
Hai-Wei Sun
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2021
- [j42]Hong-Kui Pang, Hai-Hua Qin, Hai-Wei Sun, Ting-Ting Ma:
Circulant-based approximate inverse preconditioners for a class of fractional diffusion equations. Comput. Math. Appl. 85: 18-29 (2021) - [j41]Qifeng Zhang, Lu Zhang, Hai-Wei Sun:
A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg-Landau equations. J. Comput. Appl. Math. 389: 113355 (2021) - [i5]Jia-Li Zhang, Zhi-Wei Fang, Hai-Wei Sun:
Exponential-sum-approximation technique for variable-order time-fractional diffusion equations. CoRR abs/2101.08125 (2021) - [i4]Xin Huang, Xue-Lei Lin, Michael K. Ng, Hai-Wei Sun:
Spectral analysis for preconditioning of multi-dimensional Riesz fractional diffusion equations. CoRR abs/2102.01371 (2021) - [i3]Jia-Li Zhang, Zhi-Wei Fang, Hai-Wei Sun:
Fast second-order evaluation for variable-order Caputo fractional derivative with applications to fractional sub-diffusion equations. CoRR abs/2102.02960 (2021) - [i2]Xin Huang, Hai-Wei Sun:
A preconditioner based on sine transform for two-dimensional Riesz space factional diffusion equations in convex domains. CoRR abs/2102.11576 (2021) - 2020
- [j40]Zhi-Wei Fang
, Hai-Wei Sun
, Hong Wang:
A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations. Comput. Math. Appl. 80(5): 1443-1458 (2020) - [j39]Zhi-Wei Fang, Hai-Wei Sun, Hui-Qin Wei:
An approximate inverse preconditioner for spatial fractional diffusion equations with piecewise continuous coefficients. Int. J. Comput. Math. 97(3): 523-545 (2020) - [j38]Lu Zhang, Qifeng Zhang, Hai-Wei Sun
:
Exponential Runge-Kutta Method for Two-Dimensional Nonlinear Fractional Complex Ginzburg-Landau Equations. J. Sci. Comput. 83(3): 59 (2020) - [i1]Xian-Ming Gu, Hai-Wei Sun, Yanzhi Zhang, Yong-Liang Zhao:
Fast implicit difference schemes for time-space fractional diffusion equations with the integral fractional Laplacian. CoRR abs/2002.11978 (2020)
2010 – 2019
- 2019
- [j37]Zhi-Wei Fang, Michael K. Ng, Hai-Wei Sun
:
Circulant preconditioners for a kind of spatial fractional diffusion equations. Numer. Algorithms 82(2): 729-747 (2019) - [j36]You-Wei Wen
, Hai-Wei Sun
, Michael K. Ng
:
A primal-dual method for the Meyer model of cartoon and texture decomposition. Numer. Linear Algebra Appl. 26(2) (2019) - [j35]Tao Wang, Yu Huang
, Hai-Wei Sun:
Measure-Theoretic Invariance Entropy for Control Systems. SIAM J. Control. Optim. 57(1): 310-333 (2019) - [j34]Xue-lei Lin
, Michael K. Ng
, Hai-Wei Sun:
Crank-Nicolson Alternative Direction Implicit Method for Space-Fractional Diffusion Equations with Nonseparable Coefficients. SIAM J. Numer. Anal. 57(3): 997-1019 (2019) - 2018
- [j33]Yufeng Xu, Hai-Wei Sun, Qin Sheng:
On variational properties of balanced central fractional derivatives. Int. J. Comput. Math. 95(6-7): 1195-1209 (2018) - [j32]Xue-lei Lin, Michael K. Ng
, Hai-Wei Sun:
Stability and Convergence Analysis of Finite Difference Schemes for Time-Dependent Space-Fractional Diffusion Equations with Variable Diffusion Coefficients. J. Sci. Comput. 75(2): 1102-1127 (2018) - [j31]Xin Lu, Hong-Kui Pang, Hai-Wei Sun
, Seak-Weng Vong
:
Approximate inversion method for time-fractional subdiffusion equations. Numer. Linear Algebra Appl. 25(2) (2018) - [j30]Xiao Shan Chen
, Chao Tao Wen, Hai-Wei Sun
:
Two-step Newton-type methods for solving inverse eigenvalue problems. Numer. Linear Algebra Appl. 25(5) (2018) - 2017
- [j29]Fujun Cao, Yongbin Ge, Hai-Wei Sun:
Partial semi-coarsening multigrid method based on the HOC scheme on nonuniform grids for the convection-diffusion problems. Int. J. Comput. Math. 94(12): 2356-2372 (2017) - [j28]Xue-lei Lin
, Michael K. Ng, Hai-Wei Sun
:
A multigrid method for linear systems arising from time-dependent two-dimensional space-fractional diffusion equations. J. Comput. Phys. 336: 69-86 (2017) - [j27]Xue-lei Lin
, Michael K. Ng, Hai-Wei Sun:
A Splitting Preconditioner for Toeplitz-Like Linear Systems Arising from Fractional Diffusion Equations. SIAM J. Matrix Anal. Appl. 38(4): 1580-1614 (2017) - 2016
- [j26]Hong-Kui Pang, Hai-Wei Sun
:
Fourth order finite difference schemes for time-space fractional sub-diffusion equations. Comput. Math. Appl. 71(6): 1287-1302 (2016) - [j25]Xue-lei Lin
, Xin Lu, Michael K. Ng, Hai-Wei Sun
:
A fast accurate approximation method with multigrid solver for two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 323: 204-218 (2016) - [j24]Qin Sheng
, Hai-Wei Sun:
Stability of a modified Peaceman-Rachford method for the paraxial Helmholtz equation on adaptive grids. J. Comput. Phys. 325: 259-271 (2016) - [j23]Hong-Kui Pang, Hai-Wei Sun:
Fast Numerical Contour Integral Method for Fractional Diffusion Equations. J. Sci. Comput. 66(1): 41-66 (2016) - 2015
- [j22]Leonard Z. Li, Hai-Wei Sun
, Sik-Chung Tam:
A spatial sixth-order alternating direction implicit method for two-dimensional cubic nonlinear Schrödinger equations. Comput. Phys. Commun. 187: 38-48 (2015) - [j21]Guang-hua Gao, Hai-Wei Sun
, Zhi-Zhong Sun:
Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence. J. Comput. Phys. 280: 510-528 (2015) - [j20]Guang-hua Gao, Hai-Wei Sun, Zhi-Zhong Sun
:
Some high-order difference schemes for the distributed-order differential equations. J. Comput. Phys. 298: 337-359 (2015) - [j19]Guang-hua Gao, Hai-Wei Sun
:
Three-point combined compact difference schemes for time-fractional advection-diffusion equations with smooth solutions. J. Comput. Phys. 298: 520-538 (2015) - [j18]Lu Zhang, Hai-Wei Sun
, Hong-Kui Pang:
Fast numerical solution for fractional diffusion equations by exponential quadrature rule. J. Comput. Phys. 299: 130-143 (2015) - [j17]Rihuan Ke, Michael K. Ng, Hai-Wei Sun:
A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations. J. Comput. Phys. 303: 203-211 (2015) - [j16]Xin Lu, Hong-Kui Pang, Hai-Wei Sun:
Fast approximate inversion of a block triangular Toeplitz matrix with applications to fractional sub-diffusion equations. Numer. Linear Algebra Appl. 22(5): 866-882 (2015) - 2014
- [j15]Qin Sheng, Hai-Wei Sun:
Exponential splitting for n-dimensional paraxial Helmholtz equation with high wavenumbers. Comput. Math. Appl. 68(10): 1341-1354 (2014) - [j14]Hai-Wei Sun
, Leonard Z. Li:
A CCD-ADI method for unsteady convection-diffusion equations. Comput. Phys. Commun. 185(3): 790-797 (2014) - [j13]Jun Liu, Hai-Wei Sun:
A fast high-order sinc-based algorithm for pricing options under jump-diffusion processes. Int. J. Comput. Math. 91(10): 2163-2184 (2014) - [j12]Spike T. Lee, Jun Liu, Hai-Wei Sun
:
Combined compact difference scheme for linear second-order partial differential equations with mixed derivative. J. Comput. Appl. Math. 264: 23-37 (2014) - [j11]Jianyu Pan, Rihuan Ke, Michael K. Ng
, Hai-Wei Sun:
Preconditioning Techniques for Diagonal-times-Toeplitz Matrices in Fractional Diffusion Equations. SIAM J. Sci. Comput. 36(6) (2014) - 2013
- [j10]Siu-Long Lei, Hai-Wei Sun:
A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242: 715-725 (2013) - [c2]Jun Liu, Yu Huang, Hai-Wei Sun, Mingqing Xiao:
High-Order Numerical Methods for Wave Equations with van der Pol Type Boundary Conditions. SIAM Conf. on Control and its Applications 2013: 144-151 - 2012
- [j9]Raymond H. Chan, Spike T. Lee, Hai-Wei Sun:
Boundary value methods for transient solutions of queueing networks with variant vacation policy. J. Comput. Appl. Math. 236(16): 3948-3955 (2012) - [j8]Hong-Kui Pang, Hai-Wei Sun:
Multigrid method for fractional diffusion equations. J. Comput. Phys. 231(2): 693-703 (2012) - [j7]Spike T. Lee, Xin Liu, Hai-Wei Sun:
Fast exponential time integration scheme for option pricing with jumps. Numer. Linear Algebra Appl. 19(1): 87-101 (2012) - 2011
- [j6]Shu-Ling Yang, Jian-Feng Cai
, Hai-Wei Sun:
Multigrid algorithm from cyclic reduction for Markovian queueing networks. Appl. Math. Comput. 217(16): 6990-7000 (2011) - [j5]Shu-Ling Yang, Spike T. Lee, Hai-Wei Sun:
Boundary value methods with the Crank-Nicolson preconditioner for pricing options in the jump-diffusion model. Int. J. Comput. Math. 88(8): 1730-1748 (2011) - [j4]Hong-Kui Pang, Hai-Wei Sun:
Shift-invert Lanczos method for the symmetric positive semidefinite Toeplitz matrix exponential. Numer. Linear Algebra Appl. 18(3): 603-614 (2011) - 2010
- [j3]Spike T. Lee, Hong-Kui Pang, Hai-Wei Sun:
Shift-Invert Arnoldi Approximation to the Toeplitz Matrix Exponential. SIAM J. Sci. Comput. 32(2): 774-792 (2010)
2000 – 2009
- 2003
- [j2]Michael K. Ng
, Hai-Wei Sun, Xiao-Qing Jin:
Recursive-Based PCG Methods for Toeplitz Systems with Nonnegative Generating Functions. SIAM J. Sci. Comput. 24(5): 1507-1529 (2003)
1990 – 1999
- 1998
- [j1]Raymond H. Chan, Qianshun Chang, Hai-Wei Sun:
Multigrid Method for Ill-Conditioned Symmetric Toeplitz Systems. SIAM J. Sci. Comput. 19(2): 516-529 (1998) - 1996
- [c1]Raymond H. Chan, Chun-pong Cheung, Hai-Wei Sun:
Fast Algorithms for Problems on Thermal Tomography. WNAA 1996: 90-97
Coauthor Index
aka: Michael K. Ng

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
load content from web.archive.org
Privacy notice: By enabling the option above, your browser will contact the API of web.archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
Tweets on dblp homepage
Show tweets from on the dblp homepage.
Privacy notice: By enabling the option above, your browser will contact twitter.com and twimg.com to load tweets curated by our Twitter account. At the same time, Twitter will persistently store several cookies with your web browser. While we did signal Twitter to not track our users by setting the "dnt" flag, we do not have any control over how Twitter uses your data. So please proceed with care and consider checking the Twitter privacy policy.
last updated on 2021-02-25 23:25 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint