default search action
Laks V. S. Lakshmanan
V. S. Lakshmanan 0001
Person information
- affiliation: University of British Columbia, Department of Computer Science
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j76]Rudra Ranajee Saha, Laks V. S. Lakshmanan, Raymond T. Ng:
Stance Detection with Explanations. Comput. Linguistics 50(1): 193-235 (2024) - [j75]Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks V. S. Lakshmanan, Xiaolin Han, Xiaodong Li:
Accelerating directed densest subgraph queries with software and hardware approaches. VLDB J. 33(1): 207-230 (2024) - [c182]Ganesh Jawahar, Haichuan Yang, Yunyang Xiong, Zechun Liu, Dilin Wang, Fei Sun, Meng Li, Aasish Pappu, Barlas Oguz, Muhammad Abdul-Mageed, Laks V. S. Lakshmanan, Raghuraman Krishnamoorthi, Vikas Chandra:
Mixture-of-Supernets: Improving Weight-Sharing Supernet Training with Architecture-Routed Mixture-of-Experts. ACL (Findings) 2024: 10424-10443 - [c181]Ganesh Jawahar, Muhammad Abdul-Mageed, Laks V. S. Lakshmanan, Dujian Ding:
LLM Performance Predictors are good initializers for Architecture Search. ACL (Findings) 2024: 10540-10560 - [c180]Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Rühle, Laks V. S. Lakshmanan, Ahmed Hassan Awadallah:
Hybrid LLM: Cost-Efficient and Quality-Aware Query Routing. ICLR 2024 - [c179]Bin Xiang, Bogdan Cautis, Xiaokui Xiao, Olga Mula, Dusit Niyato, Laks V. S. Lakshmanan:
Predicting Cascading Failures with a Hyperparametric Diffusion Model. KDD 2024: 3495-3506 - [c178]Yuxi Feng, Laks V. S. Lakshmanan:
DuRE: Dual Contrastive Self Training for Semi-Supervised Relation Extraction. NAACL-HLT 2024: 540-555 - [i54]Md Tawkat Islam Khondaker, Muhammad Abdul-Mageed, Laks V. S. Lakshmanan:
GreenLLaMA: A Framework for Detoxification with Explanations. CoRR abs/2402.15951 (2024) - [i53]Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Rühle, Laks V. S. Lakshmanan, Ahmed Hassan Awadallah:
Hybrid LLM: Cost-Efficient and Quality-Aware Query Routing. CoRR abs/2404.14618 (2024) - [i52]Dujian Ding, Bicheng Xu, Laks V. S. Lakshmanan:
OCCAM: Towards Cost-Efficient and Accuracy-Aware Image Classification Inference. CoRR abs/2406.04508 (2024) - [i51]Yingli Zhou, Qingshuo Guo, Yi Yang, Yixiang Fang, Chenhao Ma, Laks V. S. Lakshmanan:
In-depth Analysis of Densest Subgraph Discovery in a Unified Framework. CoRR abs/2406.04738 (2024) - [i50]Bin Xiang, Bogdan Cautis, Xiaokui Xiao, Olga Mula, Dusit Niyato, Laks V. S. Lakshmanan:
Predicting Cascading Failures with a Hyperparametric Diffusion Model. CoRR abs/2406.08522 (2024) - [i49]Ningyi Liao, Haoyu Liu, Zulun Zhu, Siqiang Luo, Laks V. S. Lakshmanan:
Benchmarking Spectral Graph Neural Networks: A Comprehensive Study on Effectiveness and Efficiency. CoRR abs/2406.09675 (2024) - 2023
- [j74]Prithu Banerjee, Wei Chen, Laks V. S. Lakshmanan:
Mitigating Filter Bubbles Under a Competitive Diffusion Model. Proc. ACM Manag. Data 1(2): 175:1-175:26 (2023) - [j73]Mohammad Matin Najafi, Chenhao Ma, Xiaodong Li, Reynold Cheng, Laks V. S. Lakshmanan:
MOSER: Scalable Network Motif Discovery using Serial Test. Proc. VLDB Endow. 17(3): 591-603 (2023) - [c177]Yuxi Feng, Xiaoyuan Yi, Xiting Wang, Laks V. S. Lakshmanan, Xing Xie:
DuNST: Dual Noisy Self Training for Semi-Supervised Controllable Text Generation. ACL (1) 2023: 8760-8785 - [c176]Ganesh Jawahar, Subhabrata Mukherjee, Xiaodong Liu, Young Jin Kim, Muhammad Abdul-Mageed, Laks V. S. Lakshmanan, Ahmed Hassan Awadallah, Sébastien Bubeck, Jianfeng Gao:
AutoMoE: Heterogeneous Mixture-of-Experts with Adaptive Computation for Efficient Neural Machine Translation. ACL (Findings) 2023: 9116-9132 - [c175]Arkaprava Saha, Xiangyu Ke, Arijit Khan, Laks V. S. Lakshmanan:
Voting-based Opinion Maximization. ICDE 2023: 544-557 - [c174]Yuxi Feng, Xiaoyuan Yi, Laks V. S. Lakshmanan, Xing Xie:
KEST: Kernel Distance Based Efficient Self-Training for Improving Controllable Text Generation. IJCAI 2023: 5049-5057 - [c173]Md Tawkat Islam Khondaker, Muhammad Abdul-Mageed, Laks V. S. Lakshmanan:
PACT: Pretraining with Adversarial Contrastive Learning for Text Classification. IJCNLP (1) 2023: 1102-1117 - [c172]Ganesh Jawahar, Subhabrata Mukherjee, Debadeepta Dey, Muhammad Abdul-Mageed, Laks V. S. Lakshmanan, Caio C. T. Mendes, Gustavo Henrique de Rosa, Shital Shah:
Small Character Models Match Large Word Models for Autocomplete Under Memory Constraints. SustaiNLP 2023: 274-289 - [i48]Ganesh Jawahar, Haichuan Yang, Yunyang Xiong, Zechun Liu, Dilin Wang, Fei Sun, Meng Li, Aasish Pappu, Barlas Oguz, Muhammad Abdul-Mageed, Laks V. S. Lakshmanan, Raghuraman Krishnamoorthi, Vikas Chandra:
Mixture-of-Supernets: Improving Weight-Sharing Supernet Training with Architecture-Routed Mixture-of-Experts. CoRR abs/2306.04845 (2023) - [i47]Wensheng Luo, Chenhao Ma, Yixiang Fang, Laks V. S. Lakshmanan:
A Survey of Densest Subgraph Discovery on Large Graphs. CoRR abs/2306.07927 (2023) - [i46]Yuxi Feng, Xiaoyuan Yi, Laks V. S. Lakshmanan, Xing Xie:
KEST: Kernel Distance Based Efficient Self-Training for Improving Controllable Text Generation. CoRR abs/2306.10414 (2023) - [i45]Ganesh Jawahar, Muhammad Abdul-Mageed, Laks V. S. Lakshmanan, Dujian Ding:
LLM Performance Predictors are good initializers for Architecture Search. CoRR abs/2310.16712 (2023) - 2022
- [j72]Michael Simpson, Laks V. S. Lakshmanan, Farnoosh Hashemi:
Misinformation Mitigation under Differential Propagation Rates and Temporal Penalties. Proc. VLDB Endow. 15(10): 2216-2229 (2022) - [j71]Chenhao Ma, Reynold Cheng, Laks V. S. Lakshmanan, Xiaolin Han:
Finding Locally Densest Subgraphs: A Convex Programming Approach. Proc. VLDB Endow. 15(11): 2719-2732 (2022) - [j70]Ali Behrouz, Farnoosh Hashemi, Laks V. S. Lakshmanan:
FirmTruss Community Search in Multilayer Networks. Proc. VLDB Endow. 16(3): 505-518 (2022) - [j69]Dujian Ding, Sihem Amer-Yahia, Laks V. S. Lakshmanan:
On Efficient Approximate Queries over Machine Learning Models. Proc. VLDB Endow. 16(4): 918-931 (2022) - [j68]Laks V. S. Lakshmanan:
Mid-Career Researcher, huh?: What just Changed? SIGMOD Rec. 51(4): 45-48 (2022) - [j67]Glenn S. Bevilacqua, Laks V. S. Lakshmanan:
A fractional memory-efficient approach for online continuous-time influence maximization. VLDB J. 31(2): 403-429 (2022) - [c171]Ganesh Jawahar, Muhammad Abdul-Mageed, Laks V. S. Lakshmanan:
Automatic Detection of Entity-Manipulated Text using Factual Knowledge. ACL (2) 2022: 86-93 - [c170]Laks V. S. Lakshmanan:
On a Quest for Combating Filter Bubbles and Misinformation. SIGMOD Conference 2022: 2 - [c169]Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks V. S. Lakshmanan, Xiaolin Han:
A Convex-Programming Approach for Efficient Directed Densest Subgraph Discovery. SIGMOD Conference 2022: 845-859 - [c168]Md Tawkat Islam Khondaker, El Moatez Billah Nagoudi, AbdelRahim A. Elmadany, Muhammad Abdul-Mageed, Laks V. S. Lakshmanan:
A Benchmark Study of Contrastive Learning for Arabic Social Meaning. WANLP@EMNLP 2022: 63-75 - [c167]Farnoosh Hashemi, Ali Behrouz, Laks V. S. Lakshmanan:
FirmCore Decomposition of Multilayer Networks. WWW 2022: 1589-1600 - [i44]Ganesh Jawahar, Muhammad Abdul-Mageed, Laks V. S. Lakshmanan:
Automatic Detection of Entity-Manipulated Text using Factual Knowledge. CoRR abs/2203.10343 (2022) - [i43]Ali Behrouz, Farnoosh Hashemi, Laks V. S. Lakshmanan:
FirmTruss Community Search in Multilayer Networks. CoRR abs/2205.00742 (2022) - [i42]Dujian Ding, Sihem Amer-Yahia, Laks V. S. Lakshmanan:
On Efficient Approximate Queries over Machine Learning Models. CoRR abs/2206.02845 (2022) - [i41]Michael Simpson, Farnoosh Hashemi, Laks V. S. Lakshmanan:
Misinformation Mitigation under Differential Propagation Rates and Temporal Penalties. CoRR abs/2206.11419 (2022) - [i40]Farnoosh Hashemi, Ali Behrouz, Laks V. S. Lakshmanan:
FirmCore Decomposition of Multilayer Networks. CoRR abs/2208.11200 (2022) - [i39]Arkaprava Saha, Xiangyu Ke, Arijit Khan, Laks V. S. Lakshmanan:
Voting-based Opinion Maximization. CoRR abs/2209.06756 (2022) - [i38]Ganesh Jawahar, Subhabrata Mukherjee, Debadeepta Dey, Muhammad Abdul-Mageed, Laks V. S. Lakshmanan, Caio César Teodoro Mendes, Gustavo Henrique de Rosa, Shital Shah:
Small Character Models Match Large Word Models for Autocomplete Under Memory Constraints. CoRR abs/2210.03251 (2022) - [i37]Ganesh Jawahar, Subhabrata Mukherjee, Xiaodong Liu, Young Jin Kim, Muhammad Abdul-Mageed, Laks V. S. Lakshmanan, Ahmed Hassan Awadallah, Sébastien Bubeck, Jianfeng Gao:
AutoMoE: Neural Architecture Search for Efficient Sparsely Activated Transformers. CoRR abs/2210.07535 (2022) - [i36]Md Tawkat Islam Khondaker, El Moatez Billah Nagoudi, AbdelRahim A. Elmadany, Muhammad Abdul-Mageed, Laks V. S. Lakshmanan:
A Benchmark Study of Contrastive Learning for Arabic Social Meaning. CoRR abs/2210.12314 (2022) - [i35]Md Tawkat Islam Khondaker, Muhammad Abdul-Mageed, Laks V. S. Lakshmanan:
Cross-Platform and Cross-Domain Abusive Language Detection with Supervised Contrastive Learning. CoRR abs/2211.06452 (2022) - [i34]Yuxi Feng, Xiaoyuan Yi, Xiting Wang, Laks V. S. Lakshmanan, Xing Xie:
DuNST: Dual Noisy Self Training for Semi-Supervised Controllable Text Generation. CoRR abs/2212.08724 (2022) - 2021
- [j66]Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks V. S. Lakshmanan, Wenjie Zhang, Xuemin Lin:
Efficient Directed Densest Subgraph Discovery. SIGMOD Rec. 50(1): 33-40 (2021) - [j65]Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks V. S. Lakshmanan, Wenjie Zhang, Xuemin Lin:
On Directed Densest Subgraph Discovery. ACM Trans. Database Syst. 46(4): 13:1-13:45 (2021) - [c166]Ganesh Jawahar, El Moatez Billah Nagoudi, Muhammad Abdul-Mageed, Laks V. S. Lakshmanan:
Exploring Text-to-Text Transformers for English to Hinglish Machine Translation with Synthetic Code-Mixing. CALCS@NAACL 2021: 36-46 - [c165]Gorisha Agarwal, Laks V. S. Lakshmanan, Xiaoming Gao, Kevin Ventullo, Saurav Mohapatra, Saikat Basu:
MAYUR: Map conflAtion using earlY prUning and Rank join. SIGSPATIAL/GIS 2021: 550-553 - [c164]Prithu Banerjee, Lingyang Chu, Yong Zhang, Laks V. S. Lakshmanan, Lanjun Wang:
Stealthy Targeted Data Poisoning Attack on Knowledge Graphs. ICDE 2021: 2069-2074 - [c163]Kai Han, Benwei Wu, Jing Tang, Shuang Cui, Çigdem Aslay, Laks V. S. Lakshmanan:
Efficient and Effective Algorithms for Revenue Maximization in Social Advertising. SIGMOD Conference 2021: 671-684 - [c162]Saravanan Thirumuruganathan, Michael Simpson, Laks V. S. Lakshmanan:
To Intervene or Not To Intervene: Cost based Intervention for Combating Fake News. SIGMOD Conference 2021: 2300-2309 - [i33]Ganesh Jawahar, El Moatez Billah Nagoudi, Muhammad Abdul-Mageed, Laks V. S. Lakshmanan:
Exploring Text-to-Text Transformers for English to Hinglish Machine Translation with Synthetic Code-Mixing. CoRR abs/2105.08807 (2021) - [i32]Kai Han, Benwei Wu, Jing Tang, Shuang Cui, Çigdem Aslay, Laks V. S. Lakshmanan:
Efficient and Effective Algorithms for Revenue Maximization in Social Advertising. CoRR abs/2107.04997 (2021) - 2020
- [j64]Prithu Banerjee, Laks V. S. Lakshmanan, Wei Chen:
Maximizing Social Welfare in a Competitive Diffusion Model. Proc. VLDB Endow. 14(4): 613-625 (2020) - [j63]Anthony-Alexander Christidis, Laks V. S. Lakshmanan, Ezequiel Smucler, Ruben H. Zamar:
Split Regularized Regression. Technometrics 62(3): 330-338 (2020) - [j62]Behrooz Omidvar-Tehrani, Sihem Amer-Yahia, Laks V. S. Lakshmanan:
Cohort analytics: efficiency and applicability. VLDB J. 29(6): 1527-1550 (2020) - [c161]Sarah Elhammadi, Laks V. S. Lakshmanan, Raymond T. Ng, Michael Simpson, Baoxing Huai, Zhefeng Wang, Lanjun Wang:
A High Precision Pipeline for Financial Knowledge Graph Construction. COLING 2020: 967-977 - [c160]Ganesh Jawahar, Muhammad Abdul-Mageed, Laks V. S. Lakshmanan:
Automatic Detection of Machine Generated Text: A Critical Survey. COLING 2020: 2296-2309 - [c159]Alexandra Kim, Laks V. S. Lakshmanan, Divesh Srivastava:
Summarizing Hierarchical Multidimensional Data. ICDE 2020: 877-888 - [c158]Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks V. S. Lakshmanan, Wenjie Zhang, Xuemin Lin:
Efficient Algorithms for Densest Subgraph Discovery on Large Directed Graphs. SIGMOD Conference 2020: 1051-1066 - [c157]Tobias Grubenmann, Reynold C. K. Cheng, Laks V. S. Lakshmanan:
TSA: A Truthful Mechanism for Social Advertising. WSDM 2020: 214-222 - [i31]Ganesh Jawahar, Muhammad Abdul-Mageed, Laks V. S. Lakshmanan:
Automatic Detection of Machine Generated Text: A Critical Survey. CoRR abs/2011.01314 (2020) - [i30]Prithu Banerjee, Wei Chen, Laks V. S. Lakshmanan:
Maximizing Social Welfare in a Competitive Diffusion Model. CoRR abs/2012.03354 (2020)
2010 – 2019
- 2019
- [b2]Xin Huang, Laks V. S. Lakshmanan, Jianliang Xu:
Community Search over Big Graphs. Synthesis Lectures on Data Management, Morgan & Claypool Publishers 2019, ISBN 978-3-031-00746-0 - [j61]Yixiang Fang, Kaiqiang Yu, Reynold Cheng, Laks V. S. Lakshmanan, Xuemin Lin:
Efficient Algorithms for Densest Subgraph Discovery. Proc. VLDB Endow. 12(11): 1719-1732 (2019) - [j60]Laks V. S. Lakshmanan, Michael Simpson, Saravanan Thirumuruganathan:
Combating Fake News: A Data Management and Mining Perspective. Proc. VLDB Endow. 12(12): 1990-1993 (2019) - [j59]Chenhao Ma, Reynold Cheng, Laks V. S. Lakshmanan, Tobias Grubenmann, Yixiang Fang, Xiaodong Li:
LINC: A Motif Counting Algorithm for Uncertain Graphs. Proc. VLDB Endow. 13(2): 155-168 (2019) - [c156]Prithu Banerjee, Wei Chen, Laks V. S. Lakshmanan:
Maximizing Welfare in Social Networks under A Utility Driven Influence Diffusion model. SIGMOD Conference 2019: 1078-1095 - [c155]Jing Tang, Keke Huang, Xiaokui Xiao, Laks V. S. Lakshmanan, Xueyan Tang, Aixin Sun, Andrew Lim:
Efficient Approximation Algorithms for Adaptive Seed Minimization. SIGMOD Conference 2019: 1096-1113 - [r3]Laks V. S. Lakshmanan, Panayiotis Tsaparas, Yuichi Yoshida:
Influence Analytics in Graphs. Encyclopedia of Big Data Technologies 2019 - [i29]Yixiang Fang, Kaiqiang Yu, Reynold Cheng, Laks V. S. Lakshmanan, Xuemin Lin:
Efficient Algorithms for Densest Subgraph Discovery. CoRR abs/1906.00341 (2019) - [i28]Jing Tang, Keke Huang, Xiaokui Xiao, Laks V. S. Lakshmanan, Xueyan Tang, Aixin Sun, Andrew Lim:
Efficient Approximation Algorithms for Adaptive Seed Minimization. CoRR abs/1907.09668 (2019) - 2018
- [c154]Behrooz Omidvar-Tehrani, Sihem Amer-Yahia, Laks V. S. Lakshmanan:
Cohort Representation and Exploration. DSAA 2018: 169-178 - [c153]Dmitri V. Kalashnikov, Laks V. S. Lakshmanan, Divesh Srivastava:
FastQRE: Fast Query Reverse Engineering. SIGMOD Conference 2018: 337-350 - [c152]Çigdem Aslay, Laks V. S. Lakshmanan, Wei Lu, Xiaokui Xiao:
Influence Maximization in Online Social Networks. WSDM 2018: 775-776 - [r2]Laks V. S. Lakshmanan:
XML Tree Pattern, XML Twig Query. Encyclopedia of Database Systems (2nd ed.) 2018 - [i27]Prithu Banerjee, Wei Chen, Laks V. S. Lakshmanan:
EPIC: Welfare Maximization under Economically Postulated Independent Cascade Model. CoRR abs/1807.02502 (2018) - 2017
- [j58]Keke Huang, Sibo Wang, Glenn S. Bevilacqua, Xiaokui Xiao, Laks V. S. Lakshmanan:
Revisiting the Stop-and-Stare Algorithms for Influence Maximization. Proc. VLDB Endow. 10(9): 913-924 (2017) - [j57]Xin Huang, Laks V. S. Lakshmanan:
Attribute-Driven Community Search. Proc. VLDB Endow. 10(9): 949-960 (2017) - [j56]Çigdem Aslay, Francesco Bonchi, Laks V. S. Lakshmanan, Wei Lu:
Revenue Maximization in Incentivized Social Advertising. Proc. VLDB Endow. 10(11): 1238-1249 (2017) - [c151]Sharan Vaswani, Mark Schmidt, Laks V. S. Lakshmanan:
Horde of Bandits using Gaussian Markov Random Fields. AISTATS 2017: 690-699 - [c150]Xin Huang, Laks V. S. Lakshmanan, Jianliang Xu:
Community Search over Big Graphs: Models, Algorithms, and Opportunities. ICDE 2017: 1451-1454 - [c149]Sharan Vaswani, Branislav Kveton, Zheng Wen, Mohammad Ghavamzadeh, Laks V. S. Lakshmanan, Mark Schmidt:
Model-Independent Online Learning for Influence Maximization. ICML 2017: 3530-3539 - [c148]Sihem Amer-Yahia, Sofia Kleisarchaki, Naresh Kumar Kolloju, Laks V. S. Lakshmanan, Ruben H. Zamar:
Exploring Rated Datasets with Rating Maps. WWW 2017: 1411-1419 - [i26]Sampoorna Biswas, Laks V. S. Lakshmanan, Senjuti Basu Roy:
Combating the Cold Start User Problem in Model Based Collaborative Filtering. CoRR abs/1703.00397 (2017) - [i25]Sharan Vaswani, Branislav Kveton, Zheng Wen, Mohammad Ghavamzadeh, Laks V. S. Lakshmanan, Mark Schmidt:
Diffusion Independent Semi-Bandit Influence Maximization. CoRR abs/1703.00557 (2017) - [i24]Sharan Vaswani, Mark Schmidt, Laks V. S. Lakshmanan:
Horde of Bandits using Gaussian Markov Random Fields. CoRR abs/1703.02626 (2017) - [i23]Wei Lu, Xiaokui Xiao, Amit Goyal, Keke Huang, Laks V. S. Lakshmanan:
Refutations on "Debunking the Myths of Influence Maximization: An In-Depth Benchmarking Study". CoRR abs/1705.05144 (2017) - 2016
- [j55]Senjuti Basu Roy, Kostas Stefanidis, Georgia Koutrika, Laks V. S. Lakshmanan, Mirek Riedewald:
Report on the Third International Workshop on Exploratory Search in Databases and the Web (ExploreDB 2016). SIGMOD Rec. 45(3): 35-38 (2016) - [c147]Pei Lee, Laks V. S. Lakshmanan:
Query-Driven Maximum Quasi-Clique Search. SDM 2016: 522-530 - [c146]Laks V. S. Lakshmanan:
Viral marketing 2.0. NDA@SIGMOD 2016: 2:1 - [c145]Theodore Johnson, Yaron Kanza, Laks V. S. Lakshmanan, Vladislav Shkapenyuk:
Nepal: a path query language for communication networks. NDA@SIGMOD 2016: 6:1-6:8 - [c144]Xin Huang, Wei Lu, Laks V. S. Lakshmanan:
Truss Decomposition of Probabilistic Graphs: Semantics and Algorithms. SIGMOD Conference 2016: 77-90 - [e7]Senjuti Basu Roy, Kostas Stefanidis, Georgia Koutrika, Mirek Riedewald, Laks V. S. Lakshmanan:
Proceedings of the Third International Workshop on Exploratory Search in Databases and the Web, San Francisco, CA, USA, July 1, 2016. ACM 2016, ISBN 978-1-4503-4312-1 [contents] - [i22]Sharan Vaswani, Laks V. S. Lakshmanan:
Adaptive Influence Maximization in Social Networks: Why Commit when You can Adapt? CoRR abs/1604.08171 (2016) - [i21]Xin Huang, Laks V. S. Lakshmanan:
Attribute Truss Community Search. CoRR abs/1609.00090 (2016) - [i20]Çigdem Aslay, Francesco Bonchi, Laks V. S. Lakshmanan, Wei Lu:
Revenue Maximization in Incentivized Social Advertising. CoRR abs/1612.00531 (2016) - 2015
- [j54]Çigdem Aslay, Wei Lu, Francesco Bonchi, Amit Goyal, Laks V. S. Lakshmanan:
Viral Marketing Meets Social Advertising: Ad Allocation with Minimum Regret. Proc. VLDB Endow. 8(7): 822-833 (2015) - [j53]Wei Lu, Wei Chen, Laks V. S. Lakshmanan:
From Competition to Complementarity: Comparative Influence Diffusion and Maximization. Proc. VLDB Endow. 9(2): 60-71 (2015) - [j52]Xin Huang, Laks V. S. Lakshmanan, Jeffrey Xu Yu, Hong Cheng:
Approximate Closest Community Search in Networks. Proc. VLDB Endow. 9(4): 276-287 (2015) - [j51]Georgia Koutrika, Laks V. S. Lakshmanan, Mirek Riedewald, Mohamed A. Sharaf, Kostas Stefanidis:
Report on the Second International Workshop on Exploratory Search in Databases and the Web (ExploreDB 2015). SIGMOD Rec. 44(4): 49-52 (2015) - [c143]Senjuti Basu Roy, Laks V. S. Lakshmanan, Rui Liu:
From Group Recommendations to Group Formation. SIGMOD Conference 2015: 1603-1616 - [c142]Laks V. S. Lakshmanan:
Social Network Analytics: Beyond the Obvious. Big-O(Q)/DMAH@VLDB 2015: 149-154 - [e6]Georgia Koutrika, Laks V. S. Lakshmanan, Mirek Riedewald, Kostas Stefanidis:
Proceedings of the Second International Workshop on Exploratory Search in Databases and the Web, ExploreDB 2015, Melbourne, VIC, Australia, May 31 - June 04, 2015. ACM 2015, ISBN 978-1-4503-3740-3 [contents] - [i19]Sharan Vaswani, Laks V. S. Lakshmanan:
Influence Maximization with Bandits. CoRR abs/1503.00024 (2015) - [i18]Senjuti Basu Roy, Laks V. S. Lakshmanan, Rui Liu:
From Group Recommendations to Group Formation. CoRR abs/1503.03753 (2015) - [i17]Xin Huang, Laks V. S. Lakshmanan, Jeffrey Xu Yu, Hong Cheng:
Approximate Closest Community Search in Networks. CoRR abs/1505.05956 (2015) - [i16]Wei Lu, Wei Chen, Laks V. S. Lakshmanan:
From Competition to Complementarity: Comparative Influence Diffusion and Maximization. CoRR abs/1507.00317 (2015) - 2014
- [j50]Wei Lu, Shanshan Chen, Keqian Li, Laks V. S. Lakshmanan:
Show Me the Money: Dynamic Recommendations for Revenue Maximization. Proc. VLDB Endow. 7(14): 1785-1796 (2014) - [j49]Min Xie, Laks V. S. Lakshmanan, Peter T. Wood:
Generating Top-k Packages via Preference Elicitation. Proc. VLDB Endow. 7(14): 1941-1952 (2014) - [j48]Georgia Koutrika, Laks V. S. Lakshmanan, Mirek Riedewald, Kostas Stefanidis:
Report on the First International Workshop on Exploratory Search in Databases and the Web (ExploreDB 2014). SIGMOD Rec. 43(2): 49-52 (2014) - [c141]Pei Lee, Laks V. S. Lakshmanan, Evangelos E. Milios:
CAST: A Context-Aware Story-Teller for Streaming Social Content. CIKM 2014: 789-798 - [c140]