event evolution trend prediction based on its computational social context. World Wide Web 23(3): 1861-1886 (2020) - [c143]Hang Yu, Anjin Liu, Bin Wang, Ruimin Li, Guangquan Zhang, Jie Lu:
Real-Time Decision Making for Train Carriage Load Prediction via Multi-stream Learning. Australasian Conference on Artificial Intelligence 2020: 29-41 - [c142]Kun Wang, Anjin Liu, Jie Lu, Guangquan Zhang, Li Xiong:
An Elastic Gradient Boosting Decision Tree for Concept Drift Learning. Australasian Conference on Artificial Intelligence 2020: 420-432 - [c141]Feng Liu, Guangquan Zhang, Jie Lu:
A Novel Non-parametric Two-Sample Test on Imprecise Observations. FUZZ-IEEE 2020: 1-6 - [c140]Yiliao Song, Guangquan Zhang, Haiyan Lu, Jie Lu:
A Fuzzy Drift Correlation Matrix for Multiple Data Stream Regression. FUZZ-IEEE 2020: 1-6 - [c139]