default search action
Johann Großschädl
Person information
- affiliation: University of Luxembourg
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c94]Georgios Fotiadis, Johann Großschädl, Peter Y. A. Ryan:
X2065: Lightweight Key Exchange for the Internet of Things. CPSS@AsiaCCS 2024: 43-52 - [i21]Hao Cheng, Johann Großschädl, Ben Marshall, Daniel Page, Markku-Juhani O. Saarinen:
SoK: Instruction Set Extensions for Cryptographers. IACR Cryptol. ePrint Arch. 2024: 1323 (2024) - 2023
- [j19]Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page, Thinh Hung Pham:
RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(1): 193-237 (2023) - [c93]Hao Cheng, Georgios Fotiadis, Johann Großschädl, Peter Y. A. Ryan:
IoTDisco: Strong yet Lightweight End-to-End Security for the Internet of Constrained Things. MSPN 2023: 1-16 - 2022
- [j18]Jing Tian, Piaoyang Wang, Zhe Liu, Jun Lin, Zhongfeng Wang, Johann Großschädl:
Efficient Software Implementation of the SIKE Protocol Using a New Data Representation. IEEE Trans. Computers 71(3): 670-683 (2022) - [j17]Hao Cheng, Georgios Fotiadis, Johann Großschädl, Peter Y. A. Ryan:
Highly Vectorized SIKE for AVX-512. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(2): 41-68 (2022) - [c92]Luan Cardoso dos Santos, François Gérard, Johann Großschädl, Lorenzo Spignoli:
Rivain-Prouff on Steroids: Faster and Stronger Masking of the AES. CARDIS 2022: 123-145 - [c91]Malik Alsahli, Alex Borgognoni, Luan Cardoso dos Santos, Hao Cheng, Christian Franck, Johann Großschädl:
Lightweight Permutation-Based Cryptography for the Ultra-Low-Power Internet of Things. SecITC 2022: 17-36 - [i20]Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page, Thinh Hung Pham:
RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography. IACR Cryptol. ePrint Arch. 2022: 1697 (2022) - 2021
- [j16]Si Gao, Johann Großschädl, Ben Marshall, Dan Page, Thinh Hung Pham, Francesco Regazzoni:
An Instruction Set Extension to Support Software-Based Masking. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(4): 283-325 (2021) - [j15]Hao Cheng, Georgios Fotiadis, Johann Großschädl, Peter Y. A. Ryan, Peter B. Rønne:
Batching CSIDH Group Actions using AVX-512. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(4): 618-649 (2021) - [c90]Hao Cheng, Johann Großschädl, Peter B. Rønne, Peter Y. A. Ryan:
AVRNTRU: Lightweight NTRU-based Post-Quantum Cryptography for 8-bit AVR Microcontrollers. DATE 2021: 1272-1277 - [c89]Johann Großschädl, Christian Franck, Zhe Liu:
Lightweight EdDSA Signature Verification for the Ultra-Low-Power Internet of Things. ISPEC 2021: 263-282 - [c88]Luan Cardoso dos Santos, Johann Großschädl:
An Evaluation of the Multi-platform Efficiency of Lightweight Cryptographic Permutations. SecITC 2021: 70-85 - [c87]Christian Franck, Johann Großschädl:
Optimized Implementation of SHA-512 for 16-Bit MSP430 Microcontrollers. SecITC 2021: 86-99 - 2020
- [j14]Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann Großschädl, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, Qingju Wang:
Lightweight AEAD and Hashing using the Sparkle Permutation Family. IACR Trans. Symmetric Cryptol. 2020(S1): 208-261 (2020) - [c86]Junhao Huang, Zhe Liu, Zhi Hu, Johann Großschädl:
Parallel Implementation of SM2 Elliptic Curve Cryptography on Intel Processors with AVX2. ACISP 2020: 204-224 - [c85]Hao Cheng, Johann Großschädl, Peter B. Rønne, Peter Y. A. Ryan:
Lightweight Post-quantum Key Encapsulation for 8-bit AVR Microcontrollers. CARDIS 2020: 18-33 - [c84]Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann Großschädl, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, Qingju Wang:
Alzette: A 64-Bit ARX-box - (Feat. CRAX and TRAX). CRYPTO (3) 2020: 419-448 - [c83]Briag Dupont, Christian Franck, Johann Großschädl:
Fast and Flexible Elliptic Curve Cryptography for Dining Cryptographers Networks. MSPN 2020: 89-109 - [c82]Hao Cheng, Johann Großschädl, Jiaqi Tian, Peter B. Rønne, Peter Y. A. Ryan:
High-Throughput Elliptic Curve Cryptography Using AVX2 Vector Instructions. SAC 2020: 698-719 - [i19]Jing Tian, Piaoyang Wang, Zhe Liu, Jun Lin, Zhongfeng Wang, Johann Großschädl:
Faster Software Implementation of the SIKE Protocol Based on A New Data Representation. IACR Cryptol. ePrint Arch. 2020: 660 (2020) - [i18]Johann Großschädl, Ben Marshall, Dan Page, Thinh Hung Pham, Francesco Regazzoni:
An Instruction Set Extension to Support Software-Based Masking. IACR Cryptol. ePrint Arch. 2020: 773 (2020)
2010 – 2019
- 2019
- [j13]Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Léo Perrin, Johann Großschädl, Alex Biryukov:
Triathlon of lightweight block ciphers for the Internet of things. J. Cryptogr. Eng. 9(3): 283-302 (2019) - [c81]Luan Cardoso dos Santos, Johann Großschädl, Alex Biryukov:
FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption Algorithms. CARDIS 2019: 216-233 - [c80]Johann Großschädl, Zhe Liu, Zhi Hu, Chunhua Su, Lu Zhou:
Fast ECDH Key Exchange Using Twisted Edwards Curves with an Efficiently Computable Endomorphism. SIoT 2019: 1-8 - [c79]Hao Cheng, Daniel Dinu, Johann Großschädl, Peter B. Rønne, Peter Y. A. Ryan:
A Lightweight Implementation of NTRU Prime for the Post-quantum Internet of Things. WISTP 2019: 103-119 - [i17]Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann Großschädl, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, Qingju Wang:
Alzette: A 64-bit ARX-box. IACR Cryptol. ePrint Arch. 2019: 1378 (2019) - 2018
- [j12]Zhe Liu, Kim-Kwang Raymond Choo, Johann Großschädl:
Securing Edge Devices in the Post-Quantum Internet of Things Using Lattice-Based Cryptography. IEEE Commun. Mag. 56(2): 158-162 (2018) - [c78]Yann Le Corre, Johann Großschädl, Daniel Dinu:
Micro-architectural Power Simulator for Leakage Assessment of Cryptographic Software on ARM Cortex-M3 Processors. COSADE 2018: 82-98 - [c77]Christian Franck, Johann Großschädl, Yann Le Corre, Cyrille Lenou Tago:
Energy-Scalable Montgomery-Curve ECDH Key Exchange for ARM Cortex-M3 Microcontrollers. FiCloud Workshops 2018: 231-236 - [c76]Hao Cheng, Daniel Dinu, Johann Großschädl:
Efficient Implementation of the SHA-512 Hash Function for 8-Bit AVR Microcontrollers. SecITC 2018: 273-287 - [c75]Sankalp Ghatpande, Johann Großschädl, Zhe Liu:
A Family of Lightweight Twisted Edwards Curves for the Internet of Things. WISTP 2018: 193-206 - 2017
- [j11]Zhe Liu, Johann Großschädl, Zhi Hu, Kimmo Järvinen, Husen Wang, Ingrid Verbauwhede:
Elliptic Curve Cryptography with Efficiently Computable Endomorphisms and Its Hardware Implementations for the Internet of Things. IEEE Trans. Computers 66(5): 773-785 (2017) - [j10]Zhe Liu, Thomas Pöppelmann, Tobias Oder, Hwajeong Seo, Sujoy Sinha Roy, Tim Güneysu, Johann Großschädl, Howon Kim, Ingrid Verbauwhede:
High-Performance Ideal Lattice-Based Cryptography on 8-Bit AVR Microcontrollers. ACM Trans. Embed. Comput. Syst. 16(4): 117:1-117:24 (2017) - [c74]Daniel Dinu, Johann Großschädl, Yann Le Corre:
Efficient Masking of ARX-Based Block Ciphers Using Carry-Save Addition on Boolean Shares. ISC 2017: 39-57 - [c73]Christian Franck, Johann Großschädl:
Efficient Implementation of Pedersen Commitments Using Twisted Edwards Curves. MSPN 2017: 1-17 - [i16]Yann Le Corre, Johann Großschädl, Daniel Dinu:
Micro-Architectural Power Simulator for Leakage Assessment of Cryptographic Software on ARM Cortex-M3 Processors. IACR Cryptol. ePrint Arch. 2017: 1253 (2017) - 2016
- [j9]David Galindo, Johann Großschädl, Zhe Liu, Praveen Kumar Vadnala, Srinivas Vivek:
Implementation of a leakage-resilient ElGamal key encapsulation mechanism. J. Cryptogr. Eng. 6(3): 229-238 (2016) - [j8]Hwajeong Seo, Zhe Liu, Johann Großschädl, Howon Kim:
Efficient arithmetic on ARM-NEON and its application for high-speed RSA implementation. Secur. Commun. Networks 9(18): 5401-5411 (2016) - [j7]Zhe Liu, Hwajeong Seo, Johann Großschädl, Howon Kim:
Efficient Implementation of NIST-Compliant Elliptic Curve Cryptography for 8-bit AVR-Based Sensor Nodes. IEEE Trans. Inf. Forensics Secur. 11(7): 1385-1397 (2016) - [c72]Zhe Liu, Johann Großschädl, Lin Li, Qiuliang Xu:
Energy-Efficient Elliptic Curve Cryptography for MSP430-Based Wireless Sensor Nodes. ACISP (1) 2016: 94-112 - [c71]Alex Biryukov, Daniel Dinu, Johann Großschädl:
Correlation Power Analysis of Lightweight Block Ciphers: From Theory to Practice. ACNS 2016: 537-557 - [c70]Daniel Dinu, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, Johann Großschädl, Alex Biryukov:
Design Strategies for ARX with Provable Bounds: Sparx and LAX. ASIACRYPT (1) 2016: 484-513 - [i15]Daniel Dinu, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, Johann Großschädl, Alex Biryukov:
Design Strategies for ARX with Provable Bounds: SPARX and LAX (Full Version). IACR Cryptol. ePrint Arch. 2016: 984 (2016) - 2015
- [c69]Zhe Liu, Hwajeong Seo, Zhi Hu, Xinyi Huang, Johann Großschädl:
Efficient Implementation of ECDH Key Exchange for MSP430-Based Wireless Sensor Networks. AsiaCCS 2015: 145-153 - [c68]Zhe Liu, Hwajeong Seo, Sujoy Sinha Roy, Johann Großschädl, Howon Kim, Ingrid Verbauwhede:
Efficient Ring-LWE Encryption on 8-Bit AVR Processors. CHES 2015: 663-682 - [c67]Praveen Kumar Vadnala, Johann Großschädl:
Faster Mask Conversion with Lookup Tables. COSADE 2015: 207-221 - [c66]Junwei Wang, Praveen Kumar Vadnala, Johann Großschädl, Qiuliang Xu:
Higher-Order Masking in Practice: A Vector Implementation of Masked AES for ARM NEON. CT-RSA 2015: 181-198 - [c65]Jean-Sébastien Coron, Johann Großschädl, Mehdi Tibouchi, Praveen Kumar Vadnala:
Conversion from Arithmetic to Boolean Masking with Logarithmic Complexity. FSE 2015: 130-149 - [i14]Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Léo Perrin, Johann Großschädl, Alex Biryukov:
Triathlon of Lightweight Block Ciphers for the Internet of Things. IACR Cryptol. ePrint Arch. 2015: 209 (2015) - [i13]Zhe Liu, Hwajeong Seo, Sujoy Sinha Roy, Johann Großschädl, Howon Kim, Ingrid Verbauwhede:
Efficient Ring-LWE Encryption on 8-bit AVR Processors. IACR Cryptol. ePrint Arch. 2015: 410 (2015) - [i12]Zhe Liu, Husen Wang, Johann Großschädl, Zhi Hu, Ingrid Verbauwhede:
VLSI Implementation of Double-Base Scalar Multiplication on a Twisted Edwards Curve with an Efficiently Computable Endomorphism. IACR Cryptol. ePrint Arch. 2015: 421 (2015) - [i11]Hwajeong Seo, Zhe Liu, Johann Großschädl, Howon Kim:
Efficient Arithmetic on ARM-NEON and Its Application for High-Speed RSA Implementation. IACR Cryptol. ePrint Arch. 2015: 465 (2015) - 2014
- [j6]Kazim Yumbul, Erkay Savas, Övünç Kocabas, Johann Großschädl:
Design and implementation of a versatile cryptographic unit for RISC processors. Secur. Commun. Networks 7(1): 36-52 (2014) - [c64]Zhe Liu, Erich Wenger, Johann Großschädl:
MoTE-ECC: Energy-Scalable Elliptic Curve Cryptography for Wireless Sensor Networks. ACNS 2014: 361-379 - [c63]Zhe Liu, Johann Großschädl:
New Speed Records for Montgomery Modular Multiplication on 8-Bit AVR Microcontrollers. AFRICACRYPT 2014: 215-234 - [c62]Jean-Sébastien Coron, Johann Großschädl, Praveen Kumar Vadnala:
Secure Conversion between Boolean and Arithmetic Masking of Any Order. CHES 2014: 188-205 - [c61]Zhe Liu, Hwajeong Seo, Johann Großschädl, Howon Kim:
Reverse Product-Scanning Multiplication and Squaring on 8-Bit AVR Processors. ICICS 2014: 158-175 - [c60]Hwajeong Seo, Zhe Liu, Johann Großschädl, Jongseok Choi, Howon Kim:
Montgomery Modular Multiplication on ARM-NEON Revisited. ICISC 2014: 328-342 - [c59]Shujie Cui, Johann Großschädl, Zhe Liu, Qiuliang Xu:
High-Speed Elliptic Curve Cryptography on the NVIDIA GT200 Graphics Processing Unit. ISPEC 2014: 202-216 - [i10]Hwajeong Seo, Zhe Liu, Johann Großschädl, Jongseok Choi, Howon Kim:
Montgomery Modular Multiplication on ARM-NEON Revisited. IACR Cryptol. ePrint Arch. 2014: 760 (2014) - [i9]David Galindo, Johann Großschädl, Zhe Liu, Praveen Kumar Vadnala, Srinivas Vivek:
Implementation and Evaluation of a Leakage-Resilient ElGamal Key Encapsulation Mechanism. IACR Cryptol. ePrint Arch. 2014: 835 (2014) - [i8]Jean-Sébastien Coron, Johann Großschädl, Praveen Kumar Vadnala, Mehdi Tibouchi:
Conversion from Arithmetic to Boolean Masking with Logarithmic Complexity. IACR Cryptol. ePrint Arch. 2014: 891 (2014) - 2013
- [c58]Dalin Chu, Johann Großschädl, Zhe Liu, Volker Müller, Yang Zhang:
Twisted edwards-form elliptic curve cryptography for 8-bit AVR-based sensor nodes. AsiaPKC@AsiaCCS 2013: 39-44 - [c57]Zhe Liu, Johann Großschädl, Duncan S. Wong:
Low-Weight Primes for Lightweight Elliptic Curve Cryptography on 8-bit AVR Processors. Inscrypt 2013: 217-235 - [c56]Zhe Liu, Hwajeong Seo, Johann Großschädl, Howon Kim:
Efficient Implementation of NIST-Compliant Elliptic Curve Cryptography for Sensor Nodes. ICICS 2013: 302-317 - [c55]Praveen Kumar Vadnala, Johann Großschädl:
Algorithms for Switching between Boolean and Arithmetic Masking of Second Order. SPACE 2013: 95-110 - [i7]Zhe Liu, Johann Großschädl:
New Speed Records for Montgomery Modular Multiplication on 8-bit AVR Microcontrollers. IACR Cryptol. ePrint Arch. 2013: 882 (2013) - 2012
- [j5]Alex Biryukov, Johann Großschädl:
Cryptanalysis of the Full AES Using GPU-Like Special-Purpose Hardware. Fundam. Informaticae 114(3-4): 221-237 (2012) - [j4]Philipp Grabher, Johann Großschädl, Simon Hoerder, Kimmo Järvinen, Daniel Page, Stefan Tillich, Marcin Wójcik:
An exploration of mechanisms for dynamic cryptographic instruction set extension. J. Cryptogr. Eng. 2(1): 1-18 (2012) - [c54]Erich Wenger, Johann Großschädl:
An 8-bit AVR-Based Elliptic Curve Cryptographic RISC Processor for the Internet of Things. MICRO Workshops 2012: 39-46 - [c53]Johann Großschädl, Dan Page, Stefan Tillich:
Efficient Java Implementation of Elliptic Curve Cryptography for J2ME-Enabled Mobile Devices. WISTP 2012: 189-207 - [i6]Dalin Chu, Johann Großschädl, Zhe Liu:
Twisted Edwards-Form Elliptic Curve Cryptography for 8-bit AVR-based Sensor Nodes. IACR Cryptol. ePrint Arch. 2012: 730 (2012) - 2011
- [c52]Philipp Grabher, Johann Großschädl, Simon Hoerder, Kimmo Järvinen, Dan Page, Stefan Tillich, Marcin Wójcik:
An Exploration of Mechanisms for Dynamic Cryptographic Instruction Set Extension. CHES 2011: 1-16 - [c51]Tobias Vejda, Johann Großschädl, Dan Page:
A Unified Multiply/Accumulate Unit for Pairing-Based Cryptography over Prime, Binary and Ternary Fields. DSD 2011: 658-666 - [i5]Alex Biryukov, Johann Großschädl:
Cryptanalysis of the Full AES Using GPU-Like Special-Purpose Hardware. IACR Cryptol. ePrint Arch. 2011: 710 (2011) - [i4]Johann Großschädl, Dan Page:
Efficient Java Implementation of Elliptic Curve Cryptography for J2ME-Enabled Mobile Devices. IACR Cryptol. ePrint Arch. 2011: 712 (2011) - 2010
- [c50]Marcel Medwed, François-Xavier Standaert, Johann Großschädl, Francesco Regazzoni:
Fresh Re-keying: Security against Side-Channel and Fault Attacks for Low-Cost Devices. AFRICACRYPT 2010: 279-296 - [c49]Johann Großschädl, Ilya Kizhvatov:
Performance and Security Aspects of Client-Side SSL/TLS Processing on Mobile Devices. CANS 2010: 44-61 - [c48]Jean-François Gallais, Johann Großschädl, Neil Hanley, Markus Kasper, Marcel Medwed, Francesco Regazzoni, Jörn-Marc Schmidt, Stefan Tillich, Marcin Wójcik:
Hardware Trojans for Inducing or Amplifying Side-Channel Leakage of Cryptographic Software. INTRUST 2010: 253-270 - [c47]Johann Großschädl, Matthias Hudler, Manuel Koschuch, Michael Krüger, Alexander Szekely:
Smart Elliptic Curve Cryptography for Smart Dust. QSHINE 2010: 623-634
2000 – 2009
- 2009
- [j3]Francesco Regazzoni, Thomas Eisenbarth, Axel Poschmann, Johann Großschädl, Frank K. Gürkaynak, Marco Macchetti, Zeynep Toprak Deniz, Laura Pozzi, Christof Paar, Yusuf Leblebici, Paolo Ienne:
Evaluating Resistance of MCML Technology to Power Analysis Attacks Using a Simulation-Based Methodology. Trans. Comput. Sci. 4: 230-243 (2009) - [c46]Philipp Grabher, Johann Großschädl, Dan Page:
Non-deterministic processors: FPGA-based analysis of area, performance and security. WESS 2009 - [c45]Johann Großschädl:
Full-Custom VLSI Design of a Unified Multiplier for Elliptic Curve Cryptography on RFID Tags. Inscrypt 2009: 366-382 - [c44]Manuel Koschuch, Johann Großschädl, Dan Page, Philipp Grabher, Matthias Hudler, Michael Krüger:
Hardware/Software Co-design of Public-Key Cryptography for SSL Protocol Execution in Embedded Systems. ICICS 2009: 63-79 - [c43]Johann Großschädl, Elisabeth Oswald, Dan Page, Michael Tunstall:
Side-Channel Analysis of Cryptographic Software via Early-Terminating Multiplications. ICISC 2009: 176-192 - [c42]Johann Großschädl, Erkay Savas, Kazim Yumbul:
Realizing Arbitrary-Precision Modular Multiplication with a Fixed-Precision Multiplier Datapath. ReConFig 2009: 261-266 - [c41]Christian Lederer, Roland Mader, Manuel Koschuch, Johann Großschädl, Alexander Szekely, Stefan Tillich:
Energy-Efficient Implementation of ECDH Key Exchange for Wireless Sensor Networks. WISTP 2009: 112-127 - [i3]Johann Großschädl, Elisabeth Oswald, Dan Page, Michael Tunstall:
Side-Channel Analysis of Cryptographic Software via Early-Terminating Multiplications. IACR Cryptol. ePrint Arch. 2009: 538 (2009) - 2008
- [j2]Stefan Tillich, Martin Feldhofer, Thomas Popp, Johann Großschädl:
Area, Delay, and Power Characteristics of Standard-Cell Implementations of the AES S-Box. J. Signal Process. Syst. 50(2): 251-261 (2008) - [c40]Manuel Koschuch, Johann Großschädl, Udo Payer, Matthias Hudler, Michael Krüger:
Workload Characterization of a Lightweight SSL Implementation Resistant to Side-Channel Attacks. CANS 2008: 349-365 - [c39]Philipp Grabher, Johann Großschädl, Dan Page:
Light-Weight Instruction Set Extensions for Bit-Sliced Cryptography. CHES 2008: 331-345 - [c38]Johann Großschädl, Tobias Vejda, Dan Page:
Reassessing the TCG Specifications for Trusted Computing in Mobile and Embedded Systems. HOST 2008: 84-90 - [c37]Övünç Kocabas, Erkay Savas, Johann Großschädl:
Enhancing an Embedded Processor Core with a Cryptographic Unit for Speed and Security. ReConFig 2008: 409-414 - [c36]Philipp Grabher, Johann Großschädl, Dan Page:
On Software Parallel Implementation of Cryptographic Pairings. Selected Areas in Cryptography 2008: 35-50 - [i2]Philipp Grabher, Johann Großschädl, Dan Page:
On Software Parallel Implementation of Cryptographic Pairings. IACR Cryptol. ePrint Arch. 2008: 205 (2008) - 2007
- [c35]Johann Großschädl, Alexander Szekely, Stefan Tillich:
The energy cost of cryptographic key establishment in wireless sensor networks. AsiaCCS 2007: 380-382 - [c34]Stefan Tillich, Johann Großschädl:
Power Analysis Resistant AES Implementation with Instruction Set Extensions. CHES 2007: 303-319 - [c33]Johann Großschädl, Stefan Tillich, Christian Rechberger, Michael Hofmann, Marcel Medwed:
Energy evaluation of software implementations of block ciphers under memory constraints. DATE 2007: 1110-1115 - [c32]Francesco Regazzoni, Thomas Eisenbarth, Johann Großschädl, Luca Breveglieri, Paolo Ienne, Israel Koren, Christof Paar:
Power Attacks Resistance of Cryptographic S-Boxes with Added Error Detection Circuits. DFT 2007: 508-516 - [c31]Johann Großschädl, Stefan Tillich, Alexander Szekely:
Performance Evaluation of Instruction Set Extensions for Long Integer Modular Arithmetic on a SPARC V8 Processor. DSD 2007: 680-689 - [c30]Philipp Grabher, Johann Großschädl, Dan Page:
Cryptographic Side-Channels from Low-Power Cache Memory. IMACC 2007: 170-184 - [c29]Tobias Vejda, Dan Page, Johann Großschädl:
Instruction Set Extensions for Pairing-Based Cryptography. Pairing 2007: 208-224 - [c28]Francesco Regazzoni, Stéphane Badel, Thomas Eisenbarth, Johann Großschädl, Axel Poschmann, Zeynep Toprak Deniz, Marco Macchetti, Laura Pozzi, Christof Paar, Yusuf Leblebici, Paolo Ienne:
A Simulation-Based Methodology for Evaluating the DPA-Resistance of Cryptographic Functional Units with Application to CMOS and MCML Technologies. ICSAMOS 2007: 209-214 - [c27]Stefan Tillich, Johann Großschädl:
VLSI Implementation of a Functional Unit to Accelerate ECC and AES on 32-Bit Processors. WAIFI 2007: 40-54 - [i1]Johann Großschädl, Alexander Szekely, Stefan Tillich:
The Energy Cost of Cryptographic Key Establishment in Wireless Sensor Networks. IACR Cryptol. ePrint Arch. 2007: 3 (2007) - 2006
- [c26]Stefan Tillich, Johann Großschädl:
Instruction Set Extensions for Efficient AES Implementation on 32-bit Processors. CHES 2006: 270-284 - [c25]Manuel Koschuch, Joachim Lechner, Andreas Weitzer, Johann Großschädl, Alexander Szekely, Stefan Tillich, Johannes Wolkerstorfer:
Hardware/Software Co-design of Elliptic Curve Cryptography on an 8051 Microcontroller. CHES 2006: 430-444 - [c24]Johann Großschädl:
TinySA: a security architecture for wireless sensor networks. CoNEXT 2006: 55 - [c23]Johann Großschädl, Paolo Ienne, Laura Pozzi, Stefan Tillich, Ajay Kumar Verma:
Combining algorithm exploration with instruction set design: a case study in elliptic curve cryptography. DATE 2006: 218-223 - [c22]Stefan Tillich, Martin Feldhofer, Johann Großschädl:
Area, Delay, and Power Characteristics of Standard-Cell Implementations of the AES S-Box. SAMOS 2006: 457-466 - 2005
- [c21]Johann Großschädl, Roberto Maria Avanzi, Erkay Savas, Stefan Tillich:
Energy-Efficient Software Implementation of Long Integer Modular Arithmetic. CHES 2005: 75-90 - [c20]Stefan Tillich, Johann Großschädl, Alexander Szekely:
An Instruction Set Extension for Fast and Memory-Efficient AES Implementation. Communications and Multimedia Security 2005: 11-21 - [c19]Stefan Tillich, Johann Großschädl:
Accelerating AES Using Instruction Set Extensions for Elliptic Curve Cryptography. ICCSA (2) 2005: 665-675 - 2004
- [c18]Stefan Tillich, Johann Großschädl:
A Simple Architectural Enhancement for Fast and Flexible Elliptic Curve Cryptography over Binary Finite Fields GF(2m). Asia-Pacific Computer Systems Architecture Conference 2004: 282-295 - [c17]Johann Großschädl, Sandeep S. Kumar, Christof Paar:
Architectural Support for Arithmetic in Optimal Extension Fields. ASAP 2004: 111-124 - [c16]Johann Großschädl, Erkay Savas:
Instruction Set Extensions for Fast Arithmetic in Finite Fields GF( p) and GF(2m). CHES 2004: 133-147 - [c15]Stefan Tillich, Johann Großschädl:
A Survey of Public-Key Cryptography on J2ME-Enabled Mobile Devices. ISCIS 2004: 935-944 - [c14]Johann Großschädl, Karl C. Posch, Stefan Tillich:
Architectural Enhancements to Support Digital Signal Processing and Public-Key Cryptography. WISES 2004: 129-143 - 2003
- [j1]Johann Großschädl:
Architectural Support for Long Integer Modulo Arithmetic on Risc-Based Smart Cards. Int. J. High Perform. Comput. Appl. 17(2): 135-146 (2003) - [c13]Johann Großschädl, Guy-Armand Kamendje:
Architectural Enhancements for Montgomery Multiplication on Embedded RISC Processors. ACNS 2003: 418-434 - [c12]Johann Großschädl, Guy-Armand Kamendje:
Instruction Set Extension for Fast Elliptic Curve Cryptography over Binary Finite Fields GF(2m). ASAP 2003: 455- - [c11]Johann Großschädl, Guy-Armand Kamendje:
A single-cycle (32×32+32+64)-bit multiply/accumulate unit for digital signal processing and public-key cryptography. ICECS 2003: 739-742 - [c10]Markus Hütter, Johann Großschädl, Guy-Armand Kamendje:
A Versatile and Scalable Digit-Serial/Parallel Multiplier Architecture for Finite Fields GF(2m). ITCC 2003: 692-700 - [c9]Johann Großschädl, Guy-Armand Kamendje:
Optimized RISC Architecture for Multiple-Precision Modular Arithmetic. SPC 2003: 253-270 - [c8]Johann Großschädl, Guy-Armand Kamendje:
Low-Power Design of a Functional Unit for Arithmetic in Finite Fields GF(p) and GF(2m). WISA 2003: 227-243 - 2002
- [c7]Johann Großschädl:
A unified radix-4 partial product generator for integers and binary polynomials. ISCAS (3) 2002: 567-570 - [c6]Johann Großschädl:
Instruction Set Extension for Long Integer Modulo Arithmetic on RISC-Based Smart Cards. SBAC-PAD 2002: 13-19 - 2001
- [c5]Johann Großschädl:
A Bit-Serial Unified Multiplier Architecture for Finite Fields GF(p) and GF(2m). CHES 2001: 202-219 - [c4]Johann Großschädl:
A low-power bit-serial multiplier for finite fields GF(2m). ISCAS (4) 2001: 37-40 - 2000
- [c3]Johann Großschädl:
The Chinese Remainder Theorem and its Application in a High-Speed RSA Crypto Chip. ACSAC 2000: 384-393 - [c2]Johann Großschädl:
High-Speed RSA Hardware Based on Barret's Modular Reduction Method. CHES 2000: 191-203 - [c1]Johann Großschädl:
A New Serial/Parallel Architecture for a Low Power Modular Multiplier. SEC 2000: 251-260
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:11 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint