
Phil Blunsom
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2021
- [j13]Linhai Xie, Yishu Miao, Sen Wang, Phil Blunsom, Zhihua Wang, Changhao Chen
, Andrew Markham, Niki Trigoni
:
Learning With Stochastic Guidance for Robot Navigation. IEEE Trans. Neural Networks Learn. Syst. 32(1): 166-176 (2021) - [i60]Angeliki Lazaridou, Adhiguna Kuncoro, Elena Gribovskaya, Devang Agrawal, Adam Liska, Tayfun Terzi, Mai Gimenez, Cyprien de Masson d'Autume, Sebastian Ruder, Dani Yogatama, Kris Cao, Tomás Kociský, Susannah Young, Phil Blunsom:
Pitfalls of Static Language Modelling. CoRR abs/2102.01951 (2021) - 2020
- [j12]Lei Yu, Laurent Sartran, Wojciech Stokowiec, Wang Ling, Lingpeng Kong, Phil Blunsom, Chris Dyer:
Better Document-Level Machine Translation with Bayes' Rule. Trans. Assoc. Comput. Linguistics 8: 346-360 (2020) - [j11]Adhiguna Kuncoro, Lingpeng Kong, Daniel Fried, Dani Yogatama, Laura Rimell, Chris Dyer, Phil Blunsom:
Syntactic Structure Distillation Pretraining for Bidirectional Encoders. Trans. Assoc. Comput. Linguistics 8: 776-794 (2020) - [c82]Daniel Fried, Jean-Baptiste Alayrac, Phil Blunsom, Chris Dyer, Stephen Clark, Aida Nematzadeh:
Learning to Segment Actions from Observation and Narration. ACL 2020: 2569-2588 - [c81]Oana-Maria Camburu, Brendan Shillingford, Pasquale Minervini, Thomas Lukasiewicz, Phil Blunsom:
Make Up Your Mind! Adversarial Generation of Inconsistent Natural Language Explanations. ACL 2020: 4157-4165 - [c80]Felix Hill, Stephen Clark, Phil Blunsom, Karl Moritz Hermann:
Simulating Early Word Learning in Situated Connectionist Agents. CogSci 2020 - [c79]Gunnar A. Sigurdsson, Jean-Baptiste Alayrac, Aida Nematzadeh, Lucas Smaira, Mateusz Malinowski, João Carreira, Phil Blunsom, Andrew Zisserman:
Visual Grounding in Video for Unsupervised Word Translation. CVPR 2020: 10847-10856 - [c78]Kazuya Kawakami, Luyu Wang, Chris Dyer, Phil Blunsom, Aäron van den Oord:
Learning Robust and Multilingual Speech Representations. EMNLP (Findings) 2020: 1182-1192 - [c77]Gábor Melis, Tomás Kociský, Phil Blunsom:
Mogrifier LSTM. ICLR 2020 - [c76]Lei Yu, Laurent Sartran, Po-Sen Huang, Wojciech Stokowiec, Domenic Donato, Srivatsan Srinivasan, Alek Andreev, Wang Ling, Sona Mokra, Agustin Dal Lago, Yotam Doron, Susannah Young, Phil Blunsom, Chris Dyer:
The DeepMind Chinese-English Document Translation System at WMT2020. WMT@EMNLP 2020: 326-337 - [i59]Kazuya Kawakami, Luyu Wang, Chris Dyer, Phil Blunsom, Aäron van den Oord:
Learning Robust and Multilingual Speech Representations. CoRR abs/2001.11128 (2020) - [i58]Gunnar A. Sigurdsson, Jean-Baptiste Alayrac, Aida Nematzadeh, Lucas Smaira, Mateusz Malinowski, João Carreira, Phil Blunsom, Andrew Zisserman:
Visual Grounding in Video for Unsupervised Word Translation. CoRR abs/2003.05078 (2020) - [i57]Qi Liu, Matt J. Kusner, Phil Blunsom:
A Survey on Contextual Embeddings. CoRR abs/2003.07278 (2020) - [i56]Daniel Fried, Jean-Baptiste Alayrac, Phil Blunsom, Chris Dyer, Stephen Clark, Aida Nematzadeh:
Learning to Segment Actions from Observation and Narration. CoRR abs/2005.03684 (2020) - [i55]Adhiguna Kuncoro, Lingpeng Kong, Daniel Fried, Dani Yogatama, Laura Rimell, Chris Dyer, Phil Blunsom:
Syntactic Structure Distillation Pretraining For Bidirectional Encoders. CoRR abs/2005.13482 (2020) - [i54]Oana-Maria Camburu, Eleonora Giunchiglia, Jakob Foerster, Thomas Lukasiewicz, Phil Blunsom:
The Struggles of Feature-Based Explanations: Shapley Values vs. Minimal Sufficient Subsets. CoRR abs/2009.11023 (2020) - [i53]Gábor Melis, András György, Phil Blunsom:
Mutual Information Constraints for Monte-Carlo Objectives. CoRR abs/2012.00708 (2020)
2010 – 2019
- 2019
- [c75]Changhao Chen, Yishu Miao, Chris Xiaoxuan Lu, Linhai Xie, Phil Blunsom, Andrew Markham, Niki Trigoni
:
MotionTransformer: Transferring Neural Inertial Tracking between Domains. AAAI 2019: 8009-8016 - [c74]Adhiguna Kuncoro, Chris Dyer, Laura Rimell, Stephen Clark, Phil Blunsom:
Scalable Syntax-Aware Language Models Using Knowledge Distillation. ACL (1) 2019: 3472-3484 - [c73]Kazuya Kawakami, Chris Dyer, Phil Blunsom:
Learning to Discover, Ground and Use Words with Segmental Neural Language Models. ACL (1) 2019: 6429-6441 - [c72]Vid Kocijan, Oana-Maria Camburu, Ana-Maria Cretu, Yordan Yordanov, Phil Blunsom, Thomas Lukasiewicz:
WikiCREM: A Large Unsupervised Corpus for Coreference Resolution. EMNLP/IJCNLP (1) 2019: 4302-4311 - [i52]Dani Yogatama, Cyprien de Masson d'Autume, Jerome Connor, Tomás Kociský, Mike Chrzanowski, Lingpeng Kong, Angeliki Lazaridou, Wang Ling, Lei Yu, Chris Dyer, Phil Blunsom:
Learning and Evaluating General Linguistic Intelligence. CoRR abs/1901.11373 (2019) - [i51]Adhiguna Kuncoro, Chris Dyer, Laura Rimell, Stephen Clark, Phil Blunsom:
Scalable Syntax-Aware Language Models Using Knowledge Distillation. CoRR abs/1906.06438 (2019) - [i50]Vid Kocijan, Oana-Maria Camburu, Ana-Maria Cretu, Yordan Yordanov, Phil Blunsom, Thomas Lukasiewicz:
WikiCREM: A Large Unsupervised Corpus for Coreference Resolution. CoRR abs/1908.08025 (2019) - [i49]Gábor Melis, Tomás Kociský, Phil Blunsom:
Mogrifier LSTM. CoRR abs/1909.01792 (2019) - [i48]Chris Dyer, Gábor Melis, Phil Blunsom:
A Critical Analysis of Biased Parsers in Unsupervised Parsing. CoRR abs/1909.09428 (2019) - [i47]Lei Yu, Laurent Sartran, Wojciech Stokowiec, Wang Ling, Lingpeng Kong, Phil Blunsom, Chris Dyer:
Putting Machine Translation in Context with the Noisy Channel Model. CoRR abs/1910.00553 (2019) - [i46]Oana-Maria Camburu, Eleonora Giunchiglia, Jakob Foerster, Thomas Lukasiewicz, Phil Blunsom:
Can I Trust the Explainer? Verifying Post-hoc Explanatory Methods. CoRR abs/1910.02065 (2019) - [i45]Oana-Maria Camburu, Brendan Shillingford, Pasquale Minervini, Thomas Lukasiewicz, Phil Blunsom:
Make Up Your Mind! Adversarial Generation of Inconsistent Natural Language Explanations. CoRR abs/1910.03065 (2019) - 2018
- [j10]Tomás Kociský, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis, Edward Grefenstette:
The NarrativeQA Reading Comprehension Challenge. Trans. Assoc. Comput. Linguistics 6: 317-328 (2018) - [c71]Adhiguna Kuncoro, Chris Dyer, John Hale, Dani Yogatama, Stephen Clark, Phil Blunsom:
LSTMs Can Learn Syntax-Sensitive Dependencies Well, But Modeling Structure Makes Them Better. ACL (1) 2018: 1426-1436 - [c70]Gábor Melis, Chris Dyer, Phil Blunsom:
On the State of the Art of Evaluation in Neural Language Models. ICLR (Poster) 2018 - [c69]Dani Yogatama, Yishu Miao, Gábor Melis, Wang Ling, Adhiguna Kuncoro, Chris Dyer, Phil Blunsom:
Memory Architectures in Recurrent Neural Network Language Models. ICLR (Poster) 2018 - [c68]Jan Buys
, Phil Blunsom:
Neural Syntactic Generative Models with Exact Marginalization. NAACL-HLT 2018: 942-952 - [c67]Andrew Trask, Felix Hill, Scott E. Reed, Jack W. Rae, Chris Dyer, Phil Blunsom:
Neural Arithmetic Logic Units. NeurIPS 2018: 8046-8055 - [c66]Oana-Maria Camburu, Tim Rocktäschel, Thomas Lukasiewicz, Phil Blunsom:
e-SNLI: Natural Language Inference with Natural Language Explanations. NeurIPS 2018: 9560-9572 - [i44]Gábor Melis, Charles Blundell, Tomás Kociský, Karl Moritz Hermann, Chris Dyer, Phil Blunsom:
Pushing the bounds of dropout. CoRR abs/1805.09208 (2018) - [i43]Tiago Ramalho, Tomás Kociský, Frederic Besse, S. M. Ali Eslami, Gábor Melis, Fabio Viola, Phil Blunsom, Karl Moritz Hermann:
Encoding Spatial Relations from Natural Language. CoRR abs/1807.01670 (2018) - [i42]Andrew Trask, Felix Hill, Scott E. Reed, Jack W. Rae, Chris Dyer, Phil Blunsom:
Neural Arithmetic Logic Units. CoRR abs/1808.00508 (2018) - [i41]Changhao Chen, Yishu Miao, Chris Xiaoxuan Lu, Phil Blunsom, Andrew Markham, Niki Trigoni:
Transferring Physical Motion Between Domains for Neural Inertial Tracking. CoRR abs/1810.02076 (2018) - [i40]Kazuya Kawakami, Chris Dyer, Phil Blunsom:
Unsupervised Word Discovery with Segmental Neural Language Models. CoRR abs/1811.09353 (2018) - [i39]Lei Yu, Cyprien de Masson d'Autume, Chris Dyer, Phil Blunsom, Lingpeng Kong, Wang Ling:
Sentence Encoding with Tree-constrained Relation Networks. CoRR abs/1811.10475 (2018) - [i38]Linhai Xie, Yishu Miao, Sen Wang, Phil Blunsom, Zhihua Wang, Changhao Chen, Andrew Markham, Niki Trigoni:
Learning with Stochastic Guidance for Navigation. CoRR abs/1811.10756 (2018) - [i37]Oana-Maria Camburu, Tim Rocktäschel, Thomas Lukasiewicz, Phil Blunsom:
e-SNLI: Natural Language Inference with Natural Language Explanations. CoRR abs/1812.01193 (2018) - 2017
- [c65]Wang Ling, Dani Yogatama, Chris Dyer, Phil Blunsom:
Program Induction by Rationale Generation: Learning to Solve and Explain Algebraic Word Problems. ACL (1) 2017: 158-167 - [c64]Jan Buys
, Phil Blunsom:
Robust Incremental Neural Semantic Graph Parsing. ACL (1) 2017: 1215-1226 - [c63]Kazuya Kawakami, Chris Dyer, Phil Blunsom:
Learning to Create and Reuse Words in Open-Vocabulary Neural Language Modeling. ACL (1) 2017: 1492-1502 - [c62]Zichao Yang, Phil Blunsom, Chris Dyer, Wang Ling:
Reference-Aware Language Models. EMNLP 2017: 1850-1859 - [c61]Dani Yogatama, Phil Blunsom, Chris Dyer, Edward Grefenstette, Wang Ling:
Learning to Compose Words into Sentences with Reinforcement Learning. ICLR (Poster) 2017 - [c60]Lei Yu, Phil Blunsom, Chris Dyer, Edward Grefenstette, Tomás Kociský:
The Neural Noisy Channel. ICLR (Poster) 2017 - [c59]Yishu Miao, Edward Grefenstette, Phil Blunsom:
Discovering Discrete Latent Topics with Neural Variational Inference. ICML 2017: 2410-2419 - [c58]Tsung-Hsien Wen, Yishu Miao, Phil Blunsom, Steve J. Young:
Latent Intention Dialogue Models. ICML 2017: 3732-3741 - [c57]Jan Buys
, Phil Blunsom:
Oxford at SemEval-2017 Task 9: Neural AMR Parsing with Pointer-Augmented Attention. SemEval@ACL 2017: 914-919 - [e5]Mirella Lapata, Phil Blunsom, Alexander Koller:
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2017, Valencia, Spain, April 3-7, 2017, Volume 1: Long Papers. Association for Computational Linguistics 2017, ISBN 978-1-945626-34-0 [contents] - [e4]Mirella Lapata, Phil Blunsom, Alexander Koller:
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2017, Valencia, Spain, April 3-7, 2017, Volume 2: Short Papers. Association for Computational Linguistics 2017, ISBN 978-1-945626-35-7 [contents] - [e3]Phil Blunsom, Antoine Bordes, Kyunghyun Cho, Shay B. Cohen, Chris Dyer, Edward Grefenstette, Karl Moritz Hermann, Laura Rimell, Jason Weston, Scott Yih:
Proceedings of the 2nd Workshop on Representation Learning for NLP, Rep4NLP@ACL 2017, Vancouver, Canada, August 3, 2017. Association for Computational Linguistics 2017, ISBN 978-1-945626-62-3 [contents] - [i36]Dani Yogatama, Chris Dyer, Wang Ling, Phil Blunsom:
Generative and Discriminative Text Classification with Recurrent Neural Networks. CoRR abs/1703.01898 (2017) - [i35]Kazuya Kawakami, Chris Dyer, Phil Blunsom:
Learning to Create and Reuse Words in Open-Vocabulary Neural Language Modeling. CoRR abs/1704.06986 (2017) - [i34]Jan Buys, Phil Blunsom:
Robust Incremental Neural Semantic Graph Parsing. CoRR abs/1704.07092 (2017) - [i33]Wang Ling, Dani Yogatama, Chris Dyer, Phil Blunsom:
Program Induction by Rationale Generation: Learning to Solve and Explain Algebraic Word Problems. CoRR abs/1705.04146 (2017) - [i32]Tsung-Hsien Wen, Yishu Miao, Phil Blunsom, Steve J. Young:
Latent Intention Dialogue Models. CoRR abs/1705.10229 (2017) - [i31]Yishu Miao, Edward Grefenstette, Phil Blunsom:
Discovering Discrete Latent Topics with Neural Variational Inference. CoRR abs/1706.00359 (2017) - [i30]Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner, Hubert Soyer, David Szepesvari, Wojciech Marian Czarnecki, Max Jaderberg, Denis Teplyashin, Marcus Wainwright, Chris Apps, Demis Hassabis, Phil Blunsom:
Grounded Language Learning in a Simulated 3D World. CoRR abs/1706.06551 (2017) - [i29]Gábor Melis, Chris Dyer, Phil Blunsom:
On the State of the Art of Evaluation in Neural Language Models. CoRR abs/1707.05589 (2017) - [i28]Felix Hill, Karl Moritz Hermann, Phil Blunsom, Stephen Clark:
Understanding Grounded Language Learning Agents. CoRR abs/1710.09867 (2017) - [i27]Tomás Kociský, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis, Edward Grefenstette:
The NarrativeQA Reading Comprehension Challenge. CoRR abs/1712.07040 (2017) - [i26]Phil Blunsom, Kyunghyun Cho, Chris Dyer, Hinrich Schütze:
From Characters to Understanding Natural Language (C2NLU): Robust End-to-End Deep Learning for NLP (Dagstuhl Seminar 17042). Dagstuhl Reports 7(1): 129-157 (2017) - 2016
- [j9]Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-Barwinska, Sergio Gomez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John P. Agapiou
, Adrià Puigdomènech Badia, Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain, Helen King, Christopher Summerfield, Phil Blunsom, Koray Kavukcuoglu, Demis Hassabis:
Hybrid computing using a neural network with dynamic external memory. Nat. 538(7626): 471-476 (2016) - [c56]Wang Ling, Phil Blunsom, Edward Grefenstette, Karl Moritz Hermann, Tomás Kociský, Fumin Wang, Andrew W. Senior:
Latent Predictor Networks for Code Generation. ACL (1) 2016 - [c55]Yishu Miao, Phil Blunsom:
Language as a Latent Variable: Discrete Generative Models for Sentence Compression. EMNLP 2016: 319-328 - [c54]Tomás Kociský, Gábor Melis, Edward Grefenstette, Chris Dyer, Wang Ling, Phil Blunsom, Karl Moritz Hermann:
Semantic Parsing with Semi-Supervised Sequential Autoencoders. EMNLP 2016: 1078-1087 - [c53]Lei Yu, Jan Buys
, Phil Blunsom:
Online Segment to Segment Neural Transduction. EMNLP 2016: 1307-1316 - [c52]Yishu Miao, Lei Yu, Phil Blunsom:
Neural Variational Inference for Text Processing. ICML 2016: 1727-1736 - [c51]Tim Rocktäschel, Edward Grefenstette, Karl Moritz Hermann, Tomás Kociský, Phil Blunsom:
Reasoning about Entailment with Neural Attention. ICLR (Poster) 2016 - [e2]Phil Blunsom, Kyunghyun Cho, Shay B. Cohen, Edward Grefenstette, Karl Moritz Hermann, Laura Rimell, Jason Weston, Scott Wen-tau Yih:
Proceedings of the 1st Workshop on Representation Learning for NLP, Rep4NLP@ACL 2016, Berlin, Germany, August 11, 2016. Association for Computational Linguistics 2016, ISBN 978-1-945626-04-3 [contents] - [i25]Wang Ling, Edward Grefenstette, Karl Moritz Hermann, Tomás Kociský, Andrew W. Senior, Fumin Wang, Phil Blunsom:
Latent Predictor Networks for Code Generation. CoRR abs/1603.06744 (2016) - [i24]Jeremy Appleyard, Tomás Kociský, Phil Blunsom:
Optimizing Performance of Recurrent Neural Networks on GPUs. CoRR abs/1604.01946 (2016) - [i23]Yishu Miao, Phil Blunsom:
Language as a Latent Variable: Discrete Generative Models for Sentence Compression. CoRR abs/1609.07317 (2016) - [i22]Lei Yu, Jan Buys, Phil Blunsom:
Online Segment to Segment Neural Transduction. CoRR abs/1609.08194 (2016) - [i21]Tomás Kociský, Gábor Melis, Edward Grefenstette, Chris Dyer, Wang Ling, Phil Blunsom, Karl Moritz Hermann:
Semantic Parsing with Semi-Supervised Sequential Autoencoders. CoRR abs/1609.09315 (2016) - [i20]Zichao Yang, Phil Blunsom, Chris Dyer, Wang Ling:
Reference-Aware Language Models. CoRR abs/1611.01628 (2016) - [i19]Lei Yu, Phil Blunsom, Chris Dyer, Edward Grefenstette, Tomás Kociský:
The Neural Noisy Channel. CoRR abs/1611.02554 (2016) - [i18]Dani Yogatama, Phil Blunsom, Chris Dyer, Edward Grefenstette, Wang Ling:
Learning to Compose Words into Sentences with Reinforcement Learning. CoRR abs/1611.09100 (2016) - 2015
- [j8]Zhuoling Xiao, Hongkai Wen
, Andrew Markham
, Niki Trigoni
, Phil Blunsom, Jeff Frolik:
Non-Line-of-Sight Identification and Mitigation Using Received Signal Strength. IEEE Trans. Wirel. Commun. 14(3): 1689-1702 (2015) - [c50]Jan Buys
, Phil Blunsom:
Generative Incremental Dependency Parsing with Neural Networks. ACL (2) 2015: 863-869 - [c49]Jan Buys, Phil Blunsom:
A Bayesian Model for Generative Transition-based Dependency Parsing. DepLing 2015: 58-67 - [c48]Alex Wilson, Phil Blunsom, Andrew D. Ker:
Detection of Steganographic Techniques on Twitter. EMNLP 2015: 2564-2569 - [c47]Paul Baltescu, Phil Blunsom:
Pragmatic Neural Language Modelling in Machine Translation. HLT-NAACL 2015: 820-829 - [c46]Karl Moritz Hermann, Tomás Kociský, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, Phil Blunsom:
Teaching Machines to Read and Comprehend. NIPS 2015: 1693-1701 - [c45]Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, Phil Blunsom:
Learning to Transduce with Unbounded Memory. NIPS 2015: 1828-1836 - [e1]Phil Blunsom, Shay B. Cohen, Paramveer S. Dhillon, Percy Liang:
Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing, VS@NAACL-HLT 2015, June 5, 2015, Denver, Colorado, USA. The Association for Computational Linguistics 2015, ISBN 978-1-941643-46-4 [contents] - [i17]Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, Phil Blunsom:
Learning to Transduce with Unbounded Memory. CoRR abs/1506.02516 (2015) - [i16]Karl Moritz Hermann, Tomás Kociský, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, Phil Blunsom:
Teaching Machines to Read and Comprehend. CoRR abs/1506.03340 (2015) - [i15]Jan Buys, Phil Blunsom:
A Bayesian Model for Generative Transition-based Dependency Parsing. CoRR abs/1506.04334 (2015) - [i14]Yishu Miao, Lei Yu, Phil Blunsom:
Neural Variational Inference for Text Processing. CoRR abs/1511.06038 (2015) - 2014
- [j7]Paul Baltescu, Phil Blunsom:
A Fast and Simple Online Synchronous Context Free Grammar Extractor. Prague Bull. Math. Linguistics 102: 17-26 (2014) - [j6]Austin Matthews, Paul Baltescu, Phil Blunsom, Alon Lavie, Chris Dyer:
Tree Transduction Tools for cdec. Prague Bull. Math. Linguistics 102: 27-36 (2014) - [j5]Paul Baltescu, Phil Blunsom, Hieu Hoang:
OxLM: A Neural Language Modelling Framework for Machine Translation. Prague Bull. Math. Linguistics 102: 81-92 (2014) - [c44]Edward Grefenstette, Karl Moritz Hermann, Georgiana Dinu, Phil Blunsom:
New Directions in Vector Space Models of Meaning. ACL (Tutorial Abstracts) 2014: 8 - [c43]Karl Moritz Hermann, Phil Blunsom:
Multilingual Models for Compositional Distributed Semantics. ACL (1) 2014: 58-68 - [c42]Tomás Kociský, Karl Moritz Hermann, Phil Blunsom:
Learning Bilingual Word Representations by Marginalizing Alignments. ACL (2) 2014: 224-229 - [c41]Nal Kalchbrenner, Edward Grefenstette, Phil Blunsom:
A Convolutional Neural Network for Modelling Sentences. ACL (1) 2014: 655-665 - [c40]Gregory Dubbin, Phil Blunsom:
Modelling the Lexicon in Unsupervised Part of Speech Induction. EACL 2014: 116-125 - [c39]Eva Hasler, Phil Blunsom, Philipp Koehn, Barry Haddow:
Dynamic Topic Adaptation for Phrase-based MT. EACL 2014: 328-337 - [c38]Jan A. Botha, Phil Blunsom:
Compositional Morphology for Word Representations and Language Modelling. ICML 2014: 1899-1907 - [c37]Alex Wilson, Phil Blunsom, Andrew D. Ker:
Linguistic steganography on Twitter: hierarchical language modeling with manual interaction. Media Watermarking, Security, and Forensics 2014: 902803 - [c36]Karl Moritz Hermann, Phil Blunsom:
A Simple Model for Learning Multilingual Compositional Semantics. ICLR 2014 - [i13]Gregory Dubbin, Phil Blunsom:
Modelling the Lexicon in Unsupervised Part of Speech Induction. CoRR abs/1402.6516 (2014) - [i12]Nal Kalchbrenner, Edward Grefenstette, Phil Blunsom:
A Convolutional Neural Network for Modelling Sentences. CoRR abs/1404.2188 (2014) - [i11]Karl Moritz Hermann, Phil Blunsom:
Multilingual Models for Compositional Distributed Semantics. CoRR abs/1404.4641 (2014) - [i10]Edward Grefenstette, Phil Blunsom, Nando de Freitas, Karl Moritz Hermann:
A Deep Architecture for Semantic Parsing. CoRR abs/1404.7296 (2014) - [i9]Tomás Kociský, Karl Moritz Hermann, Phil Blunsom:
Learning Bilingual Word Representations by Marginalizing Alignments. CoRR abs/1405.0947 (2014) - [i8]Jan A. Botha, Phil Blunsom:
Compositional Morphology for Word Representations and Language Modelling. CoRR abs/1405.4273 (2014) - [i7]Misha Denil, Alban Demiraj, Nal Kalchbrenner, Phil Blunsom, Nando de Freitas:
Modelling, Visualising and Summarising Documents with a Single Convolutional Neural Network. CoRR abs/1406.3830 (2014) - [i6]Dimitrios Kotzias, Misha Denil, Phil Blunsom, Nando de Freitas:
Deep Multi-Instance Transfer Learning. CoRR abs/1411.3128 (2014) - [i5]Lei Yu, Karl Moritz Hermann, Phil Blunsom, Stephen Pulman:
Deep Learning for Answer Sentence Selection. CoRR abs/1412.1632 (2014) - [i4]Paul Baltescu, Phil Blunsom:
Pragmatic Neural Language Modelling in Machine Translation. CoRR abs/1412.7119 (2014) - [i3]Yishu Miao, Ziyu Wang, Phil Blunsom:
Bayesian Optimisation for Machine Translation. CoRR abs/1412.7180 (2014) - 2013
- [c35]Karl Moritz Hermann, Edward Grefenstette, Phil Blunsom:
"Not not bad" is not "bad": A distributional account of negation. CVSM@ACL 2013: 74-82 - [c34]Nal Kalchbrenner, Phil Blunsom:
Recurrent Convolutional Neural Networks for Discourse Compositionality. CVSM@ACL 2013: 119-126 - [c33]Karl Moritz Hermann, Phil Blunsom:
The Role of Syntax in Vector Space Models of Compositional Semantics. ACL (1) 2013: 894-904 - [c32]Pengyu Wang, Phil Blunsom:
Collapsed Variational Bayesian Inference for Hidden Markov Models. AISTATS 2013: 599-607 - [c31]Pengyu Wang, Phil Blunsom:
Collapsed Variational Bayesian Inference for PCFGs. CoNLL 2013: 173-182 - [c30]Jan A. Botha, Phil Blunsom:
Adaptor Grammars for Learning Non-Concatenative Morphology. EMNLP 2013: 345-356 - [c29]Nal Kalchbrenner, Phil Blunsom:
Recurrent Continuous Translation Models. EMNLP 2013: 1700-1709 - [c28]