


default search action
Reinforcement Learning Journal, Volume 4
Volume 4, 2024
- Kellen Kanarios, Qining Zhang, Lei Ying:

Cost Aware Best Arm Identification. RLJ 4: 1533-1545 (2024) - Kartik Choudhary, Dhawal Gupta, Philip S. Thomas:

ICU-Sepsis: A Benchmark MDP Built from Real Medical Data. RLJ 4: 1546-1566 (2024) - Claas Voelcker, Tyler Kastner, Igor Gilitschenski, Amir-massoud Farahmand:

When does Self-Prediction help? Understanding Auxiliary Tasks in Reinforcement Learning. RLJ 4: 1567-1597 (2024) - Changling Li, Zhang-Wei Hong, Pulkit Agrawal, Divyansh Garg, Joni Pajarinen:

ROER: Regularized Optimal Experience Replay. RLJ 4: 1598-1618 (2024) - Philipp Becker, Sebastian Mossburger, Fabian Otto, Gerhard Neumann:

Combining Reconstruction and Contrastive Methods for Multimodal Representations in RL. RLJ 4: 1619-1655 (2024) - Owen Oertell, Jonathan D. Chang, Yiyi Zhang, Kianté Brantley, Wen Sun:

RL for Consistency Models: Reward Guided Text-to-Image Generation with Fast Inference. RLJ 4: 1656-1673 (2024) - Miguel Vasco, Takuma Seno, Kenta Kawamoto, Kaushik Subramanian, Peter R. Wurman, Peter Stone:

A Super-human Vision-based Reinforcement Learning Agent for Autonomous Racing in Gran Turismo. RLJ 4: 1674-1710 (2024) - Miguel Suau, Matthijs T. J. Spaan, Frans A. Oliehoek:

Bad Habits: Policy Confounding and Out-of-Trajectory Generalization in RL. RLJ 4: 1711-1732 (2024) - Rafael Rodríguez-Sánchez, George Konidaris:

Learning Abstract World Models for Value-preserving Planning with Options. RLJ 4: 1733-1758 (2024) - Davide Corsi, Guy Amir, Andoni Rodríguez, Guy Katz, César Sánchez, Roy Fox:

Verification-Guided Shielding for Deep Reinforcement Learning. RLJ 4: 1759-1780 (2024) - Forest Agostinelli, Misagh Soltani:

Learning Discrete World Models for Heuristic Search. RLJ 4: 1781-1792 (2024) - Zhengfei Zhang, Kishan Panaganti, Laixi Shi, Yanan Sui, Adam Wierman, Yisong Yue:

Distributionally Robust Constrained Reinforcement Learning under Strong Duality. RLJ 4: 1793-1821 (2024) - Connor Mattson, Anurag Aribandi, Daniel S. Brown:

Representation Alignment from Human Feedback for Cross-Embodiment Reward Learning from Mixed-Quality Demonstrations. RLJ 4: 1822-1840 (2024) - Gautham Vasan, Yan Wang, Fahim Shahriar, James Bergstra, Martin Jägersand, A. Rupam Mahmood:

Revisiting Sparse Rewards for Goal-Reaching Reinforcement Learning. RLJ 4: 1841-1854 (2024) - Matthew Thomas Jackson, Michael T. Matthews, Cong Lu, Benjamin Ellis, Shimon Whiteson, Jakob Nicolaus Foerster:

Policy-Guided Diffusion. RLJ 4: 1855-1872 (2024) - James Staley, Elaine Short, Shivam Goel, Yash Shukla:

Agent-Centric Human Demonstrations Train World Models. RLJ 4: 1873-1886 (2024) - Akansha Kalra, Daniel S. Brown:

Can Differentiable Decision Trees Enable Interpretable Reward Learning from Human Feedback? RLJ 4: 1887-1910 (2024) - Wei-Di Chang, Scott Fujimoto, David Meger, Gregory Dudek:

Imitation Learning from Observation through Optimal Transport. RLJ 4: 1911-1923 (2024) - Wancong Zhang, Anthony GX-Chen, Vlad Sobal, Yann LeCun, Nicolas Carion:

Light-weight Probing of Unsupervised Representations for Reinforcement Learning. RLJ 4: 1924-1949 (2024) - Yuxin Chen, Chen Tang, Thomas Tian, Chenran Li, Jinning Li, Masayoshi Tomizuka, Wei Zhan:

Quantifying Interaction Level Between Agents Helps Cost-efficient Generalization in Multi-agent Reinforcement Learning. RLJ 4: 1950-1964 (2024) - Daniel Melcer, Christopher Amato, Stavros Tripakis:

Shield Decomposition for Safe Reinforcement Learning in General Partially Observable Multi-Agent Environments. RLJ 4: 1965-1994 (2024) - Abhishek Naik, Yi Wan, Manan Tomar, Richard S. Sutton:

Reward Centering. RLJ 4: 1995-2016 (2024) - Jan de Priester, Zachary I. Bell, Prashant Ganesh, Ricardo G. Sanfelice:

MultiHyRL: Robust Hybrid RL for Obstacle Avoidance against Adversarial Attacks on the Observation Space. RLJ 4: 2017-2040 (2024)

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














